JPS6140437A - Intake-air device in internal combustion engine - Google Patents

Intake-air device in internal combustion engine

Info

Publication number
JPS6140437A
JPS6140437A JP16156184A JP16156184A JPS6140437A JP S6140437 A JPS6140437 A JP S6140437A JP 16156184 A JP16156184 A JP 16156184A JP 16156184 A JP16156184 A JP 16156184A JP S6140437 A JPS6140437 A JP S6140437A
Authority
JP
Japan
Prior art keywords
valve
flow control
control valve
engine
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16156184A
Other languages
Japanese (ja)
Other versions
JPH0585746B2 (en
Inventor
Koji Uranishi
康次 浦西
Takaaki Ito
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16156184A priority Critical patent/JPS6140437A/en
Publication of JPS6140437A publication Critical patent/JPS6140437A/en
Publication of JPH0585746B2 publication Critical patent/JPH0585746B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/0035Controlling the purging of the canister as a function of the engine operating conditions to achieve a special effect, e.g. to warm up the catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

PURPOSE:To control the idle speed of an engine and the purge of absorbed fuel, by disposing a shut-off valve and a flow control valve in a bypass passage bypassing a throttle valve, and by communicating the bypass passage with an evaporated fuel absorbing canister. CONSTITUTION:An intake-air passage 2 is formed with a bypass passage 8 bypassing a throttle valve 6. A shut-off valve 9 and a flow control valve 10 are disposed in the bypass passage 8 in the mentioned order from the upstream side thereof. Further, the bypass passage 8 is communicated with an evaporated fuel absorbing canister 15. Upon idling operation of an engine the shut-off valve 9 is opened to regulate the flow rate of idling air with the use of the flow control valve 10. Upon loading operation of the engine the shut-off valve 9 is closed to carry out the purge of fuel absorbed in the canister 15 by means of the flow control valve 10. With this arrangement it is possible to control the idle speed and the purge of absorbed fuel with the use of a single flow control valve.

Description

【発明の詳細な説明】 −産業上の利用分野 本発明は内燃機関の吸気装置に関し、さらに詳しくはア
イドルスピードコントロール装置と蒸発燃料排出防止装
置とを兼ね備えた吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION - Industrial Field of Application The present invention relates to an intake system for an internal combustion engine, and more particularly to an intake system that has both an idle speed control device and an evaporative fuel emission prevention device.

従来の技術 スロットル弁をバイパスして形成されたバイパス通路に
流量制御弁(アイドルスピードコントロールバルブとも
呼ばれる)を配置し、機関冷却水温の関数としてアイド
リング時の吸入空気量を調量することは公知である。こ
れにはりニアソレノイド型の流量制御弁がよく用いられ
、アイドリング時の吸入空気量を精密に調量できるよう
になっている。一方、蒸発燃料排出防止装置には公知の
チャコールキャニスタが備えられ、吸着された燃料は機
関負荷時に吸気通路にパージされるようになっている。
Prior art It is known to arrange a flow control valve (also called an idle speed control valve) in a bypass passage formed by bypassing a throttle valve to meter the amount of intake air during idling as a function of the engine cooling water temperature. be. A near solenoid type flow control valve is often used for this purpose, allowing the amount of intake air to be precisely adjusted during idling. On the other hand, the evaporated fuel emission prevention device is equipped with a known charcoal canister, and the adsorbed fuel is purged into the intake passage when the engine is loaded.

このパージ量を機関負荷等に応じて精密に制御すること
が好ましいことがあり、そのような構成の一つが特開昭
57−129247号公報に記  :載されている。パ
ージ量を精密に制御するためには高価な流量制御弁が必
要である。
It is sometimes preferable to precisely control the amount of purge depending on the engine load, etc., and one such configuration is described in Japanese Patent Application Laid-open No. 129247/1983. Precise control of the purge amount requires an expensive flow control valve.

発明が解決しようとする問題点 上記したように、従来の吸気装置ではアイドルスピード
コントロール用と吸着燃料パージ用とのためにそれぞれ
に高価な流量制御弁が必要であった0本発明はそのよう
な高価な流量制御弁が一個だけでアイドルスピードコン
トロールと吸着燃料パージとがともに精密に制御される
ことを目的とするものである。
Problems to be Solved by the Invention As mentioned above, the conventional intake system requires expensive flow control valves for idle speed control and adsorbed fuel purge. The purpose is to precisely control both idle speed control and adsorbed fuel purge using only one expensive flow control valve.

問題点を解決するための手段 上記問題点を解決するために、本発明による内燃機関の
吸気装置は、スロットル弁が配置された吸気通路にスロ
ットル弁をバイパスするバイパス通路を設け、バイパス
通路には上流側から順に開閉弁及び流量制御弁が配置さ
れ、さらにバイパス通路には開閉弁と、流量制御弁との
間で蒸発燃料吸着用キャニスタが連通され、機関アイド
リング時には開閉弁を開いて流量制御弁によりアイドリ
ング空気流量調整を行い、機関負荷時には開閉弁を閉じ
て流量制御弁によりキャニスタ内に吸着された燃料のパ
ージを行うようにしたことを特徴とする。
Means for Solving the Problems In order to solve the above problems, an intake system for an internal combustion engine according to the present invention is provided with a bypass passage for bypassing the throttle valve in the intake passage in which the throttle valve is disposed, and a bypass passage for bypassing the throttle valve. An on-off valve and a flow control valve are arranged in order from the upstream side, and an evaporated fuel adsorption canister is communicated between the on-off valve and the flow control valve in the bypass passage, and when the engine is idling, the on-off valve is opened and the flow control valve is activated. The idling air flow rate is adjusted by idling air flow rate, and when the engine is under load, the on-off valve is closed and the fuel adsorbed in the canister is purged by the flow control valve.

実施例 第1図において、機関本体1には吸気通路2と排気通路
3が連通接続される。吸気通路2にはエアクリーナ4、
エアフローメータ5、スロットル弁6、燃料噴射弁7が
配置される。この吸気通路2には、スロットル弁6をバ
イパスするバイパス通路8が形成される。このバイパス
通路8には、吸気通路2への上流側分岐部付近に開閉弁
9が配置されるとともに、吸気通路への下流側合流部付
近に流量制御弁10が配置される。開閉弁9はリンク機
構11によりスロットル弁6に連動されており、スロッ
トル弁6がほぼ全閉状態にあるアイドル時にバイパス通
路8を開き且つスロットル弁が前記はぼ全閉状態から開
かれた負荷時にバイパス通路8を閉じるようになってい
る。一方、流量制御弁10は従来のアイドルスピードコ
ントロールバルブ(ISCV)として公知のりニアソレ
ノイド型のバルブが使用でき、これは例えばコンピュー
タ22の制御の下に精密に作動されることができ、コン
ピュータは例えば機関冷却水温センサ9や図示しない機
関回転数センサ、スロットルポジションセンサ等からの
検出信号に基いて流量制御弁10の制御信号を発生する
ことができるものである。
Embodiment In FIG. 1, an intake passage 2 and an exhaust passage 3 are connected to an engine body 1 in communication. An air cleaner 4 is installed in the intake passage 2,
An air flow meter 5, a throttle valve 6, and a fuel injection valve 7 are arranged. A bypass passage 8 that bypasses the throttle valve 6 is formed in the intake passage 2 . In this bypass passage 8, an on-off valve 9 is arranged near an upstream branching part to the intake passage 2, and a flow control valve 10 is arranged near a downstream joining part to the intake passage. The on-off valve 9 is linked to the throttle valve 6 by a link mechanism 11, and opens the bypass passage 8 during idle when the throttle valve 6 is almost fully closed, and when under load when the throttle valve is opened from the nearly fully closed state. The bypass passage 8 is closed. Alternatively, the flow control valve 10 can be a conventional idle speed control valve (ISCV) of the linear solenoid type, which can be precisely operated under the control of, for example, a computer 22. A control signal for the flow rate control valve 10 can be generated based on detection signals from an engine cooling water temperature sensor 9, an engine speed sensor (not shown), a throttle position sensor, etc.

第1図にはさらに燃料タンク13が示されており、これ
はペーパーライン14によりチャコールキャニスタ15
に接続されている。チャコールキャニスタ15はその中
に活性炭からなる吸着剤養育し、例えば機関停止中に燃
料タンク13で発生した蒸発燃料を吸着剤に吸着させ、
吸着された燃料は機関負荷運転中にパージライン16か
ら吸気通路2にパージされる0本発明においては、この
パージライン16は前述のバイパス通路8に開閉弁9と
流量制御弁10との間で連通接続される。
Also shown in FIG. 1 is a fuel tank 13, which is connected by a paper line 14 to a charcoal canister 15.
It is connected to the. The charcoal canister 15 has an adsorbent made of activated carbon therein, and allows the adsorbent to adsorb evaporated fuel generated in the fuel tank 13 when the engine is stopped, for example.
The adsorbed fuel is purged from the purge line 16 to the intake passage 2 during engine load operation. In the present invention, this purge line 16 is connected to the above-mentioned bypass passage 8 between the on-off valve 9 and the flow rate control valve 10. Connected.

パージライン16にはさらに逆止弁17が配置されてい
る。
A check valve 17 is further arranged in the purge line 16.

機関アイドリング時には、開閉弁9が開かれており、流
量制御弁10がコンピュータの制御の下に作動して機関
条件に応じそ最適のアイドル空気流量が得られる。最適
アイドル空気itとは、例えば機関冷間時には空気流量
が相対的に大きく、暖機されるに従って次第に空気流量
が小さくなり、暖機完了後にはほぼ一定流量となる。開
閉弁9が開いているときには、バイパス通路8を流れる
空気流はほぼ大気圧近くであり、従って、逆止弁17の
作用によりキャニスタ15からのパージは行われない。
When the engine is idling, the on-off valve 9 is open and the flow control valve 10 is operated under computer control to obtain the optimum idle air flow rate depending on the engine conditions. The optimum idle air it means, for example, that the air flow rate is relatively large when the engine is cold, gradually decreases as the engine warms up, and becomes approximately constant after the warm-up is completed. When the on-off valve 9 is open, the air flow flowing through the bypass passage 8 is at approximately atmospheric pressure, and therefore, the canister 15 is not purged by the action of the check valve 17.

スロットル弁6が開かれた機関負荷時には、開閉弁9が
閉じられるので吸入空気のバイパスは行われなくなる。
When the throttle valve 6 is opened and the engine is under load, the on-off valve 9 is closed, so that bypassing of intake air is no longer performed.

このときに、流量制御弁10がわずかでも開かれるとス
ロットル弁6下流の吸気負圧がバイパス通路8からパー
ジライン16に作用し、この吸気負圧が逆止弁17の設
定開弁圧になるとキャニスタ15から吸着燃料がパージ
されることになる。このパージ量もコンピュータの制御
の下に流量制御弁10を精密に制御されることになる。
At this time, if the flow control valve 10 is opened even slightly, the intake negative pressure downstream of the throttle valve 6 acts on the purge line 16 from the bypass passage 8, and when this intake negative pressure reaches the set valve opening pressure of the check valve 17, The adsorbed fuel will be purged from the canister 15. This purge amount is also precisely controlled by the flow control valve 10 under computer control.

従って、本発明では、一つの流量制御弁10で二つの!
(アイドル空気流量及びパージりを制御できることにな
り、開閉弁9はそのような精密作動の流量制御弁10と
比べると安価に構成することができる。
Therefore, in the present invention, one flow rate control valve 10 allows two!
(The idle air flow rate and purge can be controlled, and the on-off valve 9 can be constructed at a lower cost than the precision-operated flow control valve 10.

第2図は開閉弁の他の例を示し、この例の開閉弁9aは
スロットル弁6にリンク結合されたちのではなくて吸気
負圧により作動されるタイプのものである。開閉弁9a
の作動のための吸気負圧は、スロットル弁6がアイドル
位置にあるときのスロットル弁6のわずかに下流側に開
口するアイドルセンシングポート19から導入され、従
って、°アイドル時には吸気負圧が作用して開閉弁9a
が全開にされ、機関負荷時にはアイドルセンシングボー
ト1−’lがスロットル弁6の上流になるので開閉弁9
aにはほぼ大気圧が作用してばね20によって開閉弁9
aが全閉される。
FIG. 2 shows another example of the on-off valve, in which the on-off valve 9a is not linked to the throttle valve 6 but is operated by intake negative pressure. Open/close valve 9a
The intake negative pressure for the operation of the throttle valve 6 is introduced from the idle sensing port 19, which opens slightly downstream of the throttle valve 6 when the throttle valve 6 is in the idle position. on-off valve 9a
is fully opened, and when the engine is under load, the idle sensing boat 1-'l is upstream of the throttle valve 6, so the on-off valve 9
Almost atmospheric pressure acts on a, and the spring 20 closes the on-off valve 9.
a is fully closed.

第3図は開閉弁の他の例を示し、開閉弁9bはオン−オ
フ型の電磁弁であり、流量を精密に制御するりニアソレ
ノイド型等の流量制御弁10に比べれば安価である。こ
の電磁弁からなる開閉弁9bはスロットル弁6の位置を
検出すスロットルポジションセンサ21の検出信号に基
いてリレーを介して作動されることができるが、好まし
くはコンピュータ22の制御の下に作動される。という
のは、流量制御弁10のためにコンピュータが必要だか
らである。
FIG. 3 shows another example of the on-off valve. The on-off valve 9b is an on-off type electromagnetic valve, which allows precise flow control and is less expensive than the near solenoid type flow control valve 10. The on-off valve 9b, which is a solenoid valve, can be operated via a relay based on a detection signal from a throttle position sensor 21 that detects the position of the throttle valve 6, but is preferably operated under the control of a computer 22. Ru. This is because a computer is required for the flow control valve 10.

第4図は流量制御弁10の制御のためのコンピュータ2
2の構成を示し、その内容については公知であるので説
明を省略する。且つ、プログラムを内蔵したROM 2
4の内容は本発明独特のものであり、そのプログラムに
ついては第5図のフローチャートで説明される。尚、デ
ィストリビュータ23は機関回転数検出用である。
FIG. 4 shows a computer 2 for controlling the flow rate control valve 10.
2, the contents of which are well known and will not be described further. In addition, ROM 2 with built-in programs
The contents of step 4 are unique to the present invention, and the program will be explained using the flowchart in FIG. Note that the distributor 23 is for detecting the engine speed.

第5図において、まずステップ31にてスロットル弁6
の開度を読み取り、ステップ32にてアイドルか否かを
判定する。LL= 1はアイドル状態を示すものであり
、アイドル状態であればステップ39に進みアイドル回
転制御を行う、尚、開閉弁が電磁弁の場合には、ステッ
プ32の判定結果から開閉弁の切換を行うことができる
In FIG. 5, first, in step 31, the throttle valve 6 is
The opening degree of the engine is read, and it is determined in step 32 whether or not the engine is idle. LL=1 indicates an idle state, and if it is an idle state, the process advances to step 39 and idle rotation control is performed.If the on-off valve is a solenoid valve, the on-off valve is switched based on the determination result in step 32. It can be carried out.

ステップ32にしてノーであれば、ステップ33にて水
温を読み取り、ステップ34にて水温が60℃以上か否
かを判定し、水温が60℃より低いときにはパージを行
わない。ステ・プ34でノーで       、1あれ
ば、ステップ35及び36にて吸入空気量Q及び機関回
転数Neを読み取り、ステップ37では第6図に示され
たようなテーブルでメモリに記憶されていた流量制御弁
10の制御のための値f。
If the result in step 32 is NO, the water temperature is read in step 33, and it is determined in step 34 whether the water temperature is 60°C or higher, and if the water temperature is lower than 60°C, no purging is performed. If the result in step 34 is NO, and if it is 1, the intake air amount Q and the engine speed Ne are read in steps 35 and 36, and in step 37, they are stored in the memory in a table as shown in Fig. 6. Value f for controlling the flow control valve 10.

を補間計算により求め、ステップ39にて出力する。is determined by interpolation calculation and output in step 39.

発明の詳細 な説明したように、本発明ではアイドルコントロールと
蒸発燃料パージコントロールのために一個の流量制御弁
があればよく、従ってコストダウンが可能である。
As described in detail, the present invention requires only one flow control valve for idle control and evaporated fuel purge control, thus reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のシステム構成図、第2図は開
閉弁の変化例を示す断面図、第3図は開閉弁の他の変化
例を示す断面図、第4図はコンピュータの構成図、第5
図は流量制御弁の制御フローチャート、第6図はパージ
量計算のためのテーブルの形体を示す図である。 2・・・吸気通路、     6・・・スロットル弁、
8・・・バイパス通路、  9・・・開閉弁、10・・
・流量制御弁、   15・・・キャニスタ。 第2図 第3図 クク 第4図 第5図 第6図 NE高
Fig. 1 is a system configuration diagram of an embodiment of the present invention, Fig. 2 is a sectional view showing a variation of the on-off valve, Fig. 3 is a sectional view showing another variation of the on-off valve, and Fig. 4 is a sectional view of a computer. Configuration diagram, 5th
The figure is a control flowchart of the flow rate control valve, and FIG. 6 is a diagram showing the form of a table for calculating the purge amount. 2...Intake passage, 6...Throttle valve,
8...Bypass passage, 9...Opening/closing valve, 10...
・Flow rate control valve, 15...canister. Figure 2 Figure 3 Kuku Figure 4 Figure 5 Figure 6 NE High

Claims (1)

【特許請求の範囲】[Claims] スロットル弁が配置された吸気通路に該スロットル弁を
バイパスするバイパス通路を設け、該バイパス通路には
上流側から順に開閉弁及び流量制御弁が配置され、さら
に前記バイパス通路には前記開閉弁と前記流量制御弁と
の間で蒸発燃料吸着用キャニスタが連通され、機関アイ
ドリング時には前記開閉弁を開いて前記流量制御弁によ
りアイドリング空気流量調整を行い、機関負荷時には前
記開閉弁を閉じて前記流量制御弁によりキャニスタ内に
吸着された燃料のパージを行うようにした内燃機関の吸
気装置。
A bypass passage that bypasses the throttle valve is provided in the intake passage in which the throttle valve is disposed, and an on-off valve and a flow control valve are disposed in this order from the upstream side, and the on-off valve and the flow control valve are disposed in the bypass passage in order from the upstream side. A fuel vapor adsorption canister is communicated with the flow control valve, and when the engine is idling, the on-off valve is opened to adjust the idling air flow rate with the flow control valve, and when the engine is under load, the on-off valve is closed and the flow control valve is closed. An intake system for an internal combustion engine that purges fuel adsorbed in a canister.
JP16156184A 1984-08-02 1984-08-02 Intake-air device in internal combustion engine Granted JPS6140437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16156184A JPS6140437A (en) 1984-08-02 1984-08-02 Intake-air device in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16156184A JPS6140437A (en) 1984-08-02 1984-08-02 Intake-air device in internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6140437A true JPS6140437A (en) 1986-02-26
JPH0585746B2 JPH0585746B2 (en) 1993-12-08

Family

ID=15737446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16156184A Granted JPS6140437A (en) 1984-08-02 1984-08-02 Intake-air device in internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6140437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621081A1 (en) * 1986-07-19 1989-03-31 Bosch Gmbh Robert Diagnosis method for the quantitative checking of regulating members in internal combustion engines
US5125385A (en) * 1990-04-12 1992-06-30 Siemens Aktiengesellschaft Tank ventilation system and method for operating the same
US5249538A (en) * 1990-04-24 1993-10-05 Pegasus Sewing Machine Mfg., Co., Ltd. Sewing apparatus equipped with an automatic thread supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621081A1 (en) * 1986-07-19 1989-03-31 Bosch Gmbh Robert Diagnosis method for the quantitative checking of regulating members in internal combustion engines
US5125385A (en) * 1990-04-12 1992-06-30 Siemens Aktiengesellschaft Tank ventilation system and method for operating the same
US5249538A (en) * 1990-04-24 1993-10-05 Pegasus Sewing Machine Mfg., Co., Ltd. Sewing apparatus equipped with an automatic thread supply device

Also Published As

Publication number Publication date
JPH0585746B2 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
US5477836A (en) Fuel vapor emission control system for an engine
US7284541B1 (en) Purge system for internal combustion engine
US3913545A (en) Evaporative emission system
JPH05118257A (en) Fuel vapor treating device in engine
JPS59136554A (en) Evaporated fuel control device for internal-combustion engine equipped with supercharger
JPH06249087A (en) Vaporized fuel controller
JPS6140437A (en) Intake-air device in internal combustion engine
JP3235158B2 (en) Evaporative fuel control system for vehicles
JPH05332211A (en) Canister device
JP2930831B2 (en) Evaporative fuel processing control device for internal combustion engine
JP2687074B2 (en) Evaporative fuel processing device
JPH0629492Y2 (en) Evaporative fuel treatment system for 2-cycle internal combustion engine with supercharger
JPH0313566Y2 (en)
JPH06193518A (en) Failure diagnostic device for evaporation fuel supplying device
JPS61149562A (en) Purge control device for fuel evaporated gas
JP3074840B2 (en) Evaporative fuel processing equipment
JPS6341632A (en) Air-fuel ratio controller for engine
JPH0455218Y2 (en)
JPH0517408Y2 (en)
JP2518071Y2 (en) Canister purge control device
JP3240477B2 (en) Engine evaporative fuel control system
JPS6113735Y2 (en)
JPS5847239Y2 (en) Engine evaporative fuel treatment device
JPH03260365A (en) Diagnostic device for evaporation fuel device
JP2800055B2 (en) Evaporative fuel control system for vehicles