JPS6138111A - Power facility using solar heat - Google Patents

Power facility using solar heat

Info

Publication number
JPS6138111A
JPS6138111A JP15860584A JP15860584A JPS6138111A JP S6138111 A JPS6138111 A JP S6138111A JP 15860584 A JP15860584 A JP 15860584A JP 15860584 A JP15860584 A JP 15860584A JP S6138111 A JPS6138111 A JP S6138111A
Authority
JP
Japan
Prior art keywords
pressure turbine
solar
heat
low
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15860584A
Other languages
Japanese (ja)
Inventor
Yasuhatsu Nakamoto
中本 泰發
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15860584A priority Critical patent/JPS6138111A/en
Publication of JPS6138111A publication Critical patent/JPS6138111A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To have stable operation of a solar heat power facility continuously by furnishing a low pressure turbine, which is driven by the gasified liquid by the heat of a solar cell, and a high pressure turbine which is driven by the gas given a high temp. by a solar heat collector to collect the heat from said solar cell. CONSTITUTION:The solar heat stored in a solar cell 1 undergoes heat exchange at a heat exchanger 2 with the fluid for driving the turbine (secondary fluid). This secondary fluid is heated and gasified, and extracted as dry gas at an air- liquid separator 3 to be used in driving a low pressure turbine 4. The liquid separated by the air-liquid separator 3 is, on the other hand, boosted by a high- pressure pump 5, and further heated by a solar heat collector 6 for gasification to be used in driving a high pressure turbine 7. The secondary fluid which has finished his work to drive the high pressure turbine 7 shall converge at the low pressure turbine 4, and upon being cooled and liquefied by a condenser 8 is fed back to the above-mentioned heat exchanger 2 by a low-pressure pump 9. This will provide continuous operation throughout days and nights to ensure an enhanced rate of utilization of facilities.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は太陽熱利用動力設備に係り、更に詳しくは、太
陽池と太陽集熱器とを併用して流体タービンを駆動する
太陽熱利用動力設備に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to solar thermal power equipment, and more particularly to solar thermal power equipment that uses a solar pond and a solar collector together to drive a fluid turbine.

〔発明の技術的背景とその間龜点〕[Technical background of the invention and its highlights]

本来、太陽エネルギーは無限、無公害の再生可能エネル
ギーであって、将来のエネルギー源として期待されてい
る。しかしその本格的利用のためには、■夜や曇の日な
ど使えない時間帯がある■雲などの影響により時間的に
変動が大きく、不連続である。■密度の低いエネルギー
であり、比較的低温である。などの欠点があって使い番
−りい。
Originally, solar energy is infinite, non-polluting, renewable energy, and is expected to be a future energy source. However, for full-scale use, there are times when it cannot be used, such as at night or on cloudy days. ■It is discontinuous and has large temporal fluctuations due to the influence of clouds. ■It is energy with low density and relatively low temperature. It has drawbacks such as:

太陽池は極めて単価の安い太陽熱集熱器であると共に蓄
熱器であって、上記■と■の欠点を収り除く之めC:は
aめて優れた装置であるが、利用可能温度が低く、有塩
型太陽池であっても最高100℃程度であるので動力利
用にはあまり効果的でない。
A solar pond is an extremely low-cost solar heat collector as well as a heat storage device, and it eliminates the drawbacks of ① and ② above.C: It is an excellent device, but the usable temperature is low. Even in salt-type solar ponds, the maximum temperature is about 100°C, so they are not very effective for power use.

集光倍率の高い太陽集熱器を用いれば200〜4ω℃程
度の高温は比較的容具(:得られ、■の欠点はとり除か
れるが、太陽光のうちの直達分のみしか利用できず、■
の欠点も助長・拡大されて利用効率が悪い。
If a solar collector with a high light concentration magnification is used, a relatively high temperature of about 200 to 4 ω℃ can be obtained, and the disadvantage of ,■
The disadvantages of the system are also exacerbated and magnified, resulting in poor utilization efficiency.

〔発明の目的〕[Purpose of the invention]

本発明は上述の従来装置を有機的に組み合わせて構成す
ることによって複合的C二太陽エネルギーの欠点な除去
し、連続的で安定した経済性の高い太陽熱利用動力設備
を提供すること!目的とする。
The present invention organically combines the above-mentioned conventional devices to eliminate the disadvantages of complex C2 solar energy and provide a continuous, stable, and highly economical solar thermal power facility! purpose.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために太陽池と、この太陽池に貯え
られた熱を利用して気化されに流体によって駆動される
低圧タービンと、前記太陽池の熱を太陽集熱器で更に高
温にした気体で駆動されるM圧タービンとから成ること
全特徴とする。
To achieve the above purpose, a solar pond, a low-pressure turbine driven by a fluid that is vaporized using the heat stored in the solar pond, and a solar collector further heat the heat of the solar pond. The main feature is that it consists of an M-pressure turbine driven by gas.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明になる具体的実施例の一つを示す構成図
である。
FIG. 1 is a block diagram showing one specific embodiment of the present invention.

太陽池1は、性能が高く、高温が得られる有塩型が望ま
しいが、どのような型式であっても本発明の主旨を損わ
ない。太陽池lで貯えられた太陽熱は熱交換器2でター
ビン駆動用流体(以下「2次流体」という)と熱交換さ
れ、2次流体は加熱・気化して気液分離器3で乾いた気
体として取り出され、低圧タービン4を駆動する。高圧
および低圧タービン7.4に発電機が連結されている。
The solar pond 1 is desirably a salted type that has high performance and can provide high temperatures, but any type does not impair the gist of the present invention. The solar heat stored in the solar pond 1 is heat exchanged with the turbine driving fluid (hereinafter referred to as "secondary fluid") in the heat exchanger 2, and the secondary fluid is heated and vaporized, and then converted into dry gas in the gas-liquid separator 3. The low pressure turbine 4 is driven by the low pressure turbine 4. A generator is connected to the high-pressure and low-pressure turbines 7.4.

気液分離器3で分層されに液体は高圧ポンプ5で昇圧さ
れ、太陽集熱器6で更に高温に加熱・気化して高圧ター
ビン7を駆動する。高圧タービン7を駆動した2次流体
は低圧タービン4に合流し。
The liquid is separated into layers by the gas-liquid separator 3, and the pressure is increased by the high-pressure pump 5. The liquid is further heated to a high temperature and vaporized by the solar collector 6, and drives the high-pressure turbine 7. The secondary fluid that has driven the high pressure turbine 7 joins the low pressure turbine 4.

凝縮器8で冷却・液化して低圧ポンプ9によって熱交換
器2へ還流する。
It is cooled and liquefied in a condenser 8 and refluxed to a heat exchanger 2 by a low pressure pump 9.

太陽集熱器6は固定式では十分な温度を得られないので
、曲面をもって高倍率に太陽ytt集光する太陽追尾型
の方が効果的であるし、勿論多数のへリオスタント(反
射鏡ンでタワーに集光するタワー型でもよい。公知のあ
らゆる種類の太陽集熱器が使用できる。
Since a fixed type solar collector 6 cannot obtain sufficient temperature, a solar tracking type that has a curved surface and focuses the solar ytt at a high magnification is more effective. It may be a tower type solar collector that concentrates the light onto a tower.All known types of solar collectors can be used.

しかし、追尾型集光式太陽集熱器は、直達光しか利用で
きないので曇りの日など低日射時C二は必要な高温が得
られないから、その場合には再循環弁10を開き、2次
流体!太陽果熱器6.高圧タービン7をバイパスして直
接熱交換器2へ還流させる。
However, since tracking type solar collectors can only use direct light, the necessary high temperature cannot be obtained during low solar radiation such as on cloudy days. Next fluid! Solar fruit heater6. The high-pressure turbine 7 is bypassed and the heat is directly returned to the heat exchanger 2.

しかし、そのような場合でも太陽池lは蓄熱効果のため
6二温度が低下しないので、低圧タービン4だけは運転
が継続できる。
However, even in such a case, the temperature of the solar cell 1 does not drop due to its heat storage effect, so only the low pressure turbine 4 can continue to operate.

このように、上記の如く構成した本発明に係る動力設備
の効果は、高日射時は太陽集熱器6の特徴を最大に発揮
して高温の2次流1体蒸気を作り、高圧タービン7と低
圧タービン4とを同時に駆動して高出力を得、低日射時
は高圧タービン7は駆動できないが、太陽池lの蓄熱特
性を生ρ・して低圧タービン4のみを駆動する。
As described above, the effect of the power equipment according to the present invention configured as described above is that during high solar radiation, the characteristics of the solar collector 6 are maximized to produce high-temperature secondary steam as a single body, and the high-pressure turbine 7 and the low-pressure turbine 4 are simultaneously driven to obtain high output, and although the high-pressure turbine 7 cannot be driven during low solar radiation, only the low-pressure turbine 4 is driven by taking advantage of the heat storage characteristics of the solar pond 1.

このようにすることによって、夜間も運転を継続するこ
とかり能となるので設備の利用率を著しく高めることか
できる。まに太陽集熱器6を単独に用いる場合と異なり
、太陽池lと組合わせて用いることにより、太陽池lの
利用温度は安定して変動が少ないので、太陽集熱器6の
出口流体温度も変動が小さくなり、かつ太陽池1が予熱
部となっているので、高価な太陽集熱器6の必要面積を
減らすことができ、総合的に安価な建設単価とすること
ができる。
By doing this, it is possible to continue operation even at night, so the utilization rate of the equipment can be significantly increased. However, unlike when the solar collector 6 is used alone, by using it in combination with the solar pond 1, the operating temperature of the solar pond 1 is stable and has little fluctuation, so the outlet fluid temperature of the solar collector 6 is Also, since the solar pond 1 serves as a preheating section, the area required for the expensive solar collector 6 can be reduced, and the construction cost can be reduced overall.

また、第1区では高圧タービン7と低圧タービン4とを
駆動とし和混圧タービン型式としているが、これらを別
軸として別個のタービンとしても本発明の主旨は損われ
ない。
Further, in the first section, the high-pressure turbine 7 and the low-pressure turbine 4 are driven and are of a sum mixed pressure turbine type, but the gist of the present invention is not impaired even if these are separate turbines with separate shafts.

また、これらのタービンは第2図の如く、別々の(種類
の異なりk)2次流体ン用いたサイクルとしてもよい。
Further, these turbines may have cycles using separate (different types of) secondary fluids, as shown in FIG.

すなわち第1図と同一部分に同一符号を付しその説明を
省略する第2図において、高圧タービン7と低圧タービ
ン4と線別個の種類の流体で駆動される。このような構
成の場合、高圧タービン7のサイクルの方に沸点の高い
流体を用いると効果的である。例えば高圧タービン7の
サイクル(ユ水を用いわば、低圧タービン4のサイクル
にはフレオンや炭化水素類を用いるとよい。また、両す
イクル共C二同系列1例えば炭化水素類を用いるとすれ
ば、高圧タービン7側は沸点の高いペンタン。
That is, in FIG. 2, in which the same parts as in FIG. 1 are given the same reference numerals and their explanations are omitted, the high-pressure turbine 7 and the low-pressure turbine 4 are driven by different types of fluids. In such a configuration, it is effective to use a fluid with a higher boiling point in the cycle of the high-pressure turbine 7. For example, it is preferable to use freon or hydrocarbons in the cycle of the high-pressure turbine 7 (using water, so to speak, and in the cycle of the low-pressure turbine 4. Also, if both cycles use C2 series 1, for example, hydrocarbons) , the high pressure turbine 7 side contains pentane with a high boiling point.

低圧タービン4側にプロパンやブタンなど、より沸点の
低い流体を用いる。勿論、場合によっては同一流体を用
いてよいケースもあり、その場合には第1図と同様、混
圧タービンを採用することもできる。
A fluid with a lower boiling point, such as propane or butane, is used on the low-pressure turbine 4 side. Of course, there are cases where the same fluid may be used, and in that case, a mixed pressure turbine may be used as in FIG. 1.

今、高圧タービン7側を水、低圧タービン4側をフレオ
ンで説明する。水は熱交換器2で太陽池lからの熱を受
は敗り、加熱されて高圧ポンプ5で昇圧されて太陽集熱
器6で更に高温となり、蒸気となって高圧タービン7を
駆動した後、高圧タービン凝縮器8a  で液化して高
圧タービン給水ポンプ9aによって再び熱交換器2にも
どる。
Now, the high-pressure turbine 7 side will be explained using water, and the low-pressure turbine 4 side will be explained using freon. The water receives heat from the solar pond 1 in the heat exchanger 2, is heated, is boosted in pressure by the high-pressure pump 5, becomes even hotter in the solar collector 6, becomes steam, and drives the high-pressure turbine 7. , is liquefied in the high pressure turbine condenser 8a and returned to the heat exchanger 2 by the high pressure turbine feed water pump 9a.

熱交換器2の出口の水は一部分岐されて低圧タービン蒸
発器12へ流れ、こ−で低圧タービン4の駆動流体であ
るフレオンを加熱・気化する。気化したプレオンは低圧
タービン4を駆動した後低圧タービン凝縮器8bで冷却
され液化し、低圧タービン給水ポンプ9bで低圧タービ
ン蒸発器12に還流する。
Water at the outlet of the heat exchanger 2 is partially branched and flows to the low pressure turbine evaporator 12, where Freon, which is the driving fluid for the low pressure turbine 4, is heated and vaporized. After driving the low-pressure turbine 4, the vaporized preon is cooled and liquefied in the low-pressure turbine condenser 8b, and is returned to the low-pressure turbine evaporator 12 by the low-pressure turbine water supply pump 9b.

熱交換器2から分岐して低圧タービン蒸発器12を加熱
した水は、循環ポンプ11で熱交換器2へもどる。
The water branched from the heat exchanger 2 and heated the low pressure turbine evaporator 12 returns to the heat exchanger 2 by the circulation pump 11.

この場合も夜や低日射時は高圧タービン7系は停止して
低圧タービン4側のみ運転を継続する。
In this case as well, at night or when solar radiation is low, the high pressure turbine 7 system is stopped and only the low pressure turbine 4 side continues to operate.

83図(第1図および第2図と同一部分に同一符号を付
してその説明を省略する)は第2図における高圧タービ
ン凝縮器88を低圧タービン蒸発器 4゜12と一体と
した。いわゆるバイナリ−サイクルであって、低圧ター
ビン4駆動流体は高圧タービン凝縮器8aにおいて、高
圧タービン7の排気排熱と。
In FIG. 83 (the same parts as in FIGS. 1 and 2 are given the same reference numerals and their explanations are omitted), the high pressure turbine condenser 88 in FIG. 2 is integrated with the low pressure turbine evaporator 4.12. It is a so-called binary cycle, in which the driving fluid for the low pressure turbine 4 and the exhaust heat from the high pressure turbine 7 are used in the high pressure turbine condenser 8a.

熱交換器2の出口から分岐した高圧タービン7駆動流体
によって加熱される。
It is heated by the high-pressure turbine 7 driving fluid branched from the outlet of the heat exchanger 2 .

この場合も、夜や低日射時は高圧タービン7系は停止し
、低圧タービン4は太陽池1からの熱のみで、再循環弁
10を通して運転される、その他、図示はしないがこれ
らの多種類の変形構成は、本発明の主旨と上記第1図〜
第3図の例示より推想することは容易であろう。
In this case as well, the high-pressure turbine 7 system is stopped at night or during low solar radiation, and the low-pressure turbine 4 is operated only by the heat from the solar pond 1 through the recirculation valve 10. The modified configurations are based on the gist of the present invention and FIGS.
It is easy to imagine this from the example shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上述べに如く、本発明によれば、太陽池を予熱部に用
いているので全体的に建設単価が安価であり、かつ太陽
池の蓄熱効果の之めに連続的かつ安定に運転を継続でき
、高日射時には高出力t、夜や低日射時でも基底出力で
運転できるので、設備の利用率が向上し、もって経済性
の極めて高い太陽熱利用動力設置1tilとすることが
できる。
As described above, according to the present invention, since the solar pond is used in the preheating section, the overall construction cost is low, and the operation can be continued continuously and stably due to the heat storage effect of the solar pond. Since it can be operated at high output t during high solar radiation and at base output even at night or during low solar radiation, the utilization rate of the equipment is improved and it is possible to install 1 til of power using solar heat, which is extremely economical.

【図面の簡単な説明】[Brief explanation of drawings]

第五図は本発明に係る太陽熱利用動力設備の一実施例を
示す構成図、第2図および第3図は本発明に係る他の実
施例をそれぞれ示す構成図である。 l・・・太陽池      2・・・熱又換器3・・・
気液分離器    4・・・低圧タービン6・・・太陽
集熱器    7・・・高圧タービン8、f3a、f3
b・・・凝縮器 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図 第2図
FIG. 5 is a block diagram showing one embodiment of the solar heat utilization power equipment according to the present invention, and FIGS. 2 and 3 are block diagrams showing other embodiments of the present invention. l...Solar pond 2...Heat exchanger 3...
Gas-liquid separator 4...Low pressure turbine 6...Solar collector 7...High pressure turbine 8, f3a, f3
b... Condenser agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、太陽池と、この太陽池に貯えられた熱を利用して気
化された液体によつて駆動される低圧タービンと、前記
太陽池の熱を太陽集熱器で更に高温にした気体で駆動さ
れる高圧タービンとから成る太陽熱利用動力設備。 2、高圧タービンと低圧タービンとは別個の流体で駆動
される特許請求範囲第1項記載の太陽熱利用動力設備。
[Claims] 1. A solar pond, a low-pressure turbine driven by a liquid vaporized by using the heat stored in the solar pond, and a solar collector to further utilize the heat of the solar pond. Solar thermal power equipment consisting of a high-pressure turbine driven by high-temperature gas. 2. The solar thermal power equipment according to claim 1, wherein the high-pressure turbine and the low-pressure turbine are driven by separate fluids.
JP15860584A 1984-07-31 1984-07-31 Power facility using solar heat Pending JPS6138111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15860584A JPS6138111A (en) 1984-07-31 1984-07-31 Power facility using solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15860584A JPS6138111A (en) 1984-07-31 1984-07-31 Power facility using solar heat

Publications (1)

Publication Number Publication Date
JPS6138111A true JPS6138111A (en) 1986-02-24

Family

ID=15675350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15860584A Pending JPS6138111A (en) 1984-07-31 1984-07-31 Power facility using solar heat

Country Status (1)

Country Link
JP (1) JPS6138111A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017901A (en) * 1989-07-15 1991-05-21 Tanashin Denki Co., Ltd. Controller for a movable member
US5485897A (en) * 1992-11-24 1996-01-23 Sanyo Electric Co., Ltd. Elevator display system using composite images to display car position
JP2011220163A (en) * 2010-04-07 2011-11-04 Toshiba Corp Steam turbine plant
JP2011220165A (en) * 2010-04-07 2011-11-04 Toshiba Corp Steam turbine plant
JP2013040597A (en) * 2011-08-19 2013-02-28 Kobe Steel Ltd Binary power generator and binary power generation method using solar heat
JP5602306B2 (en) * 2011-06-30 2014-10-08 バブコック日立株式会社 Solar boiler and solar power plant using the same
ES2482940R1 (en) * 2011-08-30 2014-10-30 Abengoa Solar Llc SOLAR HYBRID FIELD.
US20170002799A1 (en) * 2015-06-30 2017-01-05 Mitsubishi Hitachi Power Systems, Ltd. Solar Thermal Power Generation System and Solar Thermal Power Generation Method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647608A (en) * 1979-09-25 1981-04-30 Mitsui Eng & Shipbuild Co Ltd Energy saving type generator
JPS572281B2 (en) * 1977-11-18 1982-01-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572281B2 (en) * 1977-11-18 1982-01-14
JPS5647608A (en) * 1979-09-25 1981-04-30 Mitsui Eng & Shipbuild Co Ltd Energy saving type generator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017901A (en) * 1989-07-15 1991-05-21 Tanashin Denki Co., Ltd. Controller for a movable member
US5485897A (en) * 1992-11-24 1996-01-23 Sanyo Electric Co., Ltd. Elevator display system using composite images to display car position
JP2011220163A (en) * 2010-04-07 2011-11-04 Toshiba Corp Steam turbine plant
JP2011220165A (en) * 2010-04-07 2011-11-04 Toshiba Corp Steam turbine plant
JP5602306B2 (en) * 2011-06-30 2014-10-08 バブコック日立株式会社 Solar boiler and solar power plant using the same
US9605662B2 (en) 2011-06-30 2017-03-28 Mitsubishi Hitachi Power Systems, Ltd. Solar heat boiler and solar heat electric power generation plant
JP2013040597A (en) * 2011-08-19 2013-02-28 Kobe Steel Ltd Binary power generator and binary power generation method using solar heat
ES2482940R1 (en) * 2011-08-30 2014-10-30 Abengoa Solar Llc SOLAR HYBRID FIELD.
US20170002799A1 (en) * 2015-06-30 2017-01-05 Mitsubishi Hitachi Power Systems, Ltd. Solar Thermal Power Generation System and Solar Thermal Power Generation Method
US10247174B2 (en) * 2015-06-30 2019-04-02 Mitsubishi Hitachi Power Systems, Ltd. Solar thermal power generation system and solar thermal power generation method

Similar Documents

Publication Publication Date Title
Kasaeian et al. Solar-driven polygeneration systems: Recent progress and outlook
US9500185B2 (en) System and method using solar thermal energy for power, cogeneration and/or poly-generation using supercritical brayton cycles
CN101392736B (en) Solar low-temperature thermal power generation and cold- thermal co-feeding system
JP5541603B2 (en) Multifunctional solar energy cogeneration system
Lykas et al. A comprehensive review of solar-driven multigeneration systems with hydrogen production
CN110905747B (en) Combined power cycle power generation system utilizing high-temperature solar energy and LNG cold energy
CN111306015B (en) Solar energy-geothermal energy mixed heat source combined cooling heating and power system and working method thereof
CN102094772B (en) Solar energy-driven cogeneration device
Abid et al. Energetic and exegetic analysis of a novel multi-generation system using solar power tower
Esfanjani et al. A review on solar-powered cooling systems coupled with parabolic dish collector and linear Fresnel reflector
JPS6138111A (en) Power facility using solar heat
CN111486068B (en) Solar-assisted ocean thermoelectric power generation system
RU2111422C1 (en) Combined solar-electric power plant
US4586339A (en) Thermal energy conversion
CN116105386A (en) Photo-thermal composite ammonia absorption type multi-energy combined supply system
CN204646526U (en) A kind of power and refrigeration cogeneration system
CN106968903A (en) Hybrid solar heat generating system and its method
CN216241123U (en) Small-sized steam-ORC two-stage solar photo-thermal power generation system
Shahin Coupling of an electrolyzer with rankine cycle for sustainable hydrogen production via thermal solar energy
CN117722324A (en) Photo-thermal type multifunctional portable combined cycle steam power device
CN117759357A (en) Hydrogen energy type multifunctional combined cycle steam power device
Toh Multigeneration power: power generation from renewable source
Qin et al. New Hybrid CHP System Integrating Solar Energy and Exhaust Heat Thermochemical Synergistic Conversion with Dual-Source Energy Storage
CN113931710A (en) Combined cooling and power generation system
CN117869240A (en) Photo-thermal type multifunctional portable combined cycle steam power device