JPH10130729A - Production of grain-oriented silicon steel sheet having extremely low core loss - Google Patents

Production of grain-oriented silicon steel sheet having extremely low core loss

Info

Publication number
JPH10130729A
JPH10130729A JP8290885A JP29088596A JPH10130729A JP H10130729 A JPH10130729 A JP H10130729A JP 8290885 A JP8290885 A JP 8290885A JP 29088596 A JP29088596 A JP 29088596A JP H10130729 A JPH10130729 A JP H10130729A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
annealing
electrical steel
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8290885A
Other languages
Japanese (ja)
Other versions
JP3392664B2 (en
Inventor
Kenji Kosuge
健司 小菅
Kenichi Nishiwaki
健一 西脇
Hiroaki Sato
浩明 佐藤
Nobuo Tachibana
伸夫 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29088596A priority Critical patent/JP3392664B2/en
Publication of JPH10130729A publication Critical patent/JPH10130729A/en
Application granted granted Critical
Publication of JP3392664B2 publication Critical patent/JP3392664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain-oriented silicon steel sheet having extremely low core loss characteristics on an industrially stable scale by stably forming secondarily recrystallized grains having <=10mm grain size. SOLUTION: This method for producing a grain-oriented silicon steel sheet is the one in which a hot strip contg., as fundamental components, <=0.1% C, 2.5 to 4.0% Si, 0.02 to 0.3% Mn, one or two kinds of S and Se by 0.001 to 0.04% in total, 0.01 to 0.065% Sol.Al and 0.003 to 0.02% N, and the balance Fe with inevitable impurities is subjected to hot strip annealing and is subjected to cold rolling for one or >= two times including process annealing so as to regulate the final cold draft to 80 to 90%, decarburizing annealing and final finish annealing. In this case, the content of AlN in the hot strip is regulated to <=25ppm as AlN, and furthermore, the strip after the final cold rolling is subjected to rapid heating treatment of executing rapid cooling to the temp. range of >=700 deg.C at a heating rate of >=80 deg.C/sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2.5〜4.0%
のSiを含み、結晶粒の{110}<001>方位の集
積度、すなわち磁束密度が高く、かつ結晶粒径が従来に
なく微細なことにより、極めて低い鉄損をもつ一方向性
電磁鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION
Of a grain oriented {110} <001> orientation of crystal grains, that is, a magnetic flux density is high, and a crystal grain size is smaller than ever before. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】一般に、一方向性電磁鋼板の磁気特性は
鉄損特性と励磁特性の両方で評価される。励磁特性を高
めることは設計磁束密度を高める機器の小型化に有効で
ある。一方、鉄損特性を少なくすることは、電気機器と
して使用する際、熱エネルギーとして失われるものを少
なくし、消費電力を節約できる点で有効である。さら
に、製品の結晶粒の<100>軸を圧延方向に揃えるこ
とは、磁化特性を高め、鉄損特性も低くすることがで
き、近年特にこの面で多くの研究が重ねられ、様々な製
造技術が開発された。
2. Description of the Related Art Generally, the magnetic properties of a grain-oriented electrical steel sheet are evaluated based on both iron loss properties and excitation properties. Increasing the excitation characteristics is effective in reducing the size of equipment that increases the design magnetic flux density. On the other hand, reducing the iron loss characteristics is effective in reducing the amount of heat energy lost when using it as an electric device, thereby saving power consumption. Furthermore, aligning the <100> axis of the crystal grains of the product in the rolling direction can enhance the magnetic properties and lower the iron loss properties. In recent years, much research has been carried out especially on this aspect, and various manufacturing technologies have been developed. Was developed.

【0003】この結果、現在工業生産されている代表的
な一方向性電磁鋼板の製造技術として、次のような3つ
の代表的な技術を挙げることができる。第一の技術とし
て、特公昭30−3651号公報に開示された、MnS
をインヒビターとして機能させる、2回冷延工程による
製造技術がある。この製造方法は、二次再結晶の粒径が
小さいので、比較的鉄損は良好であるが、高い磁束密度
が得られないという問題があった。
[0003] As a result, the following three typical techniques can be cited as typical techniques for producing a grain-oriented electrical steel sheet that are currently industrially produced. As a first technique, MnS disclosed in Japanese Patent Publication No. Sho 30-3651 is disclosed.
There is a production technique using a two-fold cold rolling process in which is made to function as an inhibitor. This manufacturing method has a relatively good iron loss due to a small particle size of the secondary recrystallization, but has a problem that a high magnetic flux density cannot be obtained.

【0004】これに対して、高い磁束密度を得るため
に、第二の技術として、特公昭40−15644号公報
が開示された技術がある。これは、AlN+MnSをイ
ンヒビターとして機能させ、最終冷延工程における圧延
率が80%を超える強圧下とする製造技術である。この
方法により二次再結晶粒の{110}<001>方位の
集積度が高く、B8 が1.870(T)以上の高磁束密
度を有する方向性電磁鋼板が得られる。
On the other hand, as a second technique for obtaining a high magnetic flux density, there is a technique disclosed in Japanese Patent Publication No. 40-15644. This is a manufacturing technique in which AlN + MnS is made to function as an inhibitor and the rolling reduction in the final cold rolling step is under high pressure exceeding 80%. In this way the secondary recrystallized grains of {110} <001> orientation of the high degree of integration oriented electrical steel sheet B 8 has a high magnetic flux density of 1.870 (T) or more is obtained.

【0005】さらに第三の技術として、特公昭51−1
3469号公報に開示された、MnSまたはMnSe+
Sbをインヒビターとして機能させる、2回冷延工程に
よる製造技術が開発された。
A third technique is disclosed in Japanese Patent Publication No.
No. 3,469, MnS or MnSe +
A manufacturing technique by a two-fold cold rolling process that allows Sb to function as an inhibitor has been developed.

【0006】さて、一般に鉄損は大きく分けて履歴損と
渦電流損の二つからなる。履歴損に影響を与える物理的
な要因として、上述の結晶方位の他に材料の純度や内部
歪みがある。また渦電流損に影響を与える物理的な要因
として、鋼板の電気抵抗(Si等の成分量)、板厚、磁
区の大きさ(結晶粒度)や鋼板に及ぼす張力などがあ
る。通常の方向性電磁鋼板では渦電流損が全鉄損の3/
4以上を占めるため履歴損より渦電流損を下げる方が全
鉄損を下げる上でより効果的である。
[0006] In general, iron loss is roughly divided into two types: hysteresis loss and eddy current loss. Physical factors that affect the hysteresis loss include the purity of the material and internal strain in addition to the above-described crystal orientation. Physical factors affecting the eddy current loss include the electrical resistance (the amount of components such as Si) of the steel sheet, the sheet thickness, the size of magnetic domains (crystal grain size), and the tension applied to the steel sheet. In normal grain-oriented electrical steel sheets, the eddy current loss is 3/3 of the total iron loss.
Since it occupies 4 or more, it is more effective to reduce the eddy current loss than the hysteresis loss in reducing the total iron loss.

【0007】このため、上記第二の技術による製造方法
では、二次結晶粒の{110}<001>方位の集積度
が高く、B8 が1.870(T)以上の高磁束密度を有
する方向性電磁鋼板が得られたとしても、二次再結晶粒
径が10mmオーダと大きくなるため、渦電流損に影響す
る磁区幅が大きかった。これを改善するために、特公昭
57−2252号公報に開示されている鋼板にレーザー
処理を施す方法、さらに特公昭58−2569号公報に
開示されている鋼板に機械的な歪みを加える方法など、
磁区を細分化する様々な方法が開示されている。
Therefore, in the manufacturing method according to the second technique, the degree of integration of the secondary crystal grains in the {110} <001> direction is high, and B 8 has a high magnetic flux density of 1.870 (T) or more. Even when a grain-oriented electrical steel sheet was obtained, the secondary recrystallized grain size was as large as 10 mm, so that the magnetic domain width affecting eddy current loss was large. In order to improve this, a method of performing laser treatment on a steel sheet disclosed in Japanese Patent Publication No. 57-2252, a method of applying a mechanical strain to a steel sheet disclosed in Japanese Patent Publication No. 58-2569, etc. ,
Various methods of subdividing magnetic domains have been disclosed.

【0008】そこで、微細な二次再結晶粒径を持つこと
により、従来よりも低い鉄損を有する一方向性電磁鋼板
の製造方法を提供するものが開示されている。例えば、
特公平6−51887号には、冷間圧延された鋼板に1
00℃/秒以上の加熱速度で675℃以上の温度へ超急
速焼きなまし処理を施し、該ストリップを脱炭素処理
し、最終高温焼きなまし処理を施して二次成長を行い、
それによって前記ストリップが低減した寸法の二次粒子
および応力除去焼きなまし処理後も有意の変化なしに持
続する改善された鉄損をもつことを特徴とする方法が開
示されている。
Thus, there is disclosed a method for producing a grain-oriented electrical steel sheet having a fine secondary recrystallized grain size and having a lower iron loss than the conventional one. For example,
Japanese Patent Publication No. Hei 6-51887 states that cold rolled steel sheet
Performing ultra-rapid annealing at a heating rate of at least 00 ° C./sec to a temperature of at least 675 ° C., decarbonizing the strip, subjecting the strip to a final high-temperature annealing to perform secondary growth,
A method is disclosed wherein the strip has reduced size secondary particles and improved core loss that persists without significant change after stress relief annealing.

【0009】しかし、確かにある程度小さな二次再結晶
粒は得られるのではあるが、二次再結晶が非常に不安定
になり、細粒が混入することにより二次再結晶率が低下
し、その結果磁束密度の減少、鉄損の劣化が起こりうる
場合があることが判明した。
However, although secondary recrystallized grains can be obtained to a certain extent, the secondary recrystallization becomes very unstable, and the secondary recrystallization rate decreases due to the inclusion of fine grains. As a result, it has been found that the magnetic flux density may decrease and the iron loss may deteriorate.

【0010】[0010]

【発明が解決しようとする課題】この様な技術の状況の
なかで本発明は、微細な粒径を有する二次再結晶が不安
定となる点を解消し、その二次再結晶率を高めることに
より、高磁束密度でかつ低鉄損を得るための一方向性電
磁鋼板の製造方法を提供すること目的とする。
SUMMARY OF THE INVENTION In such a state of the art, the present invention eliminates the instability of secondary recrystallization having a fine grain size and increases the secondary recrystallization rate. Accordingly, an object of the present invention is to provide a method for manufacturing a grain-oriented electrical steel sheet for obtaining a high magnetic flux density and a low iron loss.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく検討を重ねた結果、(1)重量で、C:
0.10%以下、Si:2.5〜4.0%、Mn:0.
02〜0.30%、SおよびSeのうちから選んだ1種
又は2種の合計:0.001〜0.040%、酸可溶性
Al:0.010〜0.065%、N:0.0030〜
0.0200%を基本成分とし、残余はFeおよび不可
避的不純物よりなるホットストリップにホットストリッ
プ焼鈍を施し、最終冷延の圧下率を80〜90%とする
1回乃至中間焼鈍を含む2回以上の冷間圧延、脱炭焼
鈍、最終仕上焼鈍を含む工程によって一方向性電磁鋼板
を製造する方法において、上記ホットストリップ中のA
lN量をN as AlNにして25ppm 以下に制御す
るとともに、上記最終冷延後のストリップを700℃以
上の温度域へ80℃/秒以上の加熱速度で急速加熱する
急速加熱処理を施すことにより、微細な結晶粒径をもつ
二次再結晶を安定化させ、極めて低い鉄損を持つ一方向
性電磁鋼板が得られることを見い出した。さらに、以下
の処理を施すことにより、より改善された鉄損を持つ一
方向性電磁鋼板が得られることを見い出した。すなわ
ち、(2)上記ホットストリップ焼鈍の冷却過程で60
0〜200℃の間を100℃/秒以下で冷却すること。
(3)上記の冷間圧延する工程で、少なくとも一回以上
の途中板厚段階においてストリップに100℃以上の温
度範囲で1分以上の時間保持する熱処理を与えること。
(4)上記の急速加熱処理が脱炭焼鈍の昇温過程として
行われること.これにより、工程数を少なくすることが
でき、より安価に一方向性電磁鋼板を製造することが可
能となる。さらに、(5)上記夫々の、或いは組み合わ
せた方法により得られた一方向性電磁鋼板、或いはさら
に絶縁皮膜を塗布した一方向性電磁鋼板に、磁区を細分
化するための処理を施すことにより、さらに改善された
極めて低い鉄損を持つ一方向性電磁鋼板が得られる。
Means for Solving the Problems The inventors of the present invention have studied to achieve the above object, and as a result, (1) by weight, C:
0.10% or less, Si: 2.5 to 4.0%, Mn: 0.
02 to 0.30%, total of one or two selected from S and Se: 0.001 to 0.040%, acid-soluble Al: 0.010 to 0.065%, N: 0.0030 ~
A hot strip consisting of 0.0200% as a basic component and a balance of Fe and unavoidable impurities is subjected to hot strip annealing, and a final cold rolling reduction of 80 to 90% is performed once to twice or more including intermediate annealing. A method of manufacturing a grain-oriented electrical steel sheet by a process including cold rolling, decarburizing annealing, and final finish annealing of A in the hot strip.
By controlling the amount of 1N to Nas AlN to 25 ppm or less and performing a rapid heating treatment of rapidly heating the strip after the final cold rolling to a temperature range of 700 ° C or more at a heating rate of 80 ° C / sec or more, It has been found that secondary recrystallization having a fine crystal grain size is stabilized, and a grain-oriented electrical steel sheet having extremely low iron loss can be obtained. Furthermore, it has been found that by performing the following treatment, a grain-oriented electrical steel sheet having improved iron loss can be obtained. That is, (2) the cooling process of the hot strip annealing is 60
Cooling between 0 and 200 ° C at 100 ° C / sec or less.
(3) In the cold rolling step, a heat treatment is performed to hold the strip at a temperature range of 100 ° C. or more for 1 minute or more in at least one or more intermediate thickness steps.
(4) The above-mentioned rapid heating treatment is performed as a heating process of decarburizing annealing. Thereby, the number of steps can be reduced, and it becomes possible to manufacture a grain-oriented electrical steel sheet at lower cost. Further, (5) a treatment for subdividing magnetic domains is performed on the unidirectional magnetic steel sheet obtained by each of the above or the combined methods, or on the unidirectional magnetic steel sheet further coated with an insulating film, Further, an improved grain-oriented electrical steel sheet having an extremely low iron loss is obtained.

【0012】[0012]

【発明の実施の形態】以下に本発明をさらに詳細に説明
する。一方向性電磁鋼板は、その製造工程の最終焼鈍中
に二次再結晶を充分に起こさせ、所謂ゴス集合組織を得
ることにより製造できる。このゴス集合組織を得るため
には、一次再結晶粒の成長粗大化を抑制し、{110}
<001>方位の再結晶粒のみを或る温度範囲で選択的
に成長させる。すなわち、二次再結晶させる様な素地を
作ってやる事が必要である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The grain-oriented electrical steel sheet can be manufactured by sufficiently causing secondary recrystallization during the final annealing in the manufacturing process to obtain a so-called Goss texture. In order to obtain this Goss texture, coarsening of primary recrystallized grains is suppressed, and {110}
Only the <001> oriented recrystallized grains are selectively grown in a certain temperature range. That is, it is necessary to make a base material for secondary recrystallization.

【0013】しかし、二次再結晶が不安定になると上記
{110}<001>方位以外の0.1mmオーダの細粒
が成長し、二次再結晶の選択的な粒成長を妨げる。この
細粒の混入している面積部分を除いた率を二次再結晶率
として定義する。本発明では、この二次再結晶率を二次
再結晶の安定性の指標として用いる。つまり、二次再結
晶率が100%のときには、非常に二次再結晶が安定で
あることを示す。
However, when the secondary recrystallization becomes unstable, fine grains of the order of 0.1 mm other than the {110} <001> orientation grow, which hinders the selective grain growth of the secondary recrystallization. The rate excluding the area where the fine particles are mixed is defined as the secondary recrystallization rate. In the present invention, this secondary recrystallization rate is used as an index of the stability of the secondary recrystallization. That is, when the secondary recrystallization rate is 100%, it indicates that the secondary recrystallization is very stable.

【0014】急速加熱の効果としては、特公平6−51
887号公報に述べられているように、急速加熱により
後の集合組織が、通常加熱と比較して一次再結晶後の
{110}<001>方位粒が増加し、これが二次再結
晶の核となり、ある程度小さな二次再結晶粒が得られ
る。さらに、上記公報には、該公報記載の製造方法にお
いて達成させるメカニズムとして、最終脱炭素焼きなま
し工程前の一次再結晶組成に変化と高温焼きなまし処理
工程前の一次再結晶組織の変化との二つの変化を包含す
る、と述べられている。しかし、この製造方法のみでは
一次再結晶組織の制御が不十分であり、特に二次再結晶
において必要なインヒビターを最適な分散状態(数10
0オングストロームの粒径)にする必要があることが判
った。
The effect of the rapid heating is described in JP-B-6-51.
As described in Japanese Patent No. 887, the texture after rapid heating increases the {110} <001> orientation grains after primary recrystallization as compared with normal heating, which is the core of secondary recrystallization. , And secondary recrystallized grains to a certain extent are obtained. Furthermore, the above-mentioned publication discloses two changes, a change in the primary recrystallization composition before the final decarbonizing annealing step and a change in the primary recrystallization structure before the high-temperature annealing treatment step, as a mechanism achieved in the manufacturing method described in the publication. It is stated to include. However, the control of the primary recrystallized structure is insufficient with this production method alone. In particular, the inhibitor required for the secondary recrystallization is optimally dispersed in the optimal dispersion state (Equation 10).
0 Å).

【0015】この二次再結晶を安定させるため、本発明
者らはホットストリップでのAlNの析出状態に着眼し
た。ホットストリップで析出するAlNは非常に粗大な
もので、後の二次再結晶に必要とする最適な分散状態の
インヒビターがホットストリップ焼鈍後に得られない。
そこで、ホットストリップでのAlN量を規制すること
により、最適なAlNの分散状態が後の工程(ホットス
トリップ焼鈍)で得られ、急速加熱による{110}<
001>方位粒の増加などの集合組織変化と旨くバラン
スが取れることを考えた。ホットストリップでのAlN
析出を抑制する方法としては熱延巻取り温度を下げるこ
と、成分中のAl量を下げることなどが挙げられる。
In order to stabilize the secondary recrystallization, the present inventors have focused on the state of AlN deposition in a hot strip. AlN deposited by hot strip is very coarse, and an inhibitor in an optimal dispersion state required for subsequent secondary recrystallization cannot be obtained after hot strip annealing.
Therefore, by controlling the amount of AlN in the hot strip, an optimal AlN dispersion state can be obtained in a subsequent step (hot strip annealing), and {110} <
001> It was considered that a good balance can be obtained with a change in texture such as an increase in the orientation grains. AlN in hot strip
Examples of a method for suppressing the precipitation include lowering the hot-rolling winding temperature and lowering the amount of Al in the components.

【0016】図1にホットストリップのNasAlNと
一次再結晶の昇温速度による二次再結晶率の関係を示
す。急速加熱になるとホットストリップのAlNが従来
加熱に比べて低くする必要があることが判る。
FIG. 1 shows the relationship between NasAlN of a hot strip and the rate of secondary recrystallization depending on the rate of temperature rise of primary recrystallization. It can be seen that rapid heating requires that the AlN of the hot strip be lower than that of conventional heating.

【0017】さらに、図2にホットストリップのNas
AlNと一次再結晶の昇温速度による磁気特性の関係を
示す。急速加熱になるとホットストリップのAlNが従
来加熱に比べて低くする必要があることが伺える。
FIG. 2 shows the hot strip Nas.
The relationship between AlN and the magnetic characteristics depending on the temperature rise rate of primary recrystallization is shown. It can be seen that when the heating is rapid, the AlN of the hot strip needs to be lower than that of the conventional heating.

【0018】また、本発明者らは、冷間圧延前の固溶
C,N量を減少させることにより、圧延中の転位運動の
変形機構を変化させ{111}方位粒を増加させること
を考えた。そこで、冷間圧延前の工程であるホットスト
リップ焼鈍の冷却に着眼して、その条件の最適化を行う
ため、種々の検討を行った。その結果、ホットストリッ
プ焼鈍の冷却過程で600〜200℃の問を100℃/
秒以下で冷却すれば、10mm以下の結晶粒径を持った微
細な二次再結晶が安定化することがわかった。
Further, the present inventors consider that reducing the amount of solute C and N before cold rolling changes the deformation mechanism of dislocation motion during rolling and increases {111} orientation grains. Was. Therefore, various studies were conducted to optimize the conditions by focusing on the cooling of hot strip annealing, which is a step before cold rolling. As a result, during the cooling process of the hot strip annealing, the temperature of 600 to 200 ° C was changed to 100 ° C /
It was found that when cooled in less than a second, fine secondary recrystallization having a crystal grain size of 10 mm or less was stabilized.

【0019】また、本発明者らは、上記方法に加え鉄損
特性を改善させる場合には、冷間圧延条件も重要である
ことを見出した。すなわち、冷間圧延工程の途中板厚段
階で所定の温度で熱処理することにより、侵入型固溶元
素が冷延により形成された転位に固着され、変形機構に
変化を及ぼし冷延集合組織を変え、{110}<001
>方位が板面内方向に2゜に近づいた数mm以下の微細な
二次再結晶粒が得られることを見いだした。これにより
後の鋼板表面に皮膜を付与した際の鉄損値の向上代が大
きく、低鉄損を得ることが可能となる。Nozawaらによる
と(IEEE.Trans-Mag.Vol.Mag-14,No.4(1978)PP.25
2)、二次再結晶方位が板面内方向に2゜のときに鉄損
低減効果が一番大きいとしている。本発明においても同
様な効果が得られているものと考える。
Further, the present inventors have found that, in addition to the above-mentioned method, when improving the iron loss characteristics, the cold rolling conditions are also important. That is, by performing a heat treatment at a predetermined temperature in the thickness stage during the cold rolling process, the interstitial solid solution elements are fixed to the dislocations formed by the cold rolling, which changes the deformation mechanism and changes the cold rolled texture. , {110} <001
> It has been found that fine secondary recrystallized grains of several mm or less whose orientation approaches 2 ° in the in-plane direction can be obtained. As a result, the amount of improvement in the iron loss value when a film is applied to the surface of the steel sheet later is large, and a low iron loss can be obtained. According to Nozawa et al. (IEEE.Trans-Mag.Vol.Mag-14, No.4 (1978) PP.25
2), the iron loss reduction effect is greatest when the secondary recrystallization orientation is 2 ° in the in-plane direction of the sheet. It is considered that a similar effect is obtained in the present invention.

【0020】これにより、二次再結晶した鋼板表面のフ
ォルステライトや、絶縁皮膜などにより皮膜張力を付与
することにより、大きな鉄損の向上率があり、最終的に
改善された極めて低い鉄損値を得ることができる。
By applying a film tension with forsterite or an insulating film on the surface of the steel sheet which has been recrystallized secondarily, there is a large iron loss improvement rate, and an extremely low iron loss value finally improved. Can be obtained.

【0021】次に本発明において、鋼組成および製造条
件を前記のように限定した理由を、詳細に説明する。ま
ず本発明鋼成分の限定理由は下記の通りである。
Next, the reason why the steel composition and the production conditions are limited as described above in the present invention will be described in detail. First, the reasons for limiting the steel composition of the present invention are as follows.

【0022】Cについての上限0.10%は、これ以上
多くなると脱炭所要時間が長くなり、経済的に不利とな
るので限定した。Siは鉄損を良くするために下限を
2.5%とするが、多すぎると冷間圧延の際に割れ易く
加工が困難となるので上限を4.0%とする。
The upper limit of 0.10% for C is limited because if it exceeds this limit, the time required for decarburization becomes longer, which is economically disadvantageous. The lower limit of Si is set to 2.5% in order to improve iron loss, but if it is too large, it is likely to be broken during cold rolling and processing becomes difficult, so the upper limit is set to 4.0%.

【0023】さらに、一方向性電磁鋼板を製造するため
に、通常のインヒビター成分として以下の成分元素を添
加する。Mn,SおよびSeは、インヒビターとして硫
化マンガンおよびMnSe形成により補助的インヒビタ
ーとして作用させるために、Mn:0.02〜0.30
%、SおよびSeのうちから選んだ1種又は2種の合
計:0.001〜0.040%が必要である。Mnは硫
化マンガン、MnSeの適正な分散状態を得るため、
0.02〜0.30%に限定した。SおよびSeのうち
から選んだ1種又は2種の合計は、硫化マンガン、Mn
Seの適正な分散状態を得るため、0.001〜0.0
40%に限定した。
Further, in order to produce a grain-oriented electrical steel sheet, the following component elements are added as ordinary inhibitor components. Mn, S and Se are manganese sulfide as an inhibitor and Mn: 0.02-0.30 in order to act as an auxiliary inhibitor by forming MnSe.
%, One or two selected from S and Se: 0.001 to 0.040% is required. Mn is manganese sulfide, in order to obtain an appropriate dispersion state of MnSe,
It was limited to 0.02 to 0.30%. One or two kinds selected from S and Se are manganese sulfide, Mn.
In order to obtain a proper dispersion state of Se, 0.001 to 0.0
Limited to 40%.

【0024】さらに、インヒビターとして窒化アルミニ
ウムを利用するため、酸可溶性AlとNを添加する。酸
可溶性Alは窒化アルミニウムの適正な分散状態を得る
ため0.010〜0.065%に限定した。Nも、窒化
アルミニウムの適正な分散状態を得るため0.0030
〜0.0200%に限定した。
Further, in order to utilize aluminum nitride as an inhibitor, acid-soluble Al and N are added. Acid-soluble Al is limited to 0.010 to 0.065% in order to obtain an appropriate dispersion state of aluminum nitride. N is also 0.0030 in order to obtain a proper dispersion state of aluminum nitride.
Limited to ~ 0.0200%.

【0025】その他、上記の硫化マンガン、MnSe、
窒化アルミニウム等のインヒビターをさらに微細分散に
析出させるため、重量でSb,Sn,Cu,Biおよび
Moから選ばれる1種又は2種以上を0.003〜0.
50%添加しても良い。上記範囲外では、適正な析出物
の分散状態が得られない。
Other than the above, manganese sulfide, MnSe,
In order to precipitate an inhibitor such as aluminum nitride in a finer dispersion, one or more selected from Sb, Sn, Cu, Bi, and Mo are used in an amount of 0.003 to 0.1% by weight.
50% may be added. Outside the above range, a proper dispersion state of the precipitate cannot be obtained.

【0026】次に、上記の溶鋼を通常の鋳塊鋳造法また
は連続鋳造法、熱間圧延によりホットストリップを得
る。なお、このホットストリップを得る際、ストリップ
鋳造法も本発明に適用することが可能である。このホッ
トストリップを得る際、AlN量を抑制し、のちのホッ
トストリップ焼鈍において有効なインヒビターを得る必
要がある。この時、NasAlNにして25ppm 以下に
抑える必要がある。上限値を25ppm としたのは、これ
超えると熱延で析出するAlNは粗大に成りやすいの
で、有効なインヒビターが得られないからである。この
AlNを抑制する方策としては、熱延での巻取り温度を
低めに狙って制御する方法や、仕上圧延終了から巻取に
かけての冷却速度を出来るだけ速く制御する方法などが
ある。また、この時の硫化物系についてはSasMn
S,Cu2 Sにして100ppm 以上の析出量を得ること
が望ましい。
Next, a hot strip is obtained from the molten steel by ordinary ingot casting or continuous casting, and hot rolling. When obtaining the hot strip, a strip casting method can be applied to the present invention. When obtaining this hot strip, it is necessary to suppress the amount of AlN and obtain an inhibitor that is effective in the subsequent hot strip annealing. At this time, it is necessary to keep NaAlN to 25 ppm or less. The reason why the upper limit is set to 25 ppm is that if it exceeds this value, an effective inhibitor cannot be obtained since AlN precipitated by hot rolling tends to be coarse. As a measure for suppressing this AlN, there is a method of controlling the winding temperature in hot rolling to be lower, or a method of controlling the cooling rate from the end of finish rolling to winding as fast as possible. At this time, for the sulfide system, SasMn
It is desirable to obtain a precipitation amount of 100 ppm or more in S and Cu 2 S.

【0027】さらに、インヒビターとしてAlN等の窒
化物を析出するために950〜1200℃で30秒〜3
0分のホットストリップ焼鈍を行う。本焼鈍の冷却過程
では600〜200℃の間を100℃/秒以下の冷却速
度で冷却することが望ましい。冷却温度範囲の上限60
0℃、下限200℃は、これ以外の温度域では炭化物の
生成が起こらないので限定した。また冷却速度の上限1
00℃/秒は、これ以上では固溶C,N量が過剰にな
り、のちの二次再結晶が不安定になるのでこのように限
定した。
Further, in order to precipitate a nitride such as AlN as an inhibitor, the temperature is set at 950 to 1200 ° C. for 30 seconds to 3 hours.
Perform 0 minute hot strip annealing. In the cooling process of the main annealing, it is desirable to cool between 600 and 200 ° C. at a cooling rate of 100 ° C./sec or less. Upper limit of cooling temperature range 60
The lower limit of 0 ° C. and the lower limit of 200 ° C. were limited because carbide formation did not occur in other temperature ranges. In addition, upper limit of cooling rate 1
At a rate of 00 ° C./sec, the amount of solid solution C and N becomes excessive at a temperature higher than that, and the subsequent secondary recrystallization becomes unstable.

【0028】次に、1回乃至中間焼鈍を含む2回以上の
冷間圧延により最終製品厚のストリップを得る。このと
きの最終圧下率は高いゴス集積度をもつ製品を得るた
め、圧下率80〜95%が必要となる。下限を80%と
したのは、これ未満では必要なゴス核が得られないため
であり、また、上限95%はこれ超えると二次再結晶が
不安定になるからである。
Next, a strip having a final product thickness is obtained by performing cold rolling once or twice or more including intermediate annealing. At this time, a final reduction ratio of 80 to 95% is required to obtain a product having a high Goss integration degree. The lower limit is set to 80% because a necessary Goss nucleus cannot be obtained if the lower limit is less than 80%, and secondary recrystallization becomes unstable if the upper limit is more than 95%.

【0029】この時の冷間圧延方法として、磁気特性を
一層向上させるため熱処理を与えることも可能である。
冷間圧延中に複数回のパスにより各板厚段階を経て最終
板厚となるが、その少なくとも、一回以上の途中板厚段
階においてストリップに100℃以上の温度範囲で1分
以上の時間保持する熱効果を与えることが望ましい。温
度の下限100℃、保持時間の下限1分はこれ未満では
固溶C等が転位に固着されず、後の一次再結晶集合組織
を変化させ、{110}<001>が圧延方向に揃った
微細な二次再結晶が十分に発達されにくいので限定し
た。なお、これらの冷間圧延は従来のリバース圧延(例
えばゼンジミアー圧延機による圧延)の他に、一方向圧
延(タンデム圧延)による方法でも良い。
At this time, as a cold rolling method, a heat treatment can be applied to further improve the magnetic properties.
During the cold rolling, the final thickness is obtained through each thickness step by a plurality of passes, and the strip is held in the temperature range of 100 ° C. or more for at least one time in at least one or more intermediate thickness steps. It is desirable to provide a thermal effect. When the lower limit of the temperature is 100 ° C. and the lower limit of the holding time is 1 minute or less, solid solution C or the like is not fixed to dislocations, changes the subsequent primary recrystallization texture, and {110} <001> is aligned in the rolling direction. It was limited because fine secondary recrystallization was not sufficiently developed. The cold rolling may be performed by one-way rolling (tandem rolling) in addition to the conventional reverse rolling (for example, rolling by a Sendzimir rolling mill).

【0030】最終製品厚まで圧延されたストリップは、
700℃以上の温度域へ80℃/秒以上の加熱速度で急
速加熱する急速加熱処理を実施する。この際の加熱速度
の下限を80℃/秒以上としたのは、これ未満では二次
再結晶の核となる一次再結晶後での{110}<001
>方位粒が減少し、微細な二次再結晶粒が得られないの
で限定した。また、急速加熱する下限温度700℃は、
これ未満では再結晶が開始されないので限定した。さら
に、加熱された到達温度域で、微細な析出物の粗大化を
防止するため、最高温度に到達後0.1秒以内に50℃
/秒以上の冷却速度で800℃未満の温度域へ冷却を施
すことが好ましい。なお、以上の処理は、皮膜形成等の
問題から、出来るだけ還元雰囲気中で実施することが望
ましい。また、上記の急速加熱処理の一つとして、ロー
ル間に通電する通電ロール方法が挙げられる。ここで、
加熱された側のロールで上記冷却処理が施されることも
可能である。その他の加熱処理方法として誘導加熱方法
なども考えられる。
The strip rolled to the final product thickness is
A rapid heating process of rapidly heating to a temperature range of 700 ° C. or more at a heating rate of 80 ° C./sec or more is performed. The reason why the lower limit of the heating rate at this time is set to 80 ° C./sec or more is that if it is lower than this, {110} <001 after primary recrystallization which is a nucleus of secondary recrystallization.
> The orientation grain size was reduced, and fine secondary recrystallized grains could not be obtained. In addition, the lower limit temperature for rapid heating 700 ° C.
If the amount is less than this, recrystallization is not started, so the number is limited. Further, in the heated temperature range, the temperature is reduced to 50 ° C. within 0.1 second after reaching the maximum temperature in order to prevent coarsening of fine precipitates.
Preferably, cooling is performed at a cooling rate of not less than 800 ° C./sec to a temperature range of less than 800 ° C. Note that the above treatment is preferably performed in a reducing atmosphere as much as possible due to problems such as film formation. Further, as one of the above-mentioned rapid heating treatments, there is an energizing roll method of energizing between rolls. here,
The above-mentioned cooling treatment can be performed by the roll on the heated side. As another heat treatment method, an induction heating method or the like can be considered.

【0031】上記の急速加熱処理は、次に施される脱炭
焼鈍前に行われても、或いは脱炭焼鈍の加熱段階として
脱炭焼鈍工程に組み込むことも可能であるが、後者の方
が工程数を少なくするので好ましい。
The above-mentioned rapid heating treatment can be carried out before the next decarburizing annealing or can be incorporated in the decarburizing annealing step as a heating step of the decarburizing annealing. This is preferable because the number of steps is reduced.

【0032】この後は、湿水素雰囲気中で脱炭焼鈍を行
う、このとき製品での磁気特性を劣化させないため炭素
は0.005%以下に低減されなければならない。ここ
で、熱延でのスラブ加熱温度が低く、AlNのみをイン
ヒビターとして利用する場合は、アンモニア雰囲気中で
窒化処理を施すこともある。さらに、MgO等の焼鈍分
離剤を塗布して、二次再結晶と純化のため1100℃以
上の仕上げ焼鈍を行うことで、極めて低い鉄損特性を有
する一方向性電磁鋼板が製造される。
Thereafter, decarburization annealing is performed in a wet hydrogen atmosphere. At this time, the carbon must be reduced to 0.005% or less so as not to deteriorate the magnetic properties of the product. Here, when the slab heating temperature in hot rolling is low and only AlN is used as an inhibitor, nitriding may be performed in an ammonia atmosphere. Furthermore, by applying an annealing separator such as MgO and performing finish annealing at 1100 ° C. or more for secondary recrystallization and purification, a grain-oriented electrical steel sheet having extremely low iron loss characteristics is manufactured.

【0033】以上のようにして製造された一方向性電磁
鋼板のフォルステライトなどの皮膜の上に、さらに絶縁
皮膜を塗布することにより極めて低い鉄損特性を有する
一方向性電磁鋼板が製造することも可能である。この磁
気特性は、後の歪み取り焼鈍を施しても、変化しない低
鉄損を保持している。
[0033] A unidirectional electrical steel sheet having extremely low iron loss characteristics can be produced by further applying an insulating film on a coating such as forsterite of the unidirectional electrical steel sheet produced as described above. Is also possible. This magnetic property retains a low iron loss that does not change even after subsequent strain relief annealing.

【0034】以上の製造方法による一方向性電磁鋼板
は、結晶粒径が10mm以下で高い二次再結晶率を有する
ため、磁束密度が高く且つ極めて低い鉄損を有してい
る。なお、得られた製品にさらに鉄損を良好にするた
め、上記一方向性電磁鋼板、或いは絶縁皮膜処理が施さ
れた一方向性電磁鋼板に、磁区を細分化するための処理
を施すことも可能である。次に本発明の実施例を挙げて
説明する。
The grain-oriented electrical steel sheet manufactured by the above method has a high secondary recrystallization rate with a crystal grain size of 10 mm or less, and therefore has a high magnetic flux density and an extremely low iron loss. In addition, in order to further improve the iron loss of the obtained product, the above-described unidirectional magnetic steel sheet, or a unidirectional magnetic steel sheet that has been subjected to an insulating coating treatment, may be subjected to a treatment for subdividing magnetic domains. It is possible. Next, an example of the present invention will be described.

【0035】[0035]

【実施例1】表1に示す成分組成を含む溶鋼を鋳造し、
スラブ加熱後、熱間圧延を行い、2.3mmの熱延鋼板を
得た。このとき仕上温度は1050℃であったが、巻取
温度を種々に変更することによりAlNの析出量を変更
した。この時の巻取温度とNasAlN量を表2に示し
た。次に1100℃で5分間の熱延板焼鈍を行った。さ
らに酸洗したのち、冷間圧延により板厚0.22mmにし
た。圧延された鋼板を1組の加熱電極を有する直接通電
加熱装置により種々の条件で加熱した。その時の加熱速
度と到達温度を表2に示す。
Example 1 A molten steel containing the composition shown in Table 1 was cast.
After slab heating, hot rolling was performed to obtain a 2.3 mm hot-rolled steel sheet. At this time, the finishing temperature was 1050 ° C., but the amount of AlN deposited was changed by variously changing the winding temperature. The winding temperature and the amount of NasAlN at this time are shown in Table 2. Next, hot-rolled sheet annealing was performed at 1100 ° C. for 5 minutes. After further pickling, the sheet was cold rolled to a thickness of 0.22 mm. The rolled steel sheet was heated under various conditions by a direct current heating device having a set of heating electrodes. Table 2 shows the heating rate and the ultimate temperature at that time.

【0036】次に湿潤水素中で脱炭焼鈍し、MgO粉を
塗布した後、1200℃に10時間、水素ガス雰囲気中
で高温焼鈍を行った。表2に得られた製品の、二次再結
晶率、平均二次再結晶粒径と磁気特性を示す。製品の磁
気特性は、ホットストリップにおけるNasAlNが2
5ppm 以下で、二次再結晶率が良好な、極めて低い鉄損
を有する一方向性電磁鋼板が得られている。
Next, after decarburizing annealing in wet hydrogen and applying MgO powder, high-temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Table 2 shows the secondary recrystallization ratio, average secondary recrystallization particle size, and magnetic properties of the obtained product. The magnetic properties of the product are as follows.
A unidirectional electrical steel sheet having an excellent secondary recrystallization ratio of 5 ppm or less and an extremely low iron loss has been obtained.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【実施例2】表3に示す成分組成を含む溶鋼を鋳造し、
スラブ加熱後、熱間圧延を行い、2.3mmの熱延鋼板を
得た。この熱延時の仕上圧延終了1050℃から巻取ま
での温度を500℃に制御することにより、NasAl
Nを11ppm とした。これを1100℃で5分間焼鈍を
行い、冷却過程で600〜200℃の間を1℃/秒で冷
却した。また、同じ熱延板を150℃/秒で冷却した。
さらに酸洗したのち、冷間圧延により板厚0.27mmに
した。圧延された鋼板を二対の直接通電加熱ロールによ
り250℃/秒の加熱速度で851℃まで加熱し、直
接、湿潤水素中で脱炭焼鈍した。以上二通りの脱炭焼鈍
板にMgO粉を塗布した後、1200℃に10時間、水
素ガス雰囲気中で高温焼鈍を行った。
Example 2 A molten steel containing the composition shown in Table 3 was cast.
After slab heating, hot rolling was performed to obtain a 2.3 mm hot-rolled steel sheet. By controlling the temperature from the end of the finish rolling during hot rolling to 1050 ° C. to winding up to 500 ° C., NasAl
N was set to 11 ppm. This was annealed at 1100 ° C. for 5 minutes, and was cooled at a rate of 1 ° C./sec between 600 and 200 ° C. in the cooling process. The same hot rolled sheet was cooled at 150 ° C./sec.
After further pickling, the sheet was cold rolled to a sheet thickness of 0.27 mm. The rolled steel sheet was heated to 851 ° C. at a heating rate of 250 ° C./sec by two pairs of direct current heating rolls, and directly decarburized in wet hydrogen. After applying MgO powder to the above two types of decarburized annealed plates, high-temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere.

【0040】表4に、得られた製品の磁気特性、二次再
結晶率と平均二次再結晶粒径を示す。製品の磁気特性
は、ホットストリップ焼鈍の冷却過程での600〜20
0℃の冷却速度が100℃/秒以下で、二次再結晶率が
良好な、極めて低い鉄損を有する一方向性電磁鋼板が得
られている。
Table 4 shows the magnetic properties, secondary recrystallization ratio and average secondary recrystallized grain size of the obtained product. The magnetic properties of the product are 600 to 20 during the cooling process of hot strip annealing.
A unidirectional electrical steel sheet having a cooling rate of 0 ° C. of 100 ° C./second or less, a good secondary recrystallization rate, and extremely low iron loss has been obtained.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【実施例3】表5に示す化学成分を含む溶鋼を鋳造し、
スラブ加熱後、2.4mm厚にまで熱間圧延した。このと
きの熱延板中のNasAlNは15ppm であった。熱延
板に1100℃で1分間焼鈍を施し、1.60mm厚まで
冷延した。さらに1100℃で1分間焼鈍を施した。冷
却過程で600〜200℃の問を4℃/秒で冷却した。
この後、圧延中に鋼板温度を200℃で2分の処理を施
して圧延した場合と、30℃の常温で圧延した場合の2
種の冷間圧延方法により最終板厚0.23mmにまで圧延
した。
Example 3 A molten steel containing the chemical components shown in Table 5 was cast,
After slab heating, hot rolling was performed to a thickness of 2.4 mm. At this time, NasAlN in the hot rolled sheet was 15 ppm. The hot rolled sheet was annealed at 1100 ° C. for 1 minute and cold rolled to a thickness of 1.60 mm. Further, annealing was performed at 1100 ° C. for 1 minute. During the cooling process, the temperature between 600 and 200 ° C was cooled at 4 ° C / sec.
After that, during the rolling, the steel sheet is subjected to a treatment at a temperature of 200 ° C. for 2 minutes and rolled.
It was rolled to a final thickness of 0.23 mm by various cold rolling methods.

【0044】圧延された鋼板を二対の直接通電加熱ロー
ルにより290℃/秒の加熱速度で845℃まで加熱し
た。この直後、同じ845℃の均一温度、湿潤水素中で
脱炭焼鈍した。次にMgO粉を塗布した後、1200℃
に10時間、水素ガス雰囲気中で高温焼鈍を行った。
The rolled steel sheet was heated to 845 ° C. at a heating rate of 290 ° C./sec by two pairs of direct current heating rolls. Immediately after this, decarburization annealing was performed in wet hydrogen at the same uniform temperature of 845 ° C. Next, after applying MgO powder, 1200 ° C.
For 10 hours in a hydrogen gas atmosphere.

【0045】表6に、得られた製品の磁気特性を示す。
本発明により、改善された鉄損特性に優れた一方向性電
磁鋼板が得られている。さらに得られた鋼板に片面4g
/m2の絶縁皮膜を塗布し、4mmの照射間隔で磁区制御
を施した。その結果も表6に示す。本発明により、さら
に改善された極めて鉄損特性に優れた一方向性電磁鋼板
が得られている。
Table 6 shows the magnetic properties of the obtained products.
According to the present invention, a grain-oriented electrical steel sheet having improved iron loss characteristics has been obtained. 4g on one side of the obtained steel plate
/ M2, and magnetic domain control was performed at an irradiation interval of 4 mm. Table 6 also shows the results. According to the present invention, a further improved unidirectional electrical steel sheet having extremely excellent iron loss characteristics has been obtained.

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【発明の効果】本発明によれば、ホットストリップ中の
AlNを抑制し、ストリップを急速加熱処理することに
より、微細な結晶粒径を有する二次再結晶が安定化し、
二次再結晶率が高まる。これにより磁束密度の高く、極
めて低い鉄損特性を有する一方向性電磁鋼板を製造する
ことができるので、産業上に貢献するところが極めて大
である。
According to the present invention, by suppressing AlN in the hot strip and rapidly heating the strip, the secondary recrystallization having a fine grain size is stabilized,
Secondary recrystallization rate increases. As a result, it is possible to manufacture a grain-oriented electrical steel sheet having a high magnetic flux density and extremely low iron loss characteristics, which greatly contributes to the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ホットストリップ中のAlN量と二次再結晶率
の関係を、最終冷間圧延後の加熱処理における加熱速度
をパラメータとして示す図。
FIG. 1 is a diagram showing the relationship between the amount of AlN in a hot strip and the rate of secondary recrystallization, using the heating rate in a heat treatment after final cold rolling as a parameter.

【図2】ホットストリップ中のAlN量と製品の磁気特
性の関係を、最終冷間圧延後の加熱処理における加熱速
度をパラメータとして示す図。
FIG. 2 is a diagram showing the relationship between the amount of AlN in a hot strip and the magnetic properties of a product, using a heating rate in a heat treatment after final cold rolling as a parameter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 立花 伸夫 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuo Tachibana 1 Fujimachi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Corporation Hirohata Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量で、 C :0.10%以下、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 SおよびSeのうちの1種又は2種の合計:0.001
〜0.040%、 酸可溶性Al:0.010〜0.065%、 N :0.0030〜0.0200%を基本成分とし、
残余はFeおよび不可避的不純物よりなるホットストリ
ップにホットストリップ焼鈍を施し、最終冷延の圧下率
を80〜90%とする1回乃至中間焼鈍を含む2回以上
の冷間圧延、脱炭焼鈍、最終仕上焼鈍を含む工程によっ
て一方向性電磁鋼板を製造する方法において、上記ホッ
トストリップ中のAlN量をN as AlNにして2
5ppm 以下に制御するとともに、上記最終冷延後のスト
リップを700℃以上の温度域へ80℃/秒以上の加熱
速度で急速加熱する急速加熱処理を施すことを特徴とす
る極めて低い鉄損をもつ一方向性電磁鋼板の製造方法。
C .: 0.10% or less by weight, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30% by weight, one or two of S and Se. Total: 0.001
-0.040%, Acid-soluble Al: 0.010-0.065%, N: 0.0030-0.0200% as a basic component,
The remainder is subjected to hot strip annealing of a hot strip made of Fe and unavoidable impurities, and two or more cold rollings including one to intermediate annealing with a reduction rate of final cold rolling of 80 to 90%, decarburizing annealing, In the method for producing a grain-oriented electrical steel sheet by a step including final finish annealing, the amount of AlN in the hot strip is set to NasAlN and 2
It has an extremely low iron loss, characterized in that the strip after the final cold rolling is subjected to a rapid heating process of rapidly heating the strip after the final cold rolling to a temperature range of 700 ° C. or more at a heating rate of 80 ° C./sec or more. Manufacturing method of unidirectional electrical steel sheet.
【請求項2】 ホットストリップ焼鈍の冷却過程で60
0〜200℃の間を100℃/秒以下で冷却することを
特徴とする請求項1記載の極めて低い鉄損をもつ一方向
性電磁鋼板製造方法。
2. The cooling process of the hot strip annealing is performed for 60 hours.
2. The method for producing a grain-oriented electrical steel sheet having extremely low iron loss according to claim 1, wherein cooling is performed at a rate of 100 [deg.] C./sec or less between 0 and 200 [deg.] C.
【請求項3】 冷間圧延の工程で、少なくとも一回以上
の途中板厚段階においてストリップに100℃以上の温
度範囲で1分以上の時間保持する熱処理を与えることを
特徴とする請求項1記載の極めて低い鉄損をもつ一方向
性電磁鋼板製造方法。
3. The process of claim 1, wherein, in the step of cold rolling, the strip is subjected to a heat treatment for holding the strip at a temperature range of 100 ° C. or more for at least one minute in at least one or more intermediate thickness steps. For manufacturing a grain-oriented electrical steel sheet with extremely low iron loss.
【請求項4】 急速加熱処理が脱炭焼鈍の昇温過程とし
て行われる請求項1記載の極めて低い鉄損をもつ一方向
性電磁鋼板製造方法。
4. The method for producing a grain-oriented electrical steel sheet having extremely low iron loss according to claim 1, wherein the rapid heating treatment is performed as a temperature increasing step of decarburizing annealing.
【請求項5】 請求項1乃至4のいずれかに記載の製造
方法で得た一方向性電磁鋼板に、磁区を細分化するため
の処理を施すことを特徴とする極めて低い鉄損をもつ一
方向性電磁鋼板の製造方法。
5. A steel sheet having an extremely low iron loss, characterized by subjecting a grain-oriented electrical steel sheet obtained by the method according to claim 1 to a treatment for subdividing magnetic domains. Manufacturing method of grain-oriented electrical steel sheet.
【請求項6】 請求項1乃至4のいずれかに記載の製造
方法で得た一方向性電磁鋼板に、絶縁皮膜を施し、さら
に磁区を細分化するための処理をすることを特徴とする
極めて低い鉄損をもつ一方向性電磁鋼板の製造方法。
6. A method of manufacturing a grain-oriented electrical steel sheet according to claim 1, further comprising applying an insulating film to the grain-oriented electrical steel sheet, and further performing a treatment for subdividing magnetic domains. A method for producing a grain-oriented electrical steel sheet with low iron loss.
JP29088596A 1996-10-31 1996-10-31 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss Expired - Lifetime JP3392664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29088596A JP3392664B2 (en) 1996-10-31 1996-10-31 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29088596A JP3392664B2 (en) 1996-10-31 1996-10-31 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JPH10130729A true JPH10130729A (en) 1998-05-19
JP3392664B2 JP3392664B2 (en) 2003-03-31

Family

ID=17761774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29088596A Expired - Lifetime JP3392664B2 (en) 1996-10-31 1996-10-31 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JP3392664B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
WO2014017589A1 (en) 2012-07-26 2014-01-30 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
WO2014092102A1 (en) 2012-12-12 2014-06-19 Jfeスチール株式会社 Oriented electromagnetic steel sheet
WO2014126089A1 (en) 2013-02-14 2014-08-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
WO2014132930A1 (en) 2013-02-28 2014-09-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheets
US9748029B2 (en) 2012-07-26 2017-08-29 Ginza Maronie P.C. Method of producing grain-oriented electrical steel sheet
US9748028B2 (en) 2012-07-26 2017-08-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2022210504A1 (en) 2021-03-31 2022-10-06 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
WO2022210503A1 (en) 2021-03-31 2022-10-06 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheet

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
US9617616B2 (en) 2012-07-26 2017-04-11 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2014017589A1 (en) 2012-07-26 2014-01-30 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
US9748028B2 (en) 2012-07-26 2017-08-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US9748029B2 (en) 2012-07-26 2017-08-29 Ginza Maronie P.C. Method of producing grain-oriented electrical steel sheet
US9738949B2 (en) 2012-07-26 2017-08-22 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2014092102A1 (en) 2012-12-12 2014-06-19 Jfeスチール株式会社 Oriented electromagnetic steel sheet
JP2014114499A (en) * 2012-12-12 2014-06-26 Jfe Steel Corp Grain oriented silicon steel plate
US10643770B2 (en) 2012-12-12 2020-05-05 Jfe Steel Corporation Grain-oriented electrical steel sheet
EP3461920A1 (en) 2013-02-14 2019-04-03 JFE Steel Corporation Method for producing grain-oriented electrical steel sheet
KR20150086362A (en) 2013-02-14 2015-07-27 제이에프이 스틸 가부시키가이샤 Method for producing grain-oriented electrical steel sheet
US10192662B2 (en) 2013-02-14 2019-01-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2014126089A1 (en) 2013-02-14 2014-08-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
RU2613818C1 (en) * 2013-02-28 2017-03-21 ДжФЕ СТИЛ КОРПОРЕЙШН Method of making plate of textured electrical steel
KR20150121012A (en) 2013-02-28 2015-10-28 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheets
US10134514B2 (en) 2013-02-28 2018-11-20 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2014132930A1 (en) 2013-02-28 2014-09-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheets
WO2022210504A1 (en) 2021-03-31 2022-10-06 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
WO2022210503A1 (en) 2021-03-31 2022-10-06 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheet
KR20230159874A (en) 2021-03-31 2023-11-22 제이에프이 스틸 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet
KR20230159875A (en) 2021-03-31 2023-11-22 제이에프이 스틸 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3392664B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS5842727A (en) Production of unidirectional electrical steel plate of low watt loss
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH10195537A (en) Production of grain oriented silicon steel sheet having stably excellent magnetic property
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JPH0741860A (en) Production of grain-oriented silicon steel sheet
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH075975B2 (en) Method for producing grain-oriented electrical steel sheet
JP2562259B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
EP4317471A1 (en) Production method for grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

EXPY Cancellation because of completion of term