JPS613837A - Manufacture of grain-oriented silicon steel sheet - Google Patents

Manufacture of grain-oriented silicon steel sheet

Info

Publication number
JPS613837A
JPS613837A JP12210784A JP12210784A JPS613837A JP S613837 A JPS613837 A JP S613837A JP 12210784 A JP12210784 A JP 12210784A JP 12210784 A JP12210784 A JP 12210784A JP S613837 A JPS613837 A JP S613837A
Authority
JP
Japan
Prior art keywords
slab
hot
steel sheet
rolling
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12210784A
Other languages
Japanese (ja)
Inventor
Mitsumasa Kurosawa
黒沢 光正
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12210784A priority Critical patent/JPS613837A/en
Publication of JPS613837A publication Critical patent/JPS613837A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To prevent the fin roughening of a hot coil by increasing rolling force in the lateral direction of a slab during rough rolling. CONSTITUTION:The slab obtd. by continuously casting a molten silicon steel is reheated and subjected to hot rough rolling and hot finish rolling. The hot rolled steel sheet is cold rolled once or cold rolled twice while carrying out process annealing between the cold rolling stages. The hot rolled steel sheet having the final thickness is subjected to decarburization and primary recrystallization annearling, and after applying an MgO-base protective coating material for annealing to the surface of the steel sheet, the steel sheet is subjected to finish annealing to manufacture a grain-oriented silicon steel sheet. At this time, the casting space in a continuous casting mold is deformed so that both edges of the slab in the laterial direction are made thicker than the central part, and a concave slab having deformed cross-section is cast and hot rolled so that the both edges are hot rolled at a higher draft than the central part.

Description

【発明の詳細な説明】 (技術分野) 鋼板を構成する体心立方格子の結晶粒が、ミラー指数で
(izo)<oot>とじて表わされる方位を有し、圧
延方向に磁化され易い方向性けい素鋼板の製造方法の改
良に関しこの明細書で詠べる技術内容は、該鋼板用スラ
ブの熱間圧延、とく、、。
Detailed Description of the Invention (Technical Field) Crystal grains in a body-centered cubic lattice constituting a steel sheet have an orientation represented by (izo)<oot> in Miller index, and are easily magnetized in the rolling direction. The technical contents described in this specification regarding the improvement of the manufacturing method of silicon steel sheets include, in particular, the hot rolling of slabs for the steel sheets.

にホットコイルの耳荒れを効果的に防止し、かつコイル
長手方向の特性を安定化させることについての開発成果
を提案することにある。
The purpose of this paper is to propose the development results for effectively preventing the rough edges of hot coils and stabilizing the characteristics in the longitudinal direction of the coils.

(背景技術) 方向性けい素鋼板は高い磁束密度と低い鉄損を、併せ持
つ優れた硼気特性により、変圧器などの鉄心材料として
広く用いられている。近年の省エネルギ、−の極度なま
での要請を反映して特性の優れた方向性けい素鋼板をよ
り安価に供給することを望まれているが、製造コストを
如何に低減させる、かは、極めて重要な課題、である。
(Background Art) Grain-oriented silicon steel sheets are widely used as iron core materials for transformers and the like due to their excellent magnetic properties, including high magnetic flux density and low iron loss. Reflecting the extreme demand for energy conservation in recent years, there is a desire to supply grain-oriented silicon steel sheets with excellent properties at lower prices, but it is unclear how to reduce manufacturing costs. This is an extremely important issue.

磁気特性の優れた方向性けい素鋼板を得るためには、最
終焼鈍に際して(11G)<0(11>方位(所謂ゴス
方位)が選択成長する2次再結晶現象を制御しゴス方位
の高度に集積した均一な2次再結晶組織とすることが必
要である。
In order to obtain a grain-oriented silicon steel sheet with excellent magnetic properties, the secondary recrystallization phenomenon in which the (11G)<0(11> orientation (so-called Goss orientation) selectively grows is controlled during final annealing to increase the height of the Goss orientation. It is necessary to have an integrated and uniform secondary recrystallized structure.

ゴス方位の2次再結晶粒を発達させるためには、適切に
析出分散相を活用することが知られて、−いるとおりで
あり、とくにMn8 、 xnse 、 A4Nが代表
的なものとして一般的に広く利用されている。
It is known that in order to develop secondary recrystallized grains with Goss orientation, it is necessary to appropriately utilize precipitated dispersed phases. Widely used.

この場合、熱延前のスラブ加熱時にMnS 、 MnS
eなどを十分解離固溶させた後、適切な熱延を施すこと
により、インヒビターとして好ましい誉イズ分布を持つ
分散相を得る必要があり、解離固溶に要するスラブ加熱
温度は1800〜1420°Cという高温域で行なわれ
るのが一般的である。
In this case, when heating the slab before hot rolling, MnS, MnS
After sufficient dissociation and solid solution of e.g., it is necessary to carry out appropriate hot rolling to obtain a dispersed phase with a preferable size distribution as an inhibitor, and the slab heating temperature required for dissociation and solid solution is 1800 to 1420 °C. It is generally carried out in a high temperature range.

(問題点) しかしながら1300″C以上の高温域での長時間加熱
は、スラブ結晶粒へ異常成長を誘発し、粗大化した結晶
粒は、熱間圧延に於いても幅方向の、両端部では十分再
結晶せず、しばしばホットコイ1ルの耳部の割れ(耳荒
れあるいは耳割れ)の原因となっている。
(Problem) However, long-term heating in a high temperature range of 1300"C or higher induces abnormal growth of slab crystal grains, and the coarsened crystal grains are formed at both ends in the width direction even during hot rolling. It does not recrystallize sufficiently and often causes cracks in the ears of the hot coil 1 (rough ears or cracked ears).

ホットコイルの耳荒れは、次工程の冷間圧延で、破断の
起点となるため、冷間圧延前に耳荒れ部を。
The rough edges of hot coils become the starting point for breakage in the next process of cold rolling, so the rough edges are removed before cold rolling.

耳切り除去しなければならず、歩出を大きく低下させ、
A追上大幅なコスFアップ要因となっている。
Ears must be removed, greatly reducing walking ability,
A is a major factor in increasing the cost F.

(従来技術) ホットコイルの耳荒れについては、すてに持分1.。(Conventional technology) As for the ear roughness of hot coils, the stake is 1. .

昭57−4690号公報でも粗圧延時の圧下スケジュー
ルを変更することで、粗大粒の再結晶を促進することが
開示されている。しかしこの方法は粗圧延最終パスを軽
圧下にすることで低温域での粒界割れを防止しようとす
るものであり、微細再1結晶化に関してはむしろひずみ
量を減らすため不利と思われる。
Publication No. 57-4690 also discloses that recrystallization of coarse grains can be promoted by changing the reduction schedule during rough rolling. However, this method attempts to prevent intergranular cracking in a low temperature range by applying a light reduction in the final pass of rough rolling, and seems to be disadvantageous in terms of fine re-crystallization because it rather reduces the amount of strain.

(発明の動機) 発明者らは、前記実情を鑑みホットコイルの耳荒れを防
止することを目的として検討を重ねた結、果、粗圧延時
のスラブ幅方向の両端部の圧下を大1きくすることで加
熱時に粗大成長した結晶粒の再結晶を促進することによ
り、前記目的を達成できることを知見し、連鋳スラブの
形状を幅方向の両端で肉厚の厚い特殊形状にすることを
新たに提案するものである。
(Motivation for the Invention) In view of the above-mentioned circumstances, the inventors conducted repeated studies with the aim of preventing rough edges of hot coils, and as a result, they decided to increase the reduction of both ends of the slab in the width direction during rough rolling by a large amount. They discovered that the above objective could be achieved by promoting the recrystallization of the crystal grains that coarsely grew during heating, and developed a new method for making the shape of the continuous cast slab into a special shape with thick walls at both ends in the width direction. This is what we propose.

(発明の目的) 方向性けい素鋼板のホットコイル段階で発生する耳荒れ
の効果的な防止を図ることがこの発明の目的である。
(Objective of the Invention) An object of the present invention is to effectively prevent rough edges that occur during the hot coiling stage of grain-oriented silicon steel sheets.

(発明の構成) この発明は含けい素溶鋼を連続鋳造して得られたスラブ
を再加熱後、熱間粗圧延し、さらに熱間仕上圧延して熱
延板とし、該熱延板に1回または中間焼鈍を挾む2回の
冷間圧延を施して最終板厚。
(Structure of the Invention) This invention involves reheating a slab obtained by continuous casting of silicon-containing molten steel, subjecting it to hot rough rolling, and further hot finishing rolling to form a hot rolled plate. The final thickness is obtained by cold rolling twice or intermediate annealing.

とじたのち、脱炭、1次再結晶焼鈍を施し、ついで鋼板
表面にMgOを主成分とする焼鈍分離剤を箪布してから
仕上焼鈍を施す一連の工程よりなる方向性けい素鋼板の
製造方法において 連続鋳造用モールドの鋳込空間の形状を、スラ、プの幅
方向両端部の厚みが中央の厚みよりも厚い異形断面に適
合させて上記異形断面の凹形スラブを鋳造し、該スラブ
両端部における圧下率を中央部より大きくとって熱間粗
圧延を施すことを特徴とする方向性けい素鋼板の製造方
法である。
The production of grain-oriented silicon steel sheets consists of a series of steps in which, after binding, decarburization and primary recrystallization annealing are performed, and then an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, and final annealing is performed. In the method, a concave slab with the irregular cross section is cast by adapting the shape of the casting space of the continuous casting mold to an irregular cross section in which the thickness at both ends in the width direction of the slab is thicker than the thickness at the center; This is a method for producing a grain-oriented silicon steel sheet, characterized in that hot rough rolling is performed with a rolling reduction ratio at both ends greater than that at the center.

ここに両端部の厚みが中央部の厚みより5〜30%厚く
、この厚い部分のスラブ幅方向長さがスラブ側端面より
少なくとも40IIIII+以上であることが実施上好
ましい。
Practically speaking, it is preferable that the thickness of both end portions is 5 to 30% thicker than the thickness of the central portion, and that the length of the thick portion in the slab width direction is at least 40III+ or more than the slab side end surface.

さてこの発明を適用すべき方向性けい素鋼板の主要製造
工程は一般にsi: 2.5〜4.1チを主成分として
連続鋳造法により得られたスラブを熱間圧延によりホッ
トコイルと成すこと、次に1回あるいは中間焼鈍を含む
2回以上の冷間圧延により最終板厚とした後、脱炭焼鈍
及び仕上焼鈍を施すことから成り、前記諸工程に占める
この発明の特徴事項は、連続鋳造法によるスラf製造工
程及びそのスラブの再加熱、粗圧延工程にある。
The main manufacturing process for grain-oriented silicon steel sheets to which this invention is applied is generally to form a slab into a hot coil by hot rolling a slab obtained by continuous casting using Si: 2.5 to 4.1 as the main component. , then cold rolling once or twice or more including intermediate annealing to achieve the final thickness, followed by decarburization annealing and finish annealing. The steps include the manufacturing process of the slab f by the casting method, the reheating of the slab, and the rough rolling process.

すなわち粗圧延時にスラブ幅方向の両端部を効果的に再
結晶させるために特に両端部の圧下を大、きくする必要
があり、このため通常の矩形断面を持つスラブに替えて
幅方向両端部が中央部よりも厚い異形特殊形状のスラブ
を用いる。
In other words, in order to effectively recrystallize both ends of the slab in the width direction during rough rolling, it is necessary to particularly reduce the reduction at both ends. A specially shaped slab that is thicker than the center is used.

先にも述べた様に方向性けい素鋼板製造プロセス上、ス
ラブ加熱によるMnS 、 Mn8e等の十分な溶体化
処理が不可欠であり、その為1300℃以上の高温長時
間のスラブ加熱が不可欠である。
As mentioned earlier, in the process of producing grain-oriented silicon steel sheets, sufficient solution treatment of MnS, Mn8e, etc. by slab heating is essential, and therefore slab heating at a high temperature of 1300°C or more for a long time is essential. .

ところが連続鋳造機ではその裏造上の特徴である急速凝
固による柱状晶組織が形成されるため、高温加熱時にス
ラブ結晶粒の異常成長が従来の造塊材に較べて、より起
こりやすく、とくにスラブ幅方向の端部では柱状晶組織
が発達しているため、スラブ加熱後の粗大化した結晶粒
は引き続く粗圧延後も十分再結晶をせず粗い結晶組織を
残したままとなり勝ちである。粗い結晶組織は著しくし
ん1性に乏しいため、仕上圧延段階でホットコイルの耳
荒れの原因となる。
However, in a continuous casting machine, a columnar crystal structure is formed due to rapid solidification, which is a characteristic of the backing, so abnormal growth of slab crystal grains is more likely to occur during high-temperature heating than in conventional agglomerated materials. Since a columnar crystal structure is developed at the ends in the width direction, the crystal grains that have become coarse after heating the slab do not recrystallize sufficiently even after subsequent rough rolling, and the coarse crystal structure tends to remain. Since the coarse crystal structure has extremely poor sharpness, it causes edge roughness of the hot coil during the finish rolling stage.

ところで熱延時の再結晶促進を考える場合r変態を利用
するのが一般的であるが、方向性けい素鋼のようなr量
の著しく少ない鋼種では、歪の蓄−1゜積を利用した粒
界移動により再結晶させる必要が1ある。ところが通常
の水平ロールを用いた圧延方法では被圧延材の幅方向両
端では横からの抗力が無いため中央部に較べ十分な歪量
が得られず再結晶に不利となる。
By the way, when considering the promotion of recrystallization during hot rolling, it is common to use r-transformation, but in steel types such as grain-oriented silicon steel where the amount of r is extremely small, grain transformation using the −1° product of strain accumulation is generally used. It is necessary to recrystallize by field movement. However, in the rolling method using normal horizontal rolls, there is no lateral resistance at both ends of the rolled material in the width direction, so a sufficient amount of strain cannot be obtained compared to the central region, which is disadvantageous for recrystallization.

発明者らは、被圧延材端部でも十分再結晶させるべく粗
圧延のパススケジュールを種々検討してきた結果、低温
域での圧下率を大きくすることで再結晶させることがで
きることを知見したが、仕上圧延前で1100°C以下
となると、解離固溶さ1.。
The inventors have studied various pass schedules for rough rolling in order to sufficiently recrystallize even the edges of the rolled material, and as a result, they have found that recrystallization can be achieved by increasing the rolling reduction ratio in the low temperature range. If the temperature is below 1100°C before finish rolling, the dissociation and solid solution will be 1. .

せたMnS 、 MnSeなどの析出−分散相のサイズ
分布に異常を起こし、しばしば磁気特性を不安定にして
、特性の安定化上不都合を生じた。
This causes an abnormality in the size distribution of precipitated and dispersed phases such as MnS and MnSe, often making the magnetic properties unstable and causing problems in terms of stabilizing the properties.

そこで圧延条件は従来のままとし、スラブ幅方向の両端
部で再結晶を十分促進させるためには、。
Therefore, in order to sufficiently promote recrystallization at both ends of the slab width direction, the rolling conditions were kept as they were before.

両端部でより多くの歪量を蓄積させ、る必要があり、こ
のため圧延前のスラブ形状を両端部で厚くすることで圧
下率を大きくすることを新たに提案するものである。
It is necessary to accumulate a larger amount of strain at both ends, and for this reason, we are newly proposing to increase the rolling reduction ratio by making the slab shape thicker at both ends before rolling.

以下この発明の特徴である異形断面凹形スラブ、。Below is a slab with a concave irregular cross section, which is a feature of this invention.

、に関して説明する。, will be explained.

連鋳スラブにつきその幅方向端部の圧下量を中央部に対
し変える方法として、圧延前のスラブ形状を両端の肉厚
を厚くすることすなわち連鋳用モールドの鋳込空間を従
来の矩形から例えば第1図に示すような特殊形状のモー
ルドを用いて第2図(6)、o3)に例示するような異
形断面凹形のスラブを用いることで前記目的を実現でき
る。なお第2図(C)は矩形断面になる従来スラブの断
面を示す。
As a method of changing the reduction amount of the widthwise ends of a continuous casting slab relative to the center, it is possible to increase the wall thickness at both ends of the slab shape before rolling, that is, to change the casting space of the continuous casting mold from a conventional rectangular shape, for example. The above objective can be achieved by using a specially shaped mold as shown in FIG. 1 and a slab having an irregularly shaped concave cross section as exemplified in FIG. 2 (6), o3). Note that FIG. 2(C) shows a cross section of a conventional slab having a rectangular cross section.

第1図においてlは凹形鋳込空間をもつモール、。In Fig. 1, l is a molding having a concave casting space.

ド、aは両端部間隔、bは中央部間隔Cは両端部厚肉域
長さである。このときスラブの断面形状は長辺片面ある
いは長辺両面を凹形にする方法があるが効果としては特
に制限されるものではなく、むしろ両端部厚みが中央部
に対し、5チ以上厚い場合耳荒れに効果がある。第8図
に耳荒れ程度に及ばず肉厚比の影響を示すが、従来材に
較べて両端部のみの肉厚を厚く・し、大圧下にしたもの
は耳荒れを効果的に減少させることが判る。
d, a is the distance between both ends, b is the distance between the center parts, and C is the length of the thick region at both ends. At this time, the cross-sectional shape of the slab can be made concave on one long side or both long sides, but the effect is not particularly limited.In fact, if the thickness of both ends is 5 inches or more thicker than the center, Effective for roughness. Figure 8 shows the influence of the wall thickness ratio, which does not reach the degree of rough edges, but compared to conventional materials, the thickness of only the ends is thicker and the material under heavy pressure effectively reduces the rough edges. I understand.

しかしながら両端部における肉厚の増加が中央、部旬に
対して30%を超すと、圧延後の形状不良、1幅広がり
が生じ好ましくなく従って5〜30%が適当である。
However, if the increase in wall thickness at both ends exceeds 30% with respect to the center and seam, it is undesirable to cause poor shape and widening after rolling, so 5 to 30% is appropriate.

また加熱後スラブの結晶粒は1 ON40111111
以上の大きさとなるため、スラブ端部の肉厚の厚い部分
の幅方向長さは、少なくとも結晶粒1つの大きさより大
きくないと効果が少な(,40as以上は必要である。
Also, the crystal grains of the slab after heating are 1 ON40111111
Because of the above size, the length in the width direction of the thick portion at the end of the slab must be at least larger than the size of one crystal grain to have little effect (40 as or more is required).

更にこの発明の凹形連鋳スラブのもう1つの特徴は例え
ば長辺面凹形の場合、加熱時に凹部を下1、。
Furthermore, another feature of the concave continuously cast slab of the present invention is that, for example, when the long sides are concave, the concave portion can be turned downward during heating.

向きに加熱炉へ装入することにより、加熱炉内の水冷ス
キッドに接触する部分が減り、スラブ長手方向の偏熱い
わゆるスキッドマークを効果的に防止することができる
ことにある。これは長辺両面凹形でも同様である。
By charging the slab into the heating furnace in the same direction, the portion that comes into contact with the water-cooled skid in the heating furnace is reduced, and uneven heat in the longitudinal direction of the slab, so-called skid marks, can be effectively prevented. This also applies to the concave shape on both long sides.

いうまでもなく方向性けい素鋼の高温長時間の加熱は、
Mn8 、 MnSeなどの解離固溶を目的とするもの
で、長手方向の特性安定化を保証するためにスキッド対
応部まで十分均熱する必要があり結果として在炉時間を
延長することが必要であった。
Needless to say, heating grain-oriented silicon steel at high temperatures and for long periods of time is
The purpose is to dissociate solid solution of Mn8, MnSe, etc., and in order to guarantee the stability of properties in the longitudinal direction, it is necessary to sufficiently uniformly heat the parts corresponding to the skids, and as a result, it is necessary to extend the furnace time. Ta.

、しかしながら長時間の在炉は、大量の溶融スケールが
発生し、炉補修、炉寿命の低下など操業の安定化を著し
く阻害し、大幅なコストアップ要因となっているばかり
でなく、炉効率の低下によるMnS 、 MnSeの固
溶不足から生じる磁気特注の低下を引き起こす原因とも
なっていた。
However, when the furnace is in use for a long time, a large amount of molten scale is generated, which significantly impedes the stabilization of operations such as furnace repair and shortened furnace life, which not only causes a significant increase in costs, but also reduces furnace efficiency. This was also a cause of a decline in magnetic customization due to insufficient solid solution of MnS and MnSe.

また、加熱炉より粗圧延機までの搬送時の衝撃により生
じるスラブ裏面の粒界割れ起因の裏きずも問題であった
In addition, back flaws caused by intergranular cracks on the back surface of the slab caused by impact during transportation from the heating furnace to the rough rolling mill were also a problem.

この発明は以上述べた特殊形状スラブを用いることで、
スラブ加熱時のスキッドマークを効果的に防止して、短
時間の加熱でスラブ長手方向で安定した磁気特性を保証
し、かつ耳荒れの原因となるスラブ幅方向両端の粗大粒
を微細に再結晶させることができる。  。
This invention uses the above-mentioned specially shaped slab,
Effectively prevents skid marks when heating the slab, guarantees stable magnetic properties in the longitudinal direction of the slab with short heating times, and finely recrystallizes coarse grains at both ends of the slab width that cause rough edges. can be done. .

以下この発明の製造工程につき順次説明する。The manufacturing steps of this invention will be sequentially explained below.

まずこの発明に用いる連鋳スラブの成分は、Sl:2.
5〜4,1チを必須成分とし、その他0 : 0..1
) 1〜o、o s @ s・xn: o、o a 〜
()、1%、S及び/又はSe:Ω、ΩOS〜0.1 
%を含有し、残り鉄及び若干、1゜の不可避成分である
First, the components of the continuously cast slab used in this invention are Sl:2.
5 to 4.1 is an essential component, and the rest is 0:0. .. 1
) 1~o, o s @ s・xn: o, o a ~
(), 1%, S and/or Se: Ω, ΩOS ~ 0.1
%, with the remainder being iron and some unavoidable components of 1°.

Siは2.5チより少ないと固有抵抗が高くならず、十
分な磁気特性が得られず、4.1%より多いと冷間圧延
が困難となるためsi : 2.5〜4.1%とする。
If Si is less than 2.5%, the specific resistance will not be high and sufficient magnetic properties will not be obtained, and if it is more than 4.1%, cold rolling will be difficult.Si: 2.5 to 4.1% shall be.

0は0.01 %より少ないと集合組織的に不利となり
、9.08%より多いと脱炭焼鈍時に長時間を要するの
で、a : 0,01〜0.08 %どする。
If 0 is less than 0.01%, the texture will be disadvantageous, and if it is more than 9.08%, it will take a long time during decarburization annealing, so a: 0.01 to 0.08%.

InとS、Seは析出分散相として使用するインヒビタ
ーを形成するもので、それぞれの含有量がMn : o
、o a%、S及び/又はSs : 0,005 %よ
り少ないと析出分散相の量的不足を生じ、一方それぞれ
0.1%を越すとスラブ加熱時の溶体化不足を生じ適切
な分散相が得られないので、Mn:0,03〜0.1%
、S及び/又はse : 0,005〜0.1 %が必
要である。
In, S, and Se form an inhibitor used as a precipitated dispersed phase, and their respective contents are Mn: o
, o a%, S and/or Ss: Less than 0,005% will result in a quantitative shortage of the precipitated dispersed phase, while if each exceeds 0.1%, solution formation during heating of the slab will be insufficient and an appropriate dispersed phase will not be obtained. is not obtained, Mn: 0.03 to 0.1%
, S and/or se: 0,005 to 0.1%.

その他析出分散相としてAjNを用いる場合またB 、
Or * Ni * Ou * No’、 Sb 、 
P及びsnなどの溶質原子を意識的に添加する場合も、
この発明の効果は失なわれない。
In addition, when AjN is used as the precipitated dispersed phase, B,
Or*Ni*Ou*No', Sb,
Even when solute atoms such as P and sn are intentionally added,
The effects of this invention are not lost.

前記成分を含有する連鋳スラブをプッシャーあ、るいは
ウオーキングビームタイプのスラブ加熱炉1にて180
0〜1420℃の温度に加熱する。このときスラブの加
熱温度が1800℃より低いと析出分散相七して使月す
る不純物の固溶が不十分となり、高すぎると膨大なスケ
ールの発生による−。
Continuously cast slabs containing the above-mentioned components are heated to 180 in a pusher or walking beam type slab heating furnace 1.
Heat to a temperature of 0-1420°C. At this time, if the heating temperature of the slab is lower than 1800°C, solid solution of impurities that are used as a precipitated dispersed phase will be insufficient, and if it is too high, a huge scale will be generated.

歩出、炉寿命の低下を招くので、1800〜1420℃
が好ましい。
1,800 to 1,420℃, as this will lead to a decrease in temperature and furnace life.
is preferred.

この発明の特徴とする特殊形状凹形スラブは、前記成分
を含有する溶鋼をタンディシュから長辺片面あるいは両
面が凹形の鋳込空間をもつモール1.1ドに注入して連
続鋳造により製造した後、有利には凹面を下向きに加熱
炉へ装入し、所定の温度で加熱した後粗圧延にて20〜
50騙厚み程度の板厚のシートバーとする。なお仕上圧
延開始前温度が1100°C以下になると、しばしば析
出分散相のサイズが不均一となり、磁気特性が劣化する
ので仕上圧延開始前温度は1100℃以上が望まれる。
The specially shaped concave slab, which is a feature of this invention, is produced by continuous casting by pouring molten steel containing the above components from a tundish into a mold having a casting space with a concave shape on one or both long sides. After that, it is advantageously charged into a heating furnace with the concave side facing downward, heated at a predetermined temperature, and then rough rolled for 20 to 20 minutes.
The sheet bar should be approximately 50 mm thick. Note that if the temperature before the start of finish rolling is 1100°C or lower, the size of the precipitated dispersed phase often becomes non-uniform and the magnetic properties deteriorate, so the temperature before the start of finish rolling is preferably 1100°C or higher.

次いで1回あるいは中間焼鈍を含む2回以上の冷間圧延
を行ない成品厚とした後、780〜8502・・℃の湿
水素雰囲気中で1次再結晶を兼ねた脱炭焼4鈍を8〜1
5分程度行ない、含水素雰囲気で1200°C程度の最
終仕上焼鈍を行ない製品とするわけである。
Next, after performing cold rolling once or twice or more including intermediate annealing to obtain a finished product thickness, decarburization annealing which also serves as primary recrystallization in a wet hydrogen atmosphere at 780 to 8502...°C is performed for 8 to 1
The final annealing is performed for about 5 minutes at about 1200°C in a hydrogen-containing atmosphere to produce the product.

以下実施例について述べる。Examples will be described below.

0:0.042%+Si:8.a+s%r In : 
0.0.72チ及び8e : 0.020 %を含有す
る20011111厚の連鋳スラブ、及びa : 0,
045チ+ Si* a、a 2%。
0:0.042%+Si:8. a+s%r In:
20011111 thick continuous cast slab containing 0.0.72 cm and 8e: 0.020%, and a: 0,
045 Chi + Si* a, a 2%.

In : 0,070%及び86 : 0,019%を
含有する中央部厚み200鴎、両側端部幅方向長さ゛8
0關1・・にわたって240m厚の片面凹形連鋳スラブ
を各々鋳造し、該各スラブを1380℃で8時間加熱後
、粗圧延、仕上圧延により2.5簾厚のホットコイルと
した。また同一チャージのスラブを1880℃で2時間
加熱後、同様にして2.5都厚のホットコイルとした。
Containing In: 0,070% and 86: 0,019%, the center part has a thickness of 200 mm and both ends have a widthwise length of 8.
Continuously cast single-sided concave slabs with a thickness of 240 m over 0.1 mm were each cast, and each slab was heated at 1380° C. for 8 hours, then rough rolled and finished rolled to form a hot coil with a thickness of 2.5 blinds. Further, a slab of the same charge was heated at 1880° C. for 2 hours and then made into a hot coil having a thickness of 2.5 mm in the same manner.

これらのホットコイルは約70%の1次冷延を行ない、
950℃で8分間の中間焼鈍後約60チの2次冷延にて
0.8鴎厚の成品厚とした。
These hot coils undergo approximately 70% primary cold rolling,
After intermediate annealing at 950° C. for 8 minutes, the product was subjected to secondary cold rolling of about 60 inches to give a product thickness of 0.8 mm.

その後820℃の湿水素中にて8分間の脱炭焼−・、、
、鈍を施し、MgOを主成分とする焼鈍分離剤を塗布し
、12’00°Cで最終仕上焼鈍を行なった。
Then decarburized for 8 minutes in wet hydrogen at 820℃...
, annealing was performed, an annealing separator containing MgO as a main component was applied, and final annealing was performed at 12'00°C.

ホットコイルの耳荒れ状況と成品の磁気特性を表1に示
す。
Table 1 shows the rough edges of the hot coil and the magnetic properties of the finished product.

表1 実験条件と耳荒れ程度 (発明の効果〕 この発明によれば、方向性けい素鋼板のホットコイル段
階における耳荒れを著しく軽減することができる上にス
ラブ加熱の在炉時間の著しい短縮が磁気特性の劣化なし
に可能となる。
Table 1 Experimental conditions and degree of edge roughness (effects of the invention) According to the present invention, it is possible to significantly reduce edge roughness in the hot coil stage of grain-oriented silicon steel sheets, and also to significantly shorten the in-furnace time for slab heating. This is possible without deterioration of magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はモールドの鋳込空間を示す断面図、第2図はこ
の発明の適用によるスラブの断面形、状の例と従来例の
比較図であり、 第8図は耳荒れ防止の効果グラフである。 特許出願人  川崎製鉄株式会社 第1図 第24図 第3図 イ胃り面Sさ/中メこΔ?さ
Fig. 1 is a sectional view showing the casting space of the mold, Fig. 2 is a comparison diagram of an example of the cross-sectional shape and shape of a slab according to the present invention and a conventional example, and Fig. 8 is a graph of the effect of preventing rough edges. It is. Patent Applicant: Kawasaki Steel Corporation Figure 1 Figure 24 Figure 3 Stomach face S/Central mako Δ? difference

Claims (1)

【特許請求の範囲】 1、含けい素溶鋼を連続鋳造して得られたスラブを再加
熱後、熱間粗圧延し、さらに熱間仕上圧延して熱延板と
し、該熱延板に1回または中間焼鈍をはさむ2回の冷間
圧延を施して最終板厚としたのち、脱炭、1次再結晶焼
鈍を施し、ついで鋼板表面にMgOを主成分とする焼鈍
分離剤を塗布してから仕上焼鈍を施す一連の工程よりな
る方向性けい素鋼板の製造方法において、 連続鋳造用モールドの鋳込空間の形状を、 スラブの幅方向両端部の厚みが中央の厚みよりも厚い異
形断面に適合させて上記異形断面の凹形スラブを鋳造し
、該スラブ両端部における圧下率を中央部より大きくと
つて熱間粗圧延を施すことを特徴とする方向性けい素鋼
板の製造方法。 2、両端部の厚みが中央部の厚みより5〜30%厚く、
この厚い部分のスラブ幅方向長さがスラブ側端面より少
なくとも40mm以上である1記載の方法。
[Claims] 1. A slab obtained by continuous casting of silicon-containing molten steel is reheated, hot-rough rolled, and then hot finish-rolled to form a hot-rolled plate. After cold rolling twice or intermediate annealing to reach the final thickness, decarburization and primary recrystallization annealing are performed, and then an annealing separator mainly composed of MgO is applied to the steel sheet surface. In the manufacturing method of grain-oriented silicon steel sheet, which consists of a series of steps from start to finish annealing, the casting space of the continuous casting mold is shaped into an irregular cross-section in which the thickness at both ends of the slab in the width direction is thicker than the thickness at the center. A method for producing a grain-oriented silicon steel sheet, comprising: casting a concave slab having the irregular cross section as described above, and subjecting the slab to hot rough rolling with a rolling reduction ratio greater at both ends than at the center. 2. The thickness of both ends is 5-30% thicker than the thickness of the center,
1. The method according to 1, wherein the length of the thick portion in the slab width direction is at least 40 mm or more from the side end surface of the slab.
JP12210784A 1984-06-15 1984-06-15 Manufacture of grain-oriented silicon steel sheet Pending JPS613837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12210784A JPS613837A (en) 1984-06-15 1984-06-15 Manufacture of grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12210784A JPS613837A (en) 1984-06-15 1984-06-15 Manufacture of grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS613837A true JPS613837A (en) 1986-01-09

Family

ID=14827810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12210784A Pending JPS613837A (en) 1984-06-15 1984-06-15 Manufacture of grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS613837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250112A1 (en) 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250112A1 (en) 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
KR20240004678A (en) 2021-05-28 2024-01-11 제이에프이 스틸 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP5712491B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6160896B2 (en)
JP4203238B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH07116507B2 (en) Non-oriented electrical steel sheet manufacturing method
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JPS631371B2 (en)
JPH10130729A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP4279993B2 (en) Method for producing unidirectional silicon steel sheet
KR100721823B1 (en) A hot rolling method for grain-oriented electrical steel sheet
JPS613837A (en) Manufacture of grain-oriented silicon steel sheet
JP4753558B2 (en) Method for rolling hot rolled steel strip for grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet
JPH036842B2 (en)
JP3285521B2 (en) Hot rolling method of slab for grain-oriented electrical steel sheet
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP7221480B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPH08157963A (en) Production of grain oriented silicon steel sheet
JPH04304315A (en) Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH0249371B2 (en)
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JPH0257125B2 (en)
JPS643564B2 (en)
JPS6256205B2 (en)