JPS6140319B2 - - Google Patents

Info

Publication number
JPS6140319B2
JPS6140319B2 JP57151077A JP15107782A JPS6140319B2 JP S6140319 B2 JPS6140319 B2 JP S6140319B2 JP 57151077 A JP57151077 A JP 57151077A JP 15107782 A JP15107782 A JP 15107782A JP S6140319 B2 JPS6140319 B2 JP S6140319B2
Authority
JP
Japan
Prior art keywords
powder
plating
particles
nickel
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57151077A
Other languages
Japanese (ja)
Other versions
JPS5941489A (en
Inventor
Shuichi Masui
Hiroshi Matsumoto
Tetsujiro Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP57151077A priority Critical patent/JPS5941489A/en
Publication of JPS5941489A publication Critical patent/JPS5941489A/en
Publication of JPS6140319B2 publication Critical patent/JPS6140319B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Description

【発明の詳細な説明】 本発明は粉粒体の電気めつき方法に関する。[Detailed description of the invention] The present invention relates to a method for electroplating powder and granular materials.

導電性を有する粉粒体に対し、金属被覆を施す
方法としては、一般に電気めつき方法が考えられ
るが、実際には非常に困難な問題が多い。例えば
精密パーツに用いられるビス、ナツト等の小物部
品であれば、小さなバレルを用いたり、網付け法
を採用したり、或いは遠心力で被めつき物をめつ
き槽内壁に密着させてめつきする方法を採用する
など、種々の方法で電気めつきすることが可能で
あるが、粉粒体、特に粒径500μ以下の粉粒体を
電気めつきする場合は、これらの方法を採用する
ことが困難であり、とりわけ0.5〜50μ程度の粉
粒体では電気めつき法を採用し難い。
Electroplating is generally considered as a method for applying metal coating to conductive powder, but in practice it is very difficult. For example, small parts such as screws and nuts used in precision parts can be plated by using a small barrel, by using the netting method, or by using centrifugal force to bring the object to be plated into close contact with the inner wall of the plating tank. It is possible to electroplate using various methods, such as adopting the method of In particular, it is difficult to use electroplating for powder particles with a size of about 0.5 to 50 μm.

そこで、粉粒体を電気めつき液中に気体を吹込
みながら撹拌作用下で流動化させ、粉粒体と電気
めつき液とでスラリーを形成し、このスラリーを
陰極に接触させて電気めつきを行なう方法も提案
されている(特開昭56−156793号)が、この方法
は装置的、操作的に繁雑であるなどの問題があ
り、まためつきの均一性の点でも問題がある。
Therefore, the powder and granules are fluidized under stirring action while blowing gas into the electroplating liquid, the powder and the electroplating liquid form a slurry, and this slurry is brought into contact with the cathode. A method for performing flashing has also been proposed (Japanese Patent Laid-Open No. 156793/1983), but this method has problems such as being complicated in terms of equipment and operation, and also has problems in terms of uniformity of flashing.

このため、従来は粉粒体に対する金属被覆法と
して化学めつき法が主として採用されているが、
この方法はコスト的に問題がある上、使用目的に
よつては被膜強度、密着性、品質安定性などの点
で必ずしも満足な性能を示さない場合がある。特
に、銀粉に代る導電性粉粒体として塗料、イン
ク、接着剤、プラスチツク等に添加、混合し、銀
粉と同程度の性能をもつて各種用途に使用し得る
導電性材料を得ようとする場合、母材となる粉粒
体に金属めつき膜が所用の厚みをもつて均一にし
かも密着性よく被覆することが必要で、かつその
製造コストも安価であることが要求されるが、化
学めすき法を採用する場合にはめつき膜を厚く形
成するのにかなりの時間を要し、まためつき液自
体も比較的安価なため、製造コストが高価なもの
になる。また、化学めつき法では、化学ニツケル
めつきによる金属被覆が実用的であるが、化学ニ
ツケルめつき膜では銀に比較して導電性、安定性
などに劣り、銀粉に代る導電性粉粒体を得る目的
からは十分満足され得ない。
For this reason, chemical plating has traditionally been the main method used to coat powder and granules with metal.
This method has problems in terms of cost, and depending on the purpose of use, it may not always show satisfactory performance in terms of film strength, adhesion, quality stability, etc. In particular, we are trying to obtain a conductive material that can be added to paints, inks, adhesives, plastics, etc. as a conductive powder to replace silver powder, and can be used for various purposes with performance comparable to that of silver powder. In this case, it is necessary to coat the base material powder with a metal plating film to a desired thickness, uniformly, and with good adhesion, and the manufacturing cost is also required to be low. When the plating method is employed, it takes a considerable amount of time to form a thick plating film, and the plating liquid itself is relatively inexpensive, resulting in high manufacturing costs. In addition, in the chemical plating method, metal coating by chemical nickel plating is practical, but chemical nickel plating film has inferior conductivity and stability compared to silver, and conductive powder particles can be used instead of silver powder. The goal of obtaining a body cannot be fully satisfied.

本発明者らは、上記事情に鑑み、簡単な装置で
粉粒体を確実かつ良好に電気めつきする方法につ
き鋭意検討を行なつた結果、めつき槽内底面に陰
極を形成し、この内底面上に粉粒体を堆積させる
と共に、この粉粒体をインペラー式撹拌機を用い
た機械的撹拌下において実質的に粉粒体がめつき
槽内底面に堆積した状態を維持しつつ電気めつき
することにより、上記目的が達成されることを知
見した。
In view of the above circumstances, the inventors of the present invention have conducted intensive studies on a method for reliably and effectively electroplating powder and granular materials using a simple device. The powder and granules are deposited on the bottom surface, and electroplated while maintaining the state in which the powder and granules are substantially deposited on the bottom surface of the plating tank under mechanical stirring using an impeller type stirrer. It has been found that the above objective can be achieved by doing so.

即ち、本発明者らは、最初開放型の傾斜バレル
を使用し、このバレル本体自体を陰極にして内部
に粉粒体を入れると共に、バレル本体の開放口よ
り陽極を挿入し、バレルの回転を1〜10rpmの範
囲で種々変化させて電気めつきを行なつたが、均
一な電気めつきが行なわれず、特に10μ以下の粉
粒体を用いた場合はバレルの回転を低速にしても
粉粒体がめつき液中にかなりの程度分散し、電着
物の均一性が非常に悪いものであつた。また、こ
の種の回転バレルの代りに振動バレルを用い、粉
粒体を振動下に電気めつきしたが、同様に良好な
電気めつきが行なわれず、更にめつき槽内底面を
陰極にし、その上に粉粒体を堆積させ、この粉粒
体を超音波を利用して撹拌しながら電気めつきし
たが、この場合も不均一な電着物しか得られなか
つた。このため更に検討を続けた結果、めつき槽
内底面を陰極とし、この内底面上に粉粒体を沈
殿、堆積させると共に、この粉粒体をインペラ式
撹拌機でかきまぜるような機械的撹拌を行なうこ
と、しかも粉粒体を実質的にめつき液中に分散さ
せず、粉粒体が沈殿、堆積を維持してめつき槽内
底面から飛散しないような、条件下にめつきを行
なうこと、この場合必要によつては、特に粉粒体
が比重の小さいもの、粒径の小さいものの場合に
は、堆積した粉粒体の直上に隔膜を設け、粉粒体
のめつき液中への分散、飛散を防止し、粉粒体を
めつき槽内底面上に堆積した状態に維持すること
により、初めて電気めつきを均一に行なうことが
でき、均一な電着物が得られることを知見し、本
発明をなすに至つたもので、本発明は特開昭56−
156793号の方法とはその基本的な思想が全く相違
するものである。
That is, the inventors first used an open-type inclined barrel, used the barrel body itself as a cathode, put the powder inside, and inserted an anode through the open opening of the barrel body to control the rotation of the barrel. Electroplating was performed at various speeds in the range of 1 to 10 rpm, but uniform electroplating was not achieved, especially when using powder particles of 10 μm or less, even when the barrel rotation was made slow. The electrolyte was dispersed to a considerable extent in the plating solution, and the uniformity of the electrodeposit was very poor. In addition, a vibrating barrel was used instead of this type of rotating barrel to electroplate the powder and granules under vibration, but similarly good electroplating was not achieved. Powder was deposited on top, and the powder was electroplated while being stirred using ultrasonic waves, but in this case as well, only non-uniform electrodeposit was obtained. As a result of further investigation, we decided to use the bottom of the plating tank as a cathode, to precipitate and deposit the powder on this inner bottom, and to use mechanical agitation, such as stirring the powder with an impeller-type stirrer. Furthermore, plating must be carried out under conditions such that the powder and granules are not substantially dispersed in the plating solution, and that the powder and granules continue to settle and accumulate so that they do not scatter from the bottom of the plating tank. In this case, if necessary, especially if the powder has a low specific gravity or a small particle size, a diaphragm may be provided directly above the accumulated powder to prevent the powder from entering the plating solution. It was discovered that by preventing dispersion and scattering and maintaining the powder particles deposited on the bottom surface of the plating tank, it was possible to perform electroplating uniformly and obtain uniform electrodeposit for the first time. This invention has been made in Japanese Unexamined Patent Application Publication No. 1983-1989.
The basic idea is completely different from the method of No. 156793.

従つて、本発明は、めつき槽内底面に陰極を形
成し、この内底面上に平均粒径500μ以下の粉粒
体を堆積すると共に、この粉粒体の上方に陽極を
配置し、かつ前記粉粒体堆積物中にインペラー式
撹拌機の先端羽根部を埋入し、この撹拌機を作動
させて粉粒体がめつき槽内底面に堆積した状態を
維持するようなゆるやかな連続的撹拌を粉粒体に
与えつつこの粉粒体を電気めつきすることを特徴
とする粉粒体への電気めつき方法を提供するもの
である。
Therefore, the present invention forms a cathode on the inner bottom surface of the plating tank, deposits powder and granules with an average particle size of 500 μm or less on the inner bottom surface, and arranges an anode above the powder and granules, and Gentle continuous stirring by embedding the tip blade of an impeller-type stirrer in the powder deposit and operating the stirrer to maintain the state in which the powder is deposited on the bottom surface of the plating tank. The present invention provides a method for electroplating a powder or granule material, which is characterized in that the powder or granule material is electroplated while giving the powder or granule material.

以下、本発明につき図面を参照して更に詳しく
説明する。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図乃至第3図はそれぞれ本発明方法の実施
に用いるめつき装置の一例を示すもので、図中1
はめつき槽であり、本発明においてはこのめつき
槽1の内底面1aに陰極を形成する。めつき槽1
の内底面1aに陰極を形成する方法としては、第
1,2図に示したように、めつき槽1を金属、好
ましくはステンレススチールで形成し、その内側
面にプラスチツクコーテイングにより絶縁層2を
形成し、めつき槽1の内底面のみを金属露呈部と
すると共に、めつき槽1に陰極リード線3を接続
したり、第3図に示したように、めつき槽1をプ
ラスチツクにて形成し、その内底面1a上に金属
板、好ましくはステンレススチール板よりなる陰
極板4を配設すると共に、この陰極板4に陰極リ
ード線3を接続するなどの方法が採用し得る。
1 to 3 each show an example of a plating apparatus used for carrying out the method of the present invention.
This is a plating tank, and in the present invention, a cathode is formed on the inner bottom surface 1a of this plating tank 1. Plating tank 1
As shown in FIGS. 1 and 2, the method for forming the cathode on the inner bottom surface 1a of the plating tank 1 is to form the plating tank 1 from metal, preferably stainless steel, and to coat the inner surface with an insulating layer 2 using plastic coating. In addition to making only the inner bottom surface of the plating tank 1 an exposed metal part, the cathode lead wire 3 is connected to the plating tank 1, and the plating tank 1 is made of plastic as shown in FIG. A method may be adopted in which a cathode plate 4 made of a metal plate, preferably a stainless steel plate is disposed on the inner bottom surface 1a, and a cathode lead wire 3 is connected to the cathode plate 4.

本発明においては、めつき槽1の陰極を形成し
た内底面1a上に被めつき物である粉粒体5を沈
殿、堆積させ、この粉粒体5の上方に陽極リード
線6に接続された陽極7を配置させ、所定の電気
めつき液8を用いて電気めつきを行なうものであ
るが、この場合、粉粒体5にはこれをゆるやかに
かきまぜるような機械的撹拌を行なわせるもので
ある。粉粒体5を機械的撹拌する方法としては、
図面に示すようなインペラー式撹拌機9が使用さ
され、その先端羽根部9aを粉粒体5中に埋没さ
せるように配設して粉粒体5を撹拌する。この撹
拌機9の回転数は必ずしも制限されないが、粉粒
体5をめつき槽1の内底面1aから上方に激しく
飛散させないようなゆるやかな速度であることが
好ましく、粉粒体5が実質的にめつき槽1の内底
面1a上に沈殿、堆積している状態を維持し得る
ように撹拌すべきで、粉粒体の材質、比重、粒度
等によつても相違するが、2〜180rpm、特に5
〜100rpmの回転速度が採用され得る。また、撹
拌機9は、連続的に回転させる。断続的もしくは
脈動的回転はめつきの均一性を低下させる。
In the present invention, a powder material 5 as a plating material is precipitated and deposited on the inner bottom surface 1a of the plating tank 1 on which the cathode is formed, and a powder material 5 is connected to an anode lead wire 6 above the powder material 5. Electroplating is carried out using a predetermined electroplating liquid 8, and in this case, the powder 5 is mechanically stirred to gently stir it. It is. As a method for mechanically stirring the granular material 5,
An impeller type agitator 9 as shown in the drawing is used, and the tip blade portion 9a thereof is disposed so as to be buried in the powder 5 to stir the powder 5. The rotational speed of this stirrer 9 is not necessarily limited, but it is preferably a slow speed that does not violently scatter the powder or granules 5 upward from the inner bottom surface 1a of the plating tank 1, and The powder should be stirred at a speed of 2 to 180 rpm, depending on the material, specific gravity, particle size, etc. of the powder and granules, so as to maintain the state in which they are precipitated and deposited on the inner bottom surface 1a of the staining tank 1. , especially 5
Rotation speeds of ~100 rpm may be employed. Moreover, the stirrer 9 is rotated continuously. Intermittent or pulsating rotation reduces the uniformity of the fit.

なお、必要により、粉粒体の比重が小さかつた
り、粒径が小さかつたり(例えば平均粒径10μ以
下の場合)して飛散もしくは浮遊し易いものの場
合は、第2図に示したように、粉粒体5の直上に
隔膜10を配設することができ、これにより粉粒
体5の飛散を防止して、粉粒体5のめつき槽1内
底面1a上への堆積状態を実質的に維持させるこ
とができる。この場合、隔膜10としては、ポア
径0.1〜10μの非導電性のもの、例えばポリ塩化
ビニリデン等が好適に用いられる。
If necessary, if the specific gravity of the powder or granular material is small or the particle size is small (for example, the average particle size is 10μ or less) and it easily scatters or floats, use the method shown in Figure 2. A diaphragm 10 can be disposed directly above the powder 5, thereby preventing the powder 5 from scattering and substantially reducing the state of accumulation of the powder 5 on the inner bottom surface 1a of the plating tank 1. can be maintained. In this case, as the diaphragm 10, a non-conductive material having a pore diameter of 0.1 to 10 μm, such as polyvinylidene chloride, is preferably used.

本発明において、被めつき物である粉粒体の粒
径は特に制限されないが、本発明によれば、平均
粒径500μ以下のもの、とりわけ平均粒径0.5〜50
μ程度の微細なものをも好適に電気めつきし得
る。粉粒体の材質は導電性を有し、電気めつき可
能なものであれば、いずれのものでもよく、例え
ば銅粉、鉄粉、アルミニウム粉、真ちゆう粉等の
金属粉粒体、炭素粉等の導電性無機粉粒体、A
2O3,SiO2等の非導電性無機粉粒体や樹脂粉粒体
を化学めつき法、真空蒸着法等の適宜な導電化処
理法を用いて導電化したものなどが挙げられる。
In the present invention, the particle size of the powder or granular material to be coated is not particularly limited.
Even particles as fine as μ can be suitably electroplated. The material of the powder may be any material as long as it has conductivity and can be electroplated, such as metal powder such as copper powder, iron powder, aluminum powder, brass powder, carbon, etc. Conductive inorganic powder such as powder, A
Examples include non-conductive inorganic powder such as 2 O 3 or SiO 2 or resin powder made conductive using an appropriate conductive treatment method such as chemical plating or vacuum evaporation.

これらの粉粒体を用いて電気めつきを行なう場
合は、必要によりその材質に応じた前処理を行な
うことができる。例えば、銅粉、鉄粉などにおい
ては脱脂、酸洗処理を施し、またアルミニウム粉
などにおいては公知の亜鉛置換処理を行ない、次
いで青化銅ストライクめつきを行なうなどの前処
理を採用することにより、良好な電気めつきを行
なうことができる。また、非導電性粉粒体の場合
には、パラジウム等の触媒金属付着処理を行なつ
た後、化学ニツケルめつき、化学銅めつき等の化
学めつきを施す公知の化学めつき法が好適に採用
され得、このようにして導電化された非導電性粉
粒体を金属粉粒体と同様にして電気めつきするこ
とができる。
When electroplating is performed using these powders, pretreatment can be carried out depending on the material, if necessary. For example, copper powder, iron powder, etc. are subjected to degreasing and pickling treatment, and aluminum powder, etc., is subjected to a known zinc substitution treatment, followed by copper bronze strike plating. , good electroplating can be performed. In addition, in the case of non-conductive powder, known chemical plating methods such as chemical nickel plating, chemical copper plating, etc. are suitable after applying a catalytic metal such as palladium. The non-conductive powder particles made conductive in this way can be electroplated in the same manner as metal powder particles.

本発明において、電気めつき液の種類は制限さ
れず、銅、ニツケル、クロム、錫、亜鉛、銀、白
金、金、ロジウム、パラジウム等の公知のめつき
液を用いることができる。この場合、めつき液は
酸性液でもアルカリ性液でも好適に使用すること
ができ、またニツケルめつき後銀めつきを行なう
など、多層めつきすることもできる。また、めつ
き条件は、電気めつき液の種類に応じ、適宜な条
件が採用される。例えば電流量は特に制限されな
いが、一般に1×10-4A/g〜1A/gの範囲で適宜
選定され、普通ニツケルめつき液を用いるような
場合であれば、室温乃至60℃程度の温度で1×
10-2A/g〜2×10-2A/gの電流でめつきすること
ができ、また青化銀めつき液を用いるような場合
であれば、室温で2×10-3〜8×10-3A/gの電流
でめつきすることができる。
In the present invention, the type of electroplating solution is not limited, and known plating solutions such as copper, nickel, chromium, tin, zinc, silver, platinum, gold, rhodium, and palladium can be used. In this case, either an acidic solution or an alkaline solution can be suitably used as the plating solution, and multilayer plating can also be performed, such as nickel plating followed by silver plating. Furthermore, appropriate plating conditions are adopted depending on the type of electroplating solution. For example, although the amount of current is not particularly limited, it is generally selected appropriately within the range of 1 × 10 -4 A/g to 1 A/g, and when using a normal nickel plating solution, the temperature is from room temperature to about 60°C. 1×
It can be plated with a current of 10 -2 A/g to 2 x 10 -2 A/g, and if a bluish silver plating solution is used, it can be plated at a current of 2 x 10 -3 to 8 at room temperature. It can be plated with a current of ×10 -3 A/g.

なお、本発明においては、必要によりポンプを
用いてめつき液を循環させ、めつき液を常時新し
いものと交換させながらめつきを行なうようにす
ることができる。
In the present invention, if necessary, a pump may be used to circulate the plating liquid, and plating can be performed while constantly replacing the plating liquid with a new one.

本発明の粉粒体への電気めつき方法は、上述し
たように、めつき槽内底面に陰極を形成し、この
内底面上に被めつき物である粉粒体を堆積させる
と共に、この粉粒体の上方に陽極を配置し、かつ
前記粉粒体堆積物中にインペラー式撹拌機の先端
羽根部を埋入し、この撹拌機を作動させて粉粒体
がめつき槽内底面に堆積した状態を維持するよう
なゆるやかな連続的撹拌を粉粒体に与えつつこの
粉粒体を電気めつきすることを特徴とするもの
で、このように撹拌下で粉粒体相互を常に接触さ
せつつ、従つてめつき槽内底面に形成した陰極と
接触させつつめつきするものであり、本発明によ
れば500μ以下、とりわけ0.5〜50μというような
微細な粉粒体に対しても均一かつ確実に電気めつ
きを行なうことができ、密着性が良好で均一、安
定な電着物が得られる。
As described above, in the electroplating method for powder or granular material of the present invention, a cathode is formed on the inner bottom surface of the plating tank, and the powder or granular material to be plated is deposited on this inner bottom surface. An anode is placed above the powder and granules, and the tip blade of an impeller type stirrer is embedded in the powder and granule deposits, and the agitator is operated to deposit the powder and granules on the bottom surface of the plating tank. This method is characterized by electroplating the powder while giving the powder and granules a gentle continuous agitation that maintains the state in which the powder and granules are constantly in contact with each other under stirring. At the same time, the plating is performed while being in contact with the cathode formed on the inner bottom surface of the plating tank, and according to the present invention, even fine particles of 500 μm or less, especially 0.5 to 50 μm, can be uniformly and granulated. Electroplating can be performed reliably, and a uniform and stable electrodeposited product with good adhesion can be obtained.

このようにして得られた電気めつき膜被覆粉粒
体は、導電性インキ、塗料、接着剤、プラスチツ
ク、電磁シールド材、接点等の材料として好適に
使用し得るものである。特に、電気銀めつきを施
すことによつて得られた銀被膜粉粒体は、銀粉と
ほぼ同等の性能を有し、しかも銀粉よりも安価に
製造できるため、銀粉の代替品として極めて有効
なものである。
The electroplated film-coated powder particles thus obtained can be suitably used as materials for conductive inks, paints, adhesives, plastics, electromagnetic shielding materials, contacts, and the like. In particular, the silver coated powder obtained by electro-silver plating has almost the same performance as silver powder and can be produced at a lower cost than silver powder, making it an extremely effective substitute for silver powder. It is something.

以下、実施例を示し、本発明を具体的に説明す
るが、本発明は下記の実施例に限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the following examples.

〔実施例 1〕 銅粒子(5〜50μの球状粒子)に下記の方法に
よりニツケルめつき及び銀めつきを施した。
[Example 1] Copper particles (spherical particles of 5 to 50 microns) were plated with nickel and silver by the following method.

まず、銅粒子50gを脱脂し、次いで水洗、酸
洗、水洗を行なつて銅粒子表面の汚れ、酸化膜を
除去した。
First, 50 g of copper particles were degreased, and then washed with water, pickled, and washed with water to remove dirt and oxide film on the surface of the copper particles.

なお、脱脂剤は上村工業(株)製アサヒクリーナ―
C―4000を50g/用い、これに常温で約10分間
浸漬、撹拌することにより脱脂を行なつた。
The degreaser is Asahi Cleaner manufactured by Uemura Kogyo Co., Ltd.
Degreasing was carried out by using 50g/C-4000 and immersing it in this at room temperature for about 10 minutes and stirring.

次に、前処理を施した銅粒子につき、第1図に
示す如き装置を用い、下記条件により、電気ニツ
ケルめつきを施した。
Next, the pretreated copper particles were subjected to electric nickel plating using an apparatus as shown in FIG. 1 under the following conditions.

ニツケルめつき条件 めつき液組成 硫酸ニツケル・6水塩 280g/ 塩化ニツケル・6水塩 45〃 ホウ酸 40〃 PH 4.2〃 銅粒子 50g めつき槽(陰極) 300ml ステンレススチール製 (内側部をプラスチツクコーテイングし、
内底面のみをステンレススチール露呈部と
した。内底面73mmφ。) 陽極 ニツケル板 めつき液量 200ml 陰極電流量 1.4×10-2A/g めつき温度 55℃ めつき時間 60分 撹拌 インペラー式撹拌機使用 (回転数 6rpm) ニツケルめつきはめつき槽内底面(陰極)上に
銅粒子を沈殿、堆積させて行なつた。銅粒子は最
初赤褐色をしているが、約30分で暗銀色に変化し
た。
Nickel plating conditions Plating liquid composition Nickel sulfate, hexahydrate 280g/ Nickel chloride, hexahydrate 45〃 Boric acid 40〃 PH 4.2〃 Copper particles 50g Plating tank (cathode) 300ml Made of stainless steel (inner part is coated with plastic) death,
Only the inner bottom surface was exposed to stainless steel. Inner bottom surface 73mmφ. ) Anode Nickel plate plating liquid volume 200ml Cathode current amount 1.4×10 -2 A/g Plating temperature 55℃ Plating time 60 minutes Stirring Using impeller type stirrer (rotation speed 6rpm) Nickel plating bottom surface of the plating tank ( This was done by precipitating and depositing copper particles on the cathode. The copper particles were initially reddish brown, but changed to dark silver in about 30 minutes.

ニツケルめつき後、めつき液を除き、よく水洗
してから下記条件により前記ニツケルめつき膜被
銅粒子(Ni―Cu粒子)に銀めつきを施した。な
お、めつき槽は上と同じものを用い、また陽極と
してはステンレススチール板を使用した。
After the nickel plating, the plating solution was removed, the particles were thoroughly washed with water, and the nickel plating film copper-coated particles (Ni--Cu particles) were silver-plated under the following conditions. The same plating tank as above was used, and a stainless steel plate was used as the anode.

銀めつき条件 めつき液組成 青化銀 36g/ 青化カリウム 60〃 炭酸カリウム 45〃 PH 12.0 ニツケルめつき膜被覆銅粒子 約50g めつき液量 200ml 陰極電流量 6.0×10-3A/g めつき温度 25℃ めつき時間 15分 撹拌 インペラー式撹拌機使用 (回数60rpm) ニツケルめつき膜被覆銅粒子は、約5分で全体
が灰白色になり、15分後には銀白色を呈した。
Silver plating conditions Plating liquid composition Silver cyanide 36g/ Potassium cyanide 60〃 Potassium carbonate 45〃 PH 12.0 Nickel plating film coated copper particles Approx. 50g Plating liquid volume 200ml Cathode current 6.0×10 -3 A/g Me Plating temperature: 25°C Plating time: 15 minutes Stirring: Using an impeller type stirrer (number of times: 60 rpm) The entire nickel-plated film-coated copper particles became grayish white in about 5 minutes, and took on a silvery white color after 15 minutes.

銀めつき後、めつき液を除き、よく水洗してか
ら過し、乾燥して銅粒子にニツケルめつき膜が
被膜し、更に銀めつき膜が被膜した粒子(Ag―
Ni―Cu粒子)を得た。
After silver plating, remove the plating solution, wash thoroughly with water, filter, dry and coat the copper particles with the nickel plating film, and then the particles coated with the silver plating film (Ag-
Ni—Cu particles) were obtained.

上述した方法で得られたNi―Cu粒子につき、
SEM写真とX線マイクロアナライザーによるニ
ツケル分布像を調べた結果、ニツケルが銅粒子に
均一に電着していることが認められた。また、
Ni―Cu粒子に銀めつき膜を被覆させたAg―Ni―
Cu粒子も銀が均一に被覆していることが認めら
れ、上述した方法によつて粉粒物を確実にかつ簡
単に電気めつきし得ることが知見された。
Regarding the Ni-Cu particles obtained by the method described above,
As a result of examining the nickel distribution image using SEM photographs and an X-ray microanalyzer, it was found that nickel was uniformly electrodeposited on the copper particles. Also,
Ag―Ni― with Ni―Cu particles coated with silver plating film
It was observed that the Cu particles were also uniformly coated with silver, and it was found that the above-mentioned method can reliably and easily electroplate powder particles.

また、Ag―Ni―Cu粒子及びこれと同粒度の市
販電解銀粉それぞれ70%をセメダインC(セメダ
イン株式会社)30%と混合したペーストを調製
し、これらをプラスチツク基板上に塗布してそれ
ぞれ巾約1mm、長さ20mmの線部を形成した。接着
剤が乾燥した後、テスターで各線部の導電性を比
較した結果は、Ag―Ni―Cu粒子と市販電解銀粉
は全く同じ程度の導通を示し、従つてAg―Ni―
Cu粒子が市販の銀粉と実質的に同じ導電性、同
じ性能を有し、導電性フイラー、電磁シールド材
等として銀粉の代りにこれとほぼ同程度の性能を
持つて使用し得ると共に、このAg―Ni―Cu粒子
はベース母材が銅であるためコストを1/2〜1/3程
度に低減でき、銀粉よりも極めて安価に種々用途
に提供できるものであることが認められた。この
うに、安価な銅粉に対し、銅粉の欠点である酸化
及び腐食の生じ易さをニツケルめつき膜、更に銀
めつき膜で被覆することにより防止することがで
き、しかも実質的に銀粉と同じ電気特性を有する
粒子を得ることができるため、工業上その利用価
値は大きいものである。
In addition, a paste was prepared by mixing 70% of each of Ag-Ni-Cu particles and commercially available electrolytic silver powder with the same particle size with 30% of Cemedine C (Cemedine Co., Ltd.), and these were coated on a plastic substrate to give a width of about 30%. A line portion of 1 mm and 20 mm in length was formed. After the adhesive had dried, the conductivity of each line was compared using a tester, and the results showed that Ag-Ni-Cu particles and commercially available electrolytic silver powder had exactly the same degree of conductivity.
Cu particles have substantially the same conductivity and performance as commercially available silver powder, and can be used in place of silver powder as a conductive filler, electromagnetic shielding material, etc., and have almost the same performance as silver powder. - Since the base material of Ni-Cu particles is copper, the cost can be reduced to about 1/2 to 1/3, and it has been recognized that they can be provided for a variety of purposes at a much lower cost than silver powder. In this way, by coating inexpensive copper powder with a nickel plating film and then a silver plating film, it is possible to prevent the oxidation and corrosion susceptibility, which is a disadvantage of copper powder, and furthermore, the silver Since it is possible to obtain particles having the same electrical properties as those of , it has great industrial utility value.

〔実施例 2〕 粒径5〜44μの偏平なA2O3粒子50gを用
い、下記方法によりめつきを行なつた。
[Example 2] Using 50 g of flat A 2 O 3 particles with a particle size of 5 to 44 μm, plating was carried out by the following method.

まず、A2O3粒子を脱脂し、次いで水洗、酸
洗、水洗した後、下記工程に従つて化学ニツケル
めつきを行なつた。
First, the A 2 O 3 particles were degreased, then washed with water, pickled, and washed with water, and then chemically plated with nickel according to the following steps.

センシタイジング:塩化第1錫溶液 50ml ↓ 水洗 ↓ アクチベイシヨン:塩化パラジウム溶液 50ml ↓ 水洗 ↓ 化学ニツケルめつき:上村工業(株)製BELニツ
ケル1.5(還元剤ジメチル
ボラザン) ↓ 水洗 なお、化学ニツケルめつきは、ニツケル被膜の
重量が全体の5〜10%程度になるうに行なつた。
Sensitizing: Stannous chloride solution 50ml ↓ Water washing ↓ Activation: Palladium chloride solution 50ml ↓ Water washing ↓ Chemical nickel plating: Uemura Kogyo Co., Ltd. BEL Nickel 1.5 (reducing agent dimethylborazane) ↓ Water washing Nickel plating was carried out so that the weight of the nickel film was approximately 5 to 10% of the total weight.

次に、このA2O3粒子につき、第2図に示す
如き装置を用い、実施例1に準じて下記条件によ
り電気ニツケルめつき、次いで電気銀めつきを施
した。
Next, the A 2 O 3 particles were subjected to electro-nickel plating and then electro-silver plating under the following conditions according to Example 1 using an apparatus as shown in FIG.

ニツケルめつき条件 めつき液組成 実施例1と同じ 化学めつき膜被覆A2O3粒子 約50g めつき槽(陰極) 800ml ステンレススチール製 (内側部をプラスチツクコーテイングし、内
底面のみをステンレススチール露呈部とし
た。内底面100mmφ。) 陽極 ニツケル板 めつき液量 400ml 陰極電流量 1.4×10-2A/g めつき温度 55℃ めつき時間 120分 撹拌 インペラー式撹拌機使用 (回転数6rpm) 隔膜(住友電工(株)製Fluoropore、使用ポアサ
イズ5μ) 銀めつき条件 めつき液組成 実施例1と同じ めつき槽(陰極) 上記と同じ 陽極 ステンレススチール板 めつき液量 400ml 陰極電流量 6.0×10-3A/g めつき温度 25℃ めつき時間 120分 撹拌 インペラー式撹拌機使用 (回転数10rpm) 隔膜(上と同じもの) 使用 上述した方法で得られたNi―A2O3粒子(化
学ニツケル膜被覆A2O3粒子に電気ニツケルめ
つき膜を被膜させたもの)及びAg―Ni―A2O3
粒子(更に銀めつき膜を被膜させたもの)は、い
ずれも電気めつき膜が均一に電着しているもので
あり、隔膜を用いることによつて粒子が陰極であ
るめつき槽に確実に接触し、均一な電着物を得る
ことができることを知見した。
Nickel plating conditions Plating liquid composition Same as Example 1 Chemical plating film coating A 2 O 3 particles Approximately 50 g Plating tank (cathode) 800 ml Stainless steel (inner part is coated with plastic, only the inner bottom surface is exposed to stainless steel) ) Anode: Nickel plate Plating liquid volume: 400ml Cathode current: 1.4×10 -2 A/g Plating temperature: 55℃ Plating time: 120 minutes Stirring: Using an impeller type stirrer (rotation speed: 6 rpm) Diaphragm (Fluoropore manufactured by Sumitomo Electric Co., Ltd., pore size used: 5μ) Silver plating conditions Plating solution composition Same as Example 1 Plating bath (cathode) Same as above Anode Stainless steel plate Plating solution volume 400ml Cathode current amount 6.0×10 -3 A/g Plating temperature 25℃ Plating time 120 minutes Stirring Using an impeller type stirrer (rotation speed 10 rpm) Using a diaphragm (same as above) Ni-A 2 O 3 particles obtained by the above method (chemical Nickel film-coated A 2 O 3 particles coated with an electric nickel plating film) and Ag-Ni-A 2 O 3
All particles (further coated with a silver plating film) have an electroplated film evenly deposited on them, and the use of a diaphragm ensures that the particles are in the plating tank, which is the cathode. It was discovered that a uniform electrodeposit could be obtained by contacting with

また、粒子が非電導性の場合、電気めつき前に
化学めつきを施す必要があるが、本発明において
は粒子に化学めつきを施す場合、その膜厚は電気
めつきが可能な程度のものでよく、化学めつき被
膜のみによつて高導電性粒子を得る場合に比較し
てその膜厚を薄くすることができ、コストを著し
く低下させることができた。即ち、非導電性粒子
に化学ニツケルめつきを施し、高導電性を得よう
とすると、非導電性粒子1Kgに対し化学ニツケル
めつき液を60〜80必要とするが、本発明の場合
には化学ニツケルめつきは約30もしくはそれ以
下でよく、大きなコストダウンが達成されるもの
である。
In addition, if the particles are non-conductive, it is necessary to apply chemical plating before electroplating, but in the present invention, when chemical plating is applied to particles, the film thickness is such that electroplating is possible. Compared to the case where highly conductive particles are obtained only by chemical plating, the film thickness can be made thinner, and the cost can be significantly reduced. That is, when applying chemical nickel plating to non-conductive particles to obtain high conductivity, 60-80 g of chemical nickel plating solution is required for 1 kg of non-conductive particles, but in the case of the present invention, The chemical nickel plating may be about 30 or less, resulting in a significant cost reduction.

また、化学ニツケルめつき被膜非導電性粒子と
上述した如き方法で得られる電気ニツケルめつき
被膜非導電性粒子の特性を比較した場合、本発明
方法に従つた電気ニツケルめつき膜被膜粒子はニ
ツケルめつき膜がより酸化され難く、非常に安定
性の良好なものであることが認められた。即ち、
2O3粒子50gにつき、化学ニツケルめつき液
3を用い、上述した化学ニツケルめつき法に準
じて得られた化学ニツケルめつき膜被覆A2O3
粒子と、上述した方法によつて得られた同程度の
ニツケル被覆性を有する電気ニツケルめつき膜被
覆A2O3粒子(Ni―A2O3粒子)とのそれぞ
れを直径10mm、厚さ3mm程度に加圧成型し、その
成型物の導通性をテスターで測定した場合、化学
ニツケルめつき膜被覆A2O3粒子は50Kg、/cm2
の加圧力を加えて成型した場合に初めて導通した
のに対し、本発明方法に従つたNi―A2O3粒子
は20Kg/cm2の加圧力で導通した。従つて、このこ
とから、本発明法により低圧でも導電性があり、
物性も良好な導電性粒子を得ることができ、しか
もその製造コストを大巾に低下させることができ
ることが認められた。
Furthermore, when comparing the characteristics of the chemically plated non-conductive particles with the electro-nickel plated particles obtained by the method described above, it was found that the electro-nickel plated particles prepared according to the method of the present invention are the same as those of the electro-nickel plated particles obtained by the method of the present invention. It was found that the plated film was less likely to be oxidized and had very good stability. That is,
Chemical nickel plating film coating A 2 O 3 obtained per 50 g of A 2 O 3 particles using chemical nickel plating solution 3 according to the chemical nickel plating method described above.
The particles and A 2 O 3 particles (Ni--A 2 O 3 particles) coated with an electric nickel plating film having the same level of nickel coverage obtained by the method described above were each 10 mm in diameter and 3 mm in thickness. When the conductivity of the molded product was measured with a tester, the chemical nickel plating film coated A 2 O 3 particles were 50 kg/cm 2
On the other hand, the Ni--A 2 O 3 particles made according to the method of the present invention became electrically conductive when molded under a pressure of 20 Kg/cm 2 . Therefore, from this, the method of the present invention has conductivity even at low pressure,
It has been found that conductive particles with good physical properties can be obtained, and the manufacturing cost can be significantly reduced.

更に、上述した方法で得られたAg―Ni―A
2O3粒子及び市販電解銀粉を用い、実施例1で示
した方法と同じ方法で電導性を比較した結果は、
Ag―Ni―A2O3粒子と銀粉は同じ程度の導通を
示し、従つてこのAg―Ni―A2O3粒子も市販銀
粉と実質的に同一の物性を示すと共に、この種の
Ag―Ni―A2O3粒子のような母材が非導電性の
もの、特にプラスチツク類のものなどは一般金属
粉と比べて比重が小さいので、インク、塗料用材
料などに応用した場合、沈降しにくく、安定な製
品が得られることができるものであることを知見
した。
Furthermore, Ag-Ni-A obtained by the method described above
The results of comparing the conductivity using the same method as shown in Example 1 using 2 O 3 particles and commercially available electrolytic silver powder are as follows.
Ag-Ni-A 2 O 3 particles and silver powder exhibit the same degree of conductivity, and therefore, this Ag-Ni-A 2 O 3 particle also exhibits substantially the same physical properties as commercially available silver powder, and this kind of
Ag-Ni-A 2 O 3 particles with non-conductive base materials, especially plastics, have a lower specific gravity than general metal powders, so when applied to inks, paint materials, etc. It was found that a stable product that is resistant to sedimentation can be obtained.

以上の如く、実施例1,2で得られた電気めつ
き膜を被覆した導電性材料は、蒸着や化学めつき
品と比較して被膜が強く密着性が良好で、品質的
に安定であり、しかも銀めつき膜を被覆したもの
は市販銀粉と同程度の特性を有し、またコスト的
にも安価で、種々の用途に効果的に用いることが
できるものである。
As described above, the conductive material coated with the electroplated film obtained in Examples 1 and 2 has a stronger film and better adhesion than vapor-deposited or chemically plated products, and is stable in quality. Moreover, those coated with a silver plating film have properties comparable to those of commercially available silver powder, are inexpensive, and can be effectively used for various purposes.

〔実施例 3、比較例〕 銅粒子(10〜15μ、デンドライド)50gを用
い、実施例1と同様のニツケルめつき条件(ただ
し、インペラー式撹拌機の回転数は12rpmとし
た)にて60分間ニツケルめつきを行つた(実施
例)。
[Example 3, Comparative Example] Using 50 g of copper particles (10 to 15μ, dendrite), nickel plating was carried out for 60 minutes under the same nickel plating conditions as in Example 1 (however, the rotation speed of the impeller stirrer was 12 rpm). Nickel plating was performed (Example).

また、比較のため、インペラー式撹拌機の回転
数を12rpmとすると共に、1秒間に2回停止させ
た脈動状態とした以外は上記と同様にしてニツケ
ルめつきを行つた(比較例)。
For comparison, nickel plating was carried out in the same manner as above, except that the impeller-type stirrer was rotated at 12 rpm and was stopped twice per second in a pulsating state (comparative example).

得られためつき物をX線マイククロアナライザ
ーによりニツケルの分布状態を観祭したところ、
実施例の方が比較例に比べて均一なめつき状態で
あることが認められた。また、これらのめつき物
を用いて実施例1と同様にペーストをつくり、プ
ラスチツク基板に塗布し、表面抵抗を測定した結
果、実施例の方が抵抗値が低いものであつた。こ
れは比較例の粒子がニツケル被覆が不完全であ
り、このため露出した銅面が酸化したことによる
影響と考えられた。
When we examined the distribution of nickel using an X-ray microchromatic analyzer, we found that
It was observed that the Example had a more uniform plating state than the Comparative Example. Furthermore, a paste was prepared using these plated materials in the same manner as in Example 1, and the paste was applied to a plastic substrate and the surface resistance was measured. As a result, the resistance value of the Example was lower than that of the Example. This was thought to be due to the fact that the particles of the comparative example had incomplete nickel coating, and as a result, the exposed copper surface was oxidized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はそれぞれ本発明に用いるめ
つき装置の一例を示す概略断面図である。 1…めつき槽、1a…内底面、3…陰極リード
線、4…陰極板、5…粉粒体、6…陽極リード
線、7…陽極。
1 to 3 are schematic cross-sectional views each showing an example of a plating apparatus used in the present invention. DESCRIPTION OF SYMBOLS 1... Plating tank, 1a... Inner bottom surface, 3... Cathode lead wire, 4... Cathode plate, 5... Powder material, 6... Anode lead wire, 7... Anode.

Claims (1)

【特許請求の範囲】[Claims] 1 めつき槽内底面に陰極を形成し、この内底面
上に平均粒径500μ以下の粉粒体を堆積すると共
に、この粉粒体の上方に陽極を配置し、かつ前記
粉粒体堆積物中にインペラー式撹拌機の先端羽根
部を埋入し、この撹拌機を作動させて粉粒体がめ
つき槽内底面に堆積した状態を維持するようなゆ
るやかな連続的撹拌を粉粒体に与えつつこの粉粒
体を電気めつきすることを特徴とする粉粒体への
電気めつき方法。
1. A cathode is formed on the inner bottom surface of the plating tank, and powder and granules with an average particle size of 500 μm or less are deposited on the inner bottom surface, and an anode is placed above the powder and granules, and the powder and granules are deposited. The tip blade of an impeller-type stirrer is embedded inside, and this stirrer is operated to give the powder and granules a gentle continuous agitation that maintains the powder and granules deposited on the bottom surface of the plating tank. A method for electroplating powder and granules, characterized by electroplating the powder and granules.
JP57151077A 1982-08-31 1982-08-31 Method for electroplating particulate material Granted JPS5941489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57151077A JPS5941489A (en) 1982-08-31 1982-08-31 Method for electroplating particulate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57151077A JPS5941489A (en) 1982-08-31 1982-08-31 Method for electroplating particulate material

Publications (2)

Publication Number Publication Date
JPS5941489A JPS5941489A (en) 1984-03-07
JPS6140319B2 true JPS6140319B2 (en) 1986-09-08

Family

ID=15510803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57151077A Granted JPS5941489A (en) 1982-08-31 1982-08-31 Method for electroplating particulate material

Country Status (1)

Country Link
JP (1) JPS5941489A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010610A (en) * 1996-04-09 2000-01-04 Yih; Pay Method for electroplating metal coating(s) particulates at high coating speed with high current density
US5911865A (en) * 1997-02-07 1999-06-15 Yih; Pay Method for electroplating of micron particulates with metal coatings
JP4023526B2 (en) * 1997-10-09 2007-12-19 株式会社Neomaxマテリアル Method for producing fine metal sphere
JP4507802B2 (en) * 2004-09-30 2010-07-21 パナソニック株式会社 Method for producing metal-supported conductive powder and catalyst using the same
JP4906435B2 (en) * 2006-08-21 2012-03-28 財団法人神奈川科学技術アカデミー Particle production method and particles produced by the method
JP2013243045A (en) * 2012-05-21 2013-12-05 Kanto Gakuin Conductive laminate and method for producing conductive laminate
CN107876756B (en) * 2017-10-31 2019-08-09 北京科技大学 A kind of device and method of electrodeposition process synchronous production variety classes Coated powder

Also Published As

Publication number Publication date
JPS5941489A (en) 1984-03-07

Similar Documents

Publication Publication Date Title
US6010610A (en) Method for electroplating metal coating(s) particulates at high coating speed with high current density
US5170009A (en) Electrically conductive covers and electrically conductive covers of electronic equipment
US5302464A (en) Method of plating a bonded magnet and a bonded magnet carrying a metal coating
US5945158A (en) Process for the production of silver coated particles
KR100188481B1 (en) Method for directly electroplating a dielectric substrate and plated substrate so produced
US5908543A (en) Method of electroplating non-conductive materials
JPH08250865A (en) Method for improving further reliability of electronic housing by preventing formation of metallic whisker on sheetutilized for manufacture of the electronic housing
US20170016130A1 (en) Electrodeposition methods and coated components
KR20210025600A (en) Silver electrolyte for the deposition of a dispersed silver layer and the surface in contact with the dispersed silver layer
US5911865A (en) Method for electroplating of micron particulates with metal coatings
EP0343836A1 (en) Particulate material useful in an electroconductive body and method of making such particles
CN112368422A (en) Silver electrolyte for depositing a silver dispersion layer and a contact surface with a silver dispersion layer
JPS6140319B2 (en)
JPH0344149B2 (en)
JPS6146583B2 (en)
JP2840471B2 (en) Method of manufacturing conductive cover
JPS60181294A (en) Production of inorganic powder having metallic film on surface
EP0451578A1 (en) Electro-deposition coated member and process for producing it
JPH05287543A (en) Electroless silver plating method
JPS61258875A (en) Electrically conductive paint
US4916098A (en) Process and apparatus for manufacturing an electrocatalytic electrode
JP5445818B2 (en) Electroless plating method and activation pretreatment method
JP2001152353A (en) Electroplating method for nonconductive plastic
JP2862366B2 (en) Electrodeposition coating member and method of manufacturing the same
WO2023218810A1 (en) Composite material, method for producing composite material, and terminal