JPH0559189B2 - - Google Patents

Info

Publication number
JPH0559189B2
JPH0559189B2 JP59164693A JP16469384A JPH0559189B2 JP H0559189 B2 JPH0559189 B2 JP H0559189B2 JP 59164693 A JP59164693 A JP 59164693A JP 16469384 A JP16469384 A JP 16469384A JP H0559189 B2 JPH0559189 B2 JP H0559189B2
Authority
JP
Japan
Prior art keywords
phase
alloy
particles
matrix
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59164693A
Other languages
Japanese (ja)
Other versions
JPS6141748A (en
Inventor
Takeshi Masumoto
Akihisa Inoe
Yoshio Harakawa
Masahiro Oguchi
Nobuyoshi Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd, Unitika Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP59164693A priority Critical patent/JPS6141748A/en
Publication of JPS6141748A publication Critical patent/JPS6141748A/en
Publication of JPH0559189B2 publication Critical patent/JPH0559189B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、母相中に微細な第2相金属粒子が均
一に分散してなる組織を有する機械的特性に優れ
た第2相金属粒子分散型合金に関するものであ
る。 従来、母相中に第2相粒子を分散させると、機
械的強度、耐摩耗性等が改善される傾向にあり、
第2相粒子分散型複合材料の研究が盛んに行われ
ている。 しかし、例えば第2相粒子を分散させるために
通常の鋳造法により鋳造すると、第2相粒子であ
る酸化物、炭化物等の粒子は、溶湯とのぬれ性が
悪く、また溶湯との比重差も大きいために分散性
が悪く、偏析をおこし、機械的強度等特性にばら
つきが生じやすかつた。さらに、このような通常
の鋳造法は、冷却速度が約10℃/secと極めて遅
いということも合金母相中の第2相粒子の分散性
を悪くする原因となつていた。 鋳造時の冷却速度を上げることにより、第2相
粒子の分散性を向上させた合金材料として、特開
昭59−47341号公報及び59−47352号公報がある。
この合金は、非晶質合金、非平衡結晶質合金の製
造法である液体急冷法により製造されたもので、
この液体急冷法は、冷却速度が104〜106℃/sec
である。しかし、このような急冷凝固方法である
液体急冷法を用いても、より微細な第2相粒子を
より均一に分散させ、特性の向上を得るという点
において、まだ改善の余地があつた。というの
は,この合金の製造法が溶湯と溶湯に相溶しない
第2相粒子である酸化物、炭化物、金属粉末、合
金粉末とを混合し、その混合体を急冷凝固してい
るためである。すなわち、溶湯に混合される第2
相粒子は、溶湯との濡れ性が悪いため、偏析を生
じやすかつたのである。具体的には、その実施例
にもあるように混合される第2相粒子の粒径は1
〜5μmであり、形状も角形のものが多く、応力
集中源になりやすく、さらに分散性も最近接粒子
の間隔も1〜100μmとばらついていた。 本発明者らは、従来の第2相粒子分散型合金よ
りもさらに微細な第2相金属粒子が均一に分散し
てなる組織を有する第2相粒子分散型合金を提供
することを目的として鋭意検討した結果、特定の
組成からなる合金を急冷凝固させると、上記の目
的が達成され、さらに機械的特性に優れた第2相
金属粒子分散型合金であることを見い出し、本発
明を完成した。 すなわち、第一の発明は、式;NdZe(式中N
は母相金属元素で、Cu,Fe,Co,Ni,Cr,
Mo,Vからなる群より選ばれた1種又は2種以
上の元素であり、Zは急冷凝固後第2相金属粒子
となる金属元素で、Ag,Au,Pb,Bi,Sn,Be
からなる群より選ばれた1種又は2種以上の元素
であり、dは100−eで与えられる原子%で、e
は1〜15原子%である。)で示される組成よりな
り、かつ母相中に微細な第2相金属粒子が均一に
分散してなる組織を有する機械的特性に優れた第
2相金属粒子分散型合金であり、第二の発明は、
式;NdZeMf(式中Nは母相金属元素で、Cu,
Fe,Ni,Cr,Mo,Vからなる群より選ばれた
1種又は2種以上の元素であり、Zは急冷凝固後
第2相金属粒子となる元素で、Ag,Au,Pb,
Bi,Sn,Beからなる群より選ばれた1種又は2
種以上の元素であり、Mは母相を強化する元素
で、Al,Si,C,Geからなる群より選ばれた1
種又は2種以上の元素であり、dは、100−(e+
f)で与えられる原子%で、eは1〜15原子%で
あり、fは15原子%以下である。)で示される組
成よりなり、かつ母相中に微細な第2相金属粒子
が均一に分散してなる組織を有する機械的特性に
優れた第2相金属粒子型合金である。 本発明の合金について説明すると、Nとは、母
相となる金属元素で、Cu,Fe,Ni,Co,Cr,
Moからなる群より選ばれた1種又は2種以上の
元素であり、Zとは、第2相金属粒子となる元素
で、Ag,Au,Pb,Bi,Sn,Beからなる群より
選ばれた1種又は2種以上の元素であり、dは
100−eで与えられる原子%で、eは1〜15原子
%であることが必要である。特にeは1〜14原子
%であることが好ましい。eが1原子%未満の場
合には、得られた合金の母相中に第2相金属粒子
は観察されず、特性に対する寄与はほとんど見い
出せない。また、eが15原子%を超える場合に
は、溶湯噴出用ノズル内の溶湯中で合金の2相分
離がおこるようになり、得られる合金の母相中の
第2相金属粒子の偏析、あるいは粒径の増大が見
られ、本発明の目的を達することができない。 また、本発明の合金にAl,Si,C,Geからな
る群より選ばれた1種又は2種以上の元素を15原
子%以下、好ましくは13原子%以下で添加する
と、第2相金属粒子の粒径の均一性及び分散状態
は良好のままで、母相を強化し、機械的性質を向
上させる効果や耐摩耗性を改善する効果がみられ
る。 本発明の合金を製造するには、前記合金組成を
用い、雰囲気中もしくは真空中で加熱溶融し、こ
れを急冷凝固させればよい。その急冷方法として
は種々あるが、例えば液体急冷法として知られる
片ロール法、双ロール法及び回転液中紡糸法等が
特に有効である。これら片ロール法、双ロール法
では薄帯材料が、回転液中紡糸法では細線材料が
容易に連続的に、しかも低コストで製造すること
が可能である。 また、本発明の合金を製造する場合、溶湯噴出
用ノズル内で合金を溶解する際、溶湯攪拌作用の
ある高周波加熱が良いが、超音波振動を溶湯に与
えて2相分離をおさえる方法、又は溶解用の高周
波コイルとは別に内側に溶湯攪拌用コイルを併設
して合金の2相分離をおさえる方法も好ましい結
果を与える。また、溶湯噴出用ノズル内で合金を
溶解したあと、噴出孔までの経路の中で堰又はセ
ラミツクフイルターを設置し、溶湯のミキシング
を効果よく行うことも、本発明の合金の特性の向
上に寄与がみられる。 本発明の合金は、溶湯状態では偏析2相分が全
くなく、完全に合金化しているが、これを適当な
速度で急冷凝固化することにより、例えば母相中
に粒径が1〜100nm程度の非常に微細で、かつ1
〜100nm程度の間隔に均一に分散した第2相金属
粒子を含む組織となる。 二・三の具体例をあげると、97Cu−3Pbの合金
組成を有す本発明の第2相金属粒子分散型合金
は、Cuの母相中に粒径約25nmでほぼ完全な球形
を有するPb粒子が約35〜45nmの間隔で分散して
おり、これは従来の粒子分散型合金と比較して粒
子の微細さ、分散の均一性において非常に優れた
ものであるということができ、また68Fe−8Ni−
10Cr−10Al−3C−1Auの組成を有する合金は、
急冷凝固材で破断強度が188Kg/mm2と、Au粒子を
含まない超急冷合金材料と比較して約13Kg/mm2
断強度は高くなつている。 本発明の第2相金属粒子分散型合金は、上記の
組織を有しているため、機械的特性が改善され、
例えば破断強度の向上は軽量化、信頼性の向上に
寄与し、また細線状材料はフイルター、ストレー
ナ用等に最適で、寿命の向上等がみられる。 以下、本発明を実施例により具体例により具体
的に説明する。 実施例1〜32、比較例1〜14 表−1に示す各種組成の合金をアルゴンガス雰
囲気中で溶融させ、4000rpmで回転する直径100
mmの銅製ロールにアルゴンガス噴出圧3.5Kg/cm2
で噴出して、幅2mm、厚さ60μmの薄帯状材料を
得た。 これら薄帯状材料の組織観察を透過電子顕微鏡
により測定した。また、機械的性質は常温におい
てインストロン型引張試験機を用いて測定した。 その結果を表−1に示す。
The present invention relates to a second phase metal particle dispersed alloy having excellent mechanical properties and having a structure in which fine second phase metal particles are uniformly dispersed in a matrix. Conventionally, dispersing second phase particles in the matrix tends to improve mechanical strength, wear resistance, etc.
Research on second phase particle dispersed composite materials is being actively conducted. However, when casting using a normal casting method to disperse second phase particles, for example, particles such as oxides and carbides that are second phase particles have poor wettability with the molten metal, and there is also a difference in specific gravity with the molten metal. Because of their large size, they had poor dispersibility, causing segregation and tending to cause variations in properties such as mechanical strength. Furthermore, in such a conventional casting method, the cooling rate is extremely slow at about 10° C./sec, which also causes poor dispersibility of the second phase particles in the alloy matrix. JP-A-59-47341 and JP-A-59-47352 disclose alloy materials in which the dispersibility of second phase particles is improved by increasing the cooling rate during casting.
This alloy was manufactured using the liquid quenching method, which is the manufacturing method for amorphous alloys and non-equilibrium crystalline alloys.
This liquid quenching method has a cooling rate of 10 4 to 10 6 °C/sec.
It is. However, even when the liquid quenching method, which is such a rapid solidification method, is used, there is still room for improvement in terms of more uniformly dispersing finer second phase particles and improving properties. This is because the manufacturing method for this alloy mixes molten metal with second phase particles that are incompatible with the molten metal, such as oxides, carbides, metal powders, and alloy powders, and then rapidly solidifies the mixture. . In other words, the second
Since the phase particles have poor wettability with the molten metal, they tend to cause segregation. Specifically, as in the example, the particle size of the second phase particles to be mixed is 1
~5 μm, and most of the particles were rectangular in shape, easily becoming a source of stress concentration, and furthermore, the dispersibility and distance between nearest neighboring particles varied from 1 to 100 μm. The present inventors have made efforts to provide a second-phase particle-dispersed alloy having a structure in which second-phase metal particles are uniformly dispersed, which are finer than those of conventional second-phase particle-dispersed alloys. As a result of investigation, it was discovered that when an alloy consisting of a specific composition is rapidly solidified, the above objectives are achieved and the second phase metal particle dispersed alloy has excellent mechanical properties, and the present invention has been completed. That is, the first invention is based on the formula; NdZe (in the formula, N
is the matrix metal element, Cu, Fe, Co, Ni, Cr,
It is one or more elements selected from the group consisting of Mo and V, and Z is a metal element that becomes second phase metal particles after rapid solidification, including Ag, Au, Pb, Bi, Sn, and Be.
One or more elements selected from the group consisting of, d is atomic % given by 100-e, and e
is 1 to 15 at%. ), and has a structure in which fine second phase metal particles are uniformly dispersed in the matrix, and has excellent mechanical properties. The invention is
Formula; NdZeMf (in the formula, N is the parent phase metal element, Cu,
One or more elements selected from the group consisting of Fe, Ni, Cr, Mo, and V; Z is an element that becomes second phase metal particles after rapid solidification; Ag, Au, Pb,
One or two selected from the group consisting of Bi, Sn, and Be
M is an element that strengthens the matrix, and M is an element selected from the group consisting of Al, Si, C, and Ge.
species or two or more types of elements, d is 100−(e+
f) in atomic %, e is from 1 to 15 atomic %, and f is 15 atomic % or less. ), and has a structure in which fine second phase metal particles are uniformly dispersed in the matrix, and has excellent mechanical properties. To explain the alloy of the present invention, N is a metal element that forms the matrix, including Cu, Fe, Ni, Co, Cr,
Z is an element selected from the group consisting of Mo, and Z is an element selected from the group consisting of Ag, Au, Pb, Bi, Sn, and Be. is one or more elements, and d is
In atomic % given by 100-e, e needs to be between 1 and 15 atomic %. In particular, e is preferably 1 to 14 atomic %. When e is less than 1 atomic %, no second phase metal particles are observed in the parent phase of the obtained alloy, and almost no contribution to the properties can be found. In addition, when e exceeds 15 atomic percent, two-phase separation of the alloy occurs in the molten metal in the molten metal spouting nozzle, resulting in segregation of second phase metal particles in the matrix of the resulting alloy, or An increase in particle size is observed, making it impossible to achieve the objective of the present invention. Furthermore, when one or more elements selected from the group consisting of Al, Si, C, and Ge are added to the alloy of the present invention in an amount of 15 atomic % or less, preferably 13 atomic % or less, second phase metal particles The uniformity of the particle size and the dispersion state remain good, and the effect of strengthening the matrix, improving mechanical properties, and improving wear resistance can be seen. In order to produce the alloy of the present invention, the alloy composition described above may be heated and melted in an atmosphere or in a vacuum, and then rapidly solidified. There are various methods for quenching, but particularly effective are, for example, a single roll method, a twin roll method, and a rotating liquid spinning method, which are known as liquid quenching methods. The single-roll method and double-roll method can produce a thin ribbon material, and the rotating liquid spinning method can produce a thin wire material easily, continuously, and at low cost. In addition, when producing the alloy of the present invention, high-frequency heating with a molten metal stirring effect is preferable when melting the alloy in a molten metal spouting nozzle, but a method of applying ultrasonic vibration to the molten metal to suppress two-phase separation, or A method of suppressing two-phase separation of the alloy by installing a coil for stirring the molten metal inside in addition to the high-frequency coil for melting also gives preferable results. Furthermore, after the alloy is melted in the molten metal spouting nozzle, installing a weir or a ceramic filter in the path to the spouting hole to mix the molten metal effectively also contributes to improving the properties of the alloy of the present invention. can be seen. The alloy of the present invention is completely alloyed without any segregated two-phase components in the molten state, but by rapidly solidifying it at an appropriate rate, the grain size can be reduced to about 1 to 100 nm in the matrix, for example. very fine and 1
This results in a structure containing second phase metal particles uniformly dispersed at intervals of about 100 nm. To give a few specific examples, the second phase metal particle dispersed alloy of the present invention having an alloy composition of 97Cu-3Pb has Pb particles in a Cu matrix having a particle size of about 25 nm and an almost perfect spherical shape. The particles are dispersed at intervals of approximately 35 to 45 nm, which can be said to be extremely superior in particle fineness and uniformity of dispersion compared to conventional particle-dispersed alloys. −8Ni−
The alloy with the composition 10Cr−10Al−3C−1Au is
The breaking strength of the rapidly solidified material is 188Kg/ mm2 , which is about 13Kg/ mm2 higher than that of the ultra-rapidly solidified alloy material that does not contain Au particles. Since the second phase metal particle dispersed alloy of the present invention has the above-mentioned structure, mechanical properties are improved,
For example, improved breaking strength contributes to weight reduction and improved reliability, and fine wire materials are ideal for filters, strainers, etc., and have improved lifespan. EXAMPLES Hereinafter, the present invention will be specifically explained using examples. Examples 1 to 32, Comparative Examples 1 to 14 Alloys with various compositions shown in Table 1 were melted in an argon gas atmosphere and a
Argon gas injection pressure 3.5Kg/cm 2 on mm copper roll
A thin strip material with a width of 2 mm and a thickness of 60 μm was obtained. The structure of these thin strip materials was observed using a transmission electron microscope. In addition, mechanical properties were measured using an Instron type tensile tester at room temperature. The results are shown in Table-1.

【表】【table】

【表】 実施例1〜32は、約15〜100nmの粒径の第2相
金属粒子が母相中に均一に分散した組織をしてお
り、第2相金属粒子を含有しない比較例1,6,
8〜14の従来の鋳造材及び急冷材を比較して高い
破断強度を有していた。また、本発明の合金は加
工性にも優れており、より破断強度は向上した。 また、比較例2及び4は第2相金属粒子が生成
しなかつたため、破断強度の向上は認められず、
また比較例3,5,7は第2相金属粒子が粗大化
し、かつ不均一分散したため、破断強度に低下を
きたした。
[Table] Examples 1 to 32 have a structure in which second phase metal particles with a particle size of about 15 to 100 nm are uniformly dispersed in the matrix, and Comparative Example 1, which does not contain second phase metal particles, 6,
Compared with conventional cast materials and quenched materials of Nos. 8 to 14, they had high breaking strength. In addition, the alloy of the present invention has excellent workability and has further improved breaking strength. In addition, in Comparative Examples 2 and 4, no improvement in breaking strength was observed because second phase metal particles were not generated.
Furthermore, in Comparative Examples 3, 5, and 7, the second phase metal particles became coarse and unevenly dispersed, resulting in a decrease in breaking strength.

Claims (1)

【特許請求の範囲】 1 式;NdEe(式中Zは母相金属元素で、Cu,
Fe,Co,Ni,Cr,Mo,Vからなる群より選ば
れた1種又は2種以上の元素であり、Zは急冷凝
固後第2相金属粒子となる金属元素で、Ag,
Au,Pb,Bi,Sn,Beからなる群より選ばれた
1種又は2種以上の元素であり、dは100−eで
与えられる原子%で、eは1〜15原子%である。)
で示される組成よりなり、かつ母相中に微細な第
2相金属粒子が均一に分散してなる組織を有する
機械的特性に優れた第2相金属粒子分散型合金。 2 式;NdZeMf(式中Nは母相金属元素で、
Cu,Fe,Co,Ni,Cr,Mo,Vからなる群より
選ばれた1種又は2種以上の元素であり、Zは急
冷凝固後第2相金属粒子となる金属元素で、Ag,
Au,Pb,Bi,Sn,Beからなる群より選ばれた
1種又は2種以上の元素であり、Mは母相を強化
する元素で、Al,Si,C,Geからなる群より選
ばれた1種又は2種以上の元素であり、dは100
−(e+f)で与えられる原子%で、eは1〜15
原子%であり、fは15原子%以下である。)で示
される組成よりなり、かつ母相中に微細な第2相
金属粒子が均一に分散してなる組織を有する機械
的特性に優れた第2相金属粒子型合金。
[Claims] 1 Formula; NdEe (in the formula, Z is a matrix metal element, Cu,
One or more elements selected from the group consisting of Fe, Co, Ni, Cr, Mo, and V, Z is a metal element that becomes second phase metal particles after rapid solidification, and Ag,
It is one or more elements selected from the group consisting of Au, Pb, Bi, Sn, and Be, where d is atomic % given by 100-e, and e is 1 to 15 atomic %. )
A second phase metal particle dispersed alloy having a composition shown in the following, and having a structure in which fine second phase metal particles are uniformly dispersed in a matrix and having excellent mechanical properties. 2 Formula; NdZeMf (in the formula, N is the parent phase metal element,
One or more elements selected from the group consisting of Cu, Fe, Co, Ni, Cr, Mo, and V, Z is a metal element that becomes second phase metal particles after rapid solidification, and Ag,
One or more elements selected from the group consisting of Au, Pb, Bi, Sn, and Be, and M is an element that strengthens the matrix and is selected from the group consisting of Al, Si, C, and Ge. is one or more elements, and d is 100
-(e+f) in atomic %, where e is 1 to 15
%, and f is 15 atomic % or less. ) A second phase metal particle type alloy having excellent mechanical properties and having a structure in which fine second phase metal particles are uniformly dispersed in the matrix.
JP59164693A 1984-08-06 1984-08-06 Second phase metal particle dispersion type alloy Granted JPS6141748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164693A JPS6141748A (en) 1984-08-06 1984-08-06 Second phase metal particle dispersion type alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164693A JPS6141748A (en) 1984-08-06 1984-08-06 Second phase metal particle dispersion type alloy

Publications (2)

Publication Number Publication Date
JPS6141748A JPS6141748A (en) 1986-02-28
JPH0559189B2 true JPH0559189B2 (en) 1993-08-30

Family

ID=15798064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164693A Granted JPS6141748A (en) 1984-08-06 1984-08-06 Second phase metal particle dispersion type alloy

Country Status (1)

Country Link
JP (1) JPS6141748A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238230A (en) * 1987-03-25 1988-10-04 Matsushita Electric Works Ltd Conducting composite material and its production

Also Published As

Publication number Publication date
JPS6141748A (en) 1986-02-28

Similar Documents

Publication Publication Date Title
US4478791A (en) Method for imparting strength and ductility to intermetallic phases
US4373970A (en) Copper base spinodal alloy strip and process for its preparation
JPH03158446A (en) Amorphous alloy excellent in workability
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
WO2006093140A1 (en) Copper alloy
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
CA1222893A (en) Nickel-based alloy
JPH0565584A (en) Production of high strength aluminum alloy powder
US4400208A (en) Process for the production of iron, phosphorus, carbon and chromium based amorphous metal alloys, and the alloys obtained
JP2911708B2 (en) High-strength, heat-resistant, rapidly solidified aluminum alloy, its solidified material, and its manufacturing method
EP0540055B1 (en) High-strength and high-toughness aluminum-based alloy
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
EP0002923B1 (en) Iron group transition metal-refractory metal-boron glassy alloys
JPH05239583A (en) High strength heat resistant aluminum alloy, its compacted and caked material and its production
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0559189B2 (en)
DE2539002B2 (en) USE OF ALLOYS TO MAKE MAGNETIC HEADS
US4842955A (en) Homogeneous, metastable BAg-group brazing alloys
JPH05311359A (en) High strength aluminum base alloy and its composite solidified material
JP3485961B2 (en) High strength aluminum base alloy
JPH0116301B2 (en)
JPS6141732A (en) Manufacture of alloy containing metallic particle dispersed as second phase
DE10064056A1 (en) Production of a sintered body used as part of a crushing device or grinding machine comprises quenching a ternary alloy melt and sintering under compression using an electrical discharge plasma sintering process
US4928872A (en) Method of brazing employing bag-group homogeneous microcrystalline brazing powders
JPS5941431A (en) Ni-based alloy