JPS6137915A - Continuous billet heating furnace - Google Patents

Continuous billet heating furnace

Info

Publication number
JPS6137915A
JPS6137915A JP15932884A JP15932884A JPS6137915A JP S6137915 A JPS6137915 A JP S6137915A JP 15932884 A JP15932884 A JP 15932884A JP 15932884 A JP15932884 A JP 15932884A JP S6137915 A JPS6137915 A JP S6137915A
Authority
JP
Japan
Prior art keywords
furnace
burner
heating
heating furnace
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15932884A
Other languages
Japanese (ja)
Inventor
Masanori Ebihara
海老原 正則
Shinichiro Muto
武藤 振一郎
Kuniaki Sato
邦昭 佐藤
Rikio Takeshima
竹嶋 力男
Kyoichi Yoshikiyo
吉清 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15932884A priority Critical patent/JPS6137915A/en
Publication of JPS6137915A publication Critical patent/JPS6137915A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To heat a billet under the minimum consumption of fuel in a wide heating temp. range from low temp. to high temp. by arranging plural strip- shaped flame burners in the widthwise and the lengthwise direction of a heating furnace at least at the lower part of the furnace. CONSTITUTION:Plural strip-shaped flame burners 5 are provided at least at the lower part of a heating furnace 3, namely a hearth 3a, or further to a ceiling 3b to form a strip-shaped flame 6 in the conveying direction of a material 2 to be heated along the hearth 3a and ceiling 3b of the heating furnace 3. Consequently, the setting height of the strip-shaped flame burner 5 is reduced, and a nose part is not formed unlike an axial-flow burner. Accordingly, the length of an effective heat-transfer surface can be maximized, and the heating efficiency is enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 厚板圧延や熱延板圧延のための加熱ならびに熱処理又は
加工熱処理を行うとき、必要とされる低1・・温加熱な
いし均一加熱に適合する連続鋳片加熱炉についての開発
成果に関してこの明細書で述べる技術内容は、この種鋼
材の適切な加熱を成就−させるのに有用である。
Detailed Description of the Invention (Industrial Application Field) Suitable for low temperature heating or uniform heating required when performing heating, heat treatment or processing heat treatment for rolling thick plates or hot rolled plates. The technical content described in this specification regarding the development results for continuous slab heating furnaces is useful for achieving appropriate heating of this type of steel material.

(従来の技術) スラブブ、ルーム、ビレットなどの鋼片をバーナー火炎
によって昇温させる加熱炉においてはへ放射伝熱に必要
なガス層厚を得るために、また燃料が燃焼するのに必要
な空間を確保するためにも、被加熱物表面と向い合うバ
ーナ一群を含む加熱空−゛□□間が設けられている。
(Prior art) In a heating furnace where the temperature of steel pieces such as slabs, looms, billets, etc. is raised by burner flame, space is required to obtain the gas layer thickness necessary for radiant heat transfer and for the fuel to burn. In order to ensure this, a heating space containing a group of burners facing the surface of the object to be heated is provided.

被加熱物表面とバーナーとの相対関係は、加熱炉として
の機能やバーナー取は場所の制約により、基本的にはバ
ーナー中心軸を、加熱空間の3軸方向のいずれかに合わ
せた以下の8種類が従来知ら。
The relative relationship between the surface of the object to be heated and the burner depends on its function as a heating furnace and the location of the burner.Basically, the burner center axis is aligned with one of the three axial directions of the heating space. The types are conventionally known.

れている。It is.

(a)被加熱物の搬送方向と直角に設けたバーナーブリ
ッジにバーナー5を並設したいわゆる軸流バーナ一方式
(a) A so-called axial flow burner type in which burners 5 are arranged side by side on a burner bridge provided perpendicular to the direction of conveyance of the object to be heated.

Φ)側壁にバーナーを配設したサイドバーナ一方1・・
式。
Φ) One side burner with a burner installed on the side wall 1...
formula.

(0)  炉の天井にバーナーを配設したルーフバーナ
一方式。
(0) One roof burner type with burners installed on the ceiling of the furnace.

軸流バーナーは炉幅方向、すなわち被加熱物の長手方向
に複数組設置し、各組のバーナーに対し1均一に燃料路
投入して被加熱物の長手方向の均一加熱を行うか、又は
積極的に燃料投入に分布をけし、被加熱物の長手方向に
温度分布のある加熱を行うこともできる。
Multiple sets of axial flow burners are installed in the width direction of the furnace, that is, in the longitudinal direction of the object to be heated, and fuel is uniformly supplied to each set of burners to uniformly heat the object in the longitudinal direction. It is also possible to heat the object to be heated with a temperature distribution in the longitudinal direction by distributing the fuel input.

しかし、軸流式加熱炉は、その溝造上、バーナ°゛□−
ブリッジと被加熱物との間では加熱空間が非常)に狭く
なり、いわゆるノーズ部が生じ、このノーズ部において
は、ガス層厚が薄いためにこの部分での放射伝熱母が減
じること、およびノーズ部が炉内に張り出した耐火物構
造であるために、炉体−。
However, due to the groove structure of the axial flow heating furnace, the burner
The heating space becomes extremely narrow between the bridge and the object to be heated, resulting in a so-called nose, where the gas layer is thin and the radiant heat transfer base in this part is reduced; The furnace body has a refractory structure with the nose protruding into the furnace.

放散熱も多いため、ノーズ部加熱空間での炉内温蜜が低
下すること、などのために加熱能力が損なわれるきらい
がある。加えて一時的に被加熱材の搬送を停止させた場
合、ノーズ部に滞留していた被加熱材の温度も低下し、
抽出時に所定の加熱温1・・9に達しないおそれもある
Since there is a lot of heat dissipated, the heating capacity tends to be impaired due to a decrease in the temperature inside the furnace in the nose heating space. In addition, if the conveyance of the material to be heated is temporarily stopped, the temperature of the material to be heated that has remained in the nose section will also drop.
There is also a possibility that the predetermined heating temperature 1...9 may not be reached during extraction.

次にサイドバーナ一式加熱炉にはノーズ部がないので、
ノーズ部に起因する軸流バーナ一方式加熱炉の欠点を解
消することはできる。
Next, since the side burner complete heating furnace does not have a nose section,
It is possible to eliminate the drawbacks of the axial burner one-way heating furnace caused by the nose.

しかし1サイドバ一ナ一式加熱炉では、パーナト−火炎
が炉幅方向にのびるため、被加熱物の長手方向における
均一加熱がむずかしく、とくにバーナーの火炎は、一般
に燃料投入量が多くなると長くなり、少なくなると短か
くなるので、炉幅方向の炉内温間分布が、燃料投入量の
変化に応じて変顔動する不利も加わる。
However, in a one-side burner heating furnace, the burner flame extends in the width direction of the furnace, making it difficult to uniformly heat the object in the longitudinal direction. Since the length becomes shorter, there is also the disadvantage that the temperature distribution inside the furnace in the width direction of the furnace fluctuates depending on the change in the amount of fuel input.

ルーフバーナ一式加熱炉はノーズ部がなく、また、バー
ナーが炉幅方向に複数個設置されているので、ノーズ部
(こ起因する欠点が無く、さらに被加熱物の長手方向の
温度制御も可能ではあるが、−。
Roof burner complete heating furnaces do not have a nose section, and since multiple burners are installed in the width direction of the furnace, there is no disadvantage caused by the nose section, and it is also possible to control the temperature of the object to be heated in the longitudinal direction. But-.

その構造上、上部の天井にしか設置できないことが欠点
である。というのは下部の炉床に設置しようとすると、
被加熱物の重化スケールなどが落下してバーナーを損傷
するからであり、また、バーナー1本当りの燃料容積が
大きくないので、バート・ナ一本数が多くなり、バーナ
ーの調整が煩帷となり、また、バーナ一部からの熱放散
も多く加熱炉の燃料消費量を考えると得策でない。
Due to its structure, the drawback is that it can only be installed on the upper ceiling. This is because if you try to install it on the lower hearth,
This is because the heavy scale of the object to be heated may fall and damage the burner.Also, since the fuel capacity per burner is not large, the number of burners increases, making burner adjustment cumbersome. Also, there is a lot of heat dissipation from a part of the burner, which is not a good idea considering the fuel consumption of the heating furnace.

従って1ルーフバーナーは通常加熱炉に全面的に採用さ
れることはなく、軸流バーナー又はサイl−□ドバーナ
ーと組合せて、例えば均熱帯上部に使用されるのが通例
である。
Therefore, one roof burner is usually not used entirely in a heating furnace, but is usually used in combination with an axial burner or a side burner, for example, in the upper part of the soaking zone.

以上のように、炉幅方向に均一加熱が要求される場合は
軸流バーナ一式加熱炉が、そしてノーズ部に起因する欠
点が問題になる場合は、サイドバー゛□゛一ナ一式加熱
炉が、主として採用されるゆえんで1ある。
As mentioned above, when uniform heating in the furnace width direction is required, an axial flow burner set heating furnace is used, and when defects due to the nose are a problem, a side bar set 1 set heating furnace is used. , there is 1 mainly because it is adopted.

ここにサイドバーナ一方式の加熱炉で、炉幅方向の均一
加熱が可能Gこなれば、軸流バーナ一方式の欠点である
ノーズ部の悪影響のない加熱炉が実)現できるわけであ
る。
If uniform heating in the width direction of the furnace can be achieved in a side burner type heating furnace, a heating furnace without the adverse effects of the nose section, which is a drawback of the axial burner type, can be realized.

このため先行技術としても、特開昭54−80209号
公報に「サイド焚鋼片加熱炉の加熱方法」が開示されて
いる。この場合、側壁に設置するバーナーとして回流空
気ノズルと昇流空気ノズルと1・)の間に燃料ガスノズ
ルをそれぞれ同心に配置し、燃料ガスを内外空気流で包
んだ状態で燃焼させ、火炎の長さは内外空気流量比を変
化させることにより大幅に調整可能とし、逆に燃料流量
の訓節に際し内外空気流量比を適切に制御することによ
つ1゛て火炎長を一定に保持できる。この場合、内外空
気流量比のNU?8は燃料投入量(%)に応じて昇流空
気比率を制御することにより火炎長を一定に保つことが
でき、炉幅方向の炉温分布が一定になって、被加熱物の
長手方向の均一加熱が可能となり、こ2′□れにより、
ノーズ部のない加熱炉が実用化されつ1つある。
For this reason, as a prior art, ``Method for heating a side-fired steel billet heating furnace'' is disclosed in Japanese Patent Application Laid-Open No. 54-80209. In this case, as a burner installed on the side wall, fuel gas nozzles are placed concentrically between the recirculation air nozzle, the rising air nozzle, and 1. The flame length can be greatly adjusted by changing the ratio of internal and external air flow rates, and conversely, by appropriately controlling the internal and external air flow ratios when adjusting the fuel flow rate, the flame length can be kept constant. In this case, NU of the inside/outside air flow rate ratio? 8, by controlling the rising air ratio according to the fuel input amount (%), the flame length can be kept constant, the furnace temperature distribution in the furnace width direction is constant, and the longitudinal direction of the object to be heated is Uniform heating is possible, and this 2'□
One heating furnace without a nose section is being put into practical use.

(発明が解決しようとする問題点) しかしながら、近年、制御圧延、圧延後の制御冷却など
、いわゆる加工熱処理のための低温加熱−。
(Problems to be Solved by the Invention) However, in recent years, low-temperature heating for so-called processing heat treatment, such as controlled rolling and controlled cooling after rolling, has become increasingly popular.

の要求が加わり、被加熱物の加熱温間範囲は、従来の1
10θ〜18oO°Cに対して900’C近辺への拡張
が必要になった。
With the addition of new demands, the heating range of the heated object has increased
It became necessary to extend the range from 10θ to 18oO°C to around 900'C.

その結果、バーナーの燃料投入量も大流量から小流量ま
での広範囲になり、前述したサイド焚バト・−ナーでも
ってしても対応しきれない場合が生じてきた。例えば、
燵料脅が極端に少ないとき、火炎が炉幅中央部までとど
かず中央部の炉温が低くなってしまうからである。
As a result, the amount of fuel input into the burner has varied over a wide range from a large flow rate to a small flow rate, and there have been cases in which the amount of fuel input to the burner cannot be handled even with the above-mentioned side firing burner. for example,
This is because when there is extremely little heating power, the flame does not reach the center of the width of the oven, resulting in a low oven temperature in the center.

とぐに、厚板スラブ加熱炉のように被加熱物を1−・2
列装入する加熱炉では、上記したサイド焚バーナ一方式
は致命的な欠点が不可避である。
Immediately, the object to be heated is
In a heating furnace with row charging, the above-mentioned side firing burner type has a fatal drawback.

すなわち、2列装入のスラブはそれぞれ水冷スキッドに
支えられ、下部サイド焚バーナーの火炎1またはその燃
焼ガスが炉幅中央部でぶつがり合っJて2列装入のスラ
ブの間から上部へ吹き上り、そ1の結果、スラブ端部が
過熱される不具合が生じることである。
In other words, the slabs charged in two rows are each supported by a water-cooled skid, and the flame 1 of the lower side-fired burner or its combustion gas collides in the center of the width of the furnace and blows from between the slabs charged in the two rows to the top. The first result is that the end of the slab is overheated.

また、このようにして下部の燃焼ガスmの減少が金儀な
くされることにより下部の伝熱効率が低−下して燃料消
費量が増大することのある不利もある。
In addition, since the combustion gas m in the lower part is not reduced in this way, there is a disadvantage that the heat transfer efficiency in the lower part decreases and fuel consumption increases.

(問題点を解決するための手段) この発明は、加熱炉の少なくとも下部に、炉幅方向及び
炉長方向に複数の帯状火炎バーナーを配)・・列してな
ることを特徴とする連続鋼片加熱炉である。
(Means for Solving the Problems) The present invention provides a continuous steel characterized in that a plurality of strip flame burners are arranged in rows in the furnace width direction and the furnace length direction at least in the lower part of the heating furnace. It is a single heating furnace.

ここにコンパクトな形状の帯状火炎バーナーを加熱炉の
天井または炉床に設置し、帯状火炎を炉壁に沿わせて生
じさせることによって前述の先行j゛技術欠点は解消で
き、もちろん軸流バーナーのようなノーズ部に起因する
欠点はなく、シかも炉幅方向の温度制御も可能であって
かつ、低温加熱から高温加熱まで広範囲な加熱温間に対
しても最少の燃料消費量での操業が可能となる。
By installing a compact strip flame burner on the ceiling or hearth of the heating furnace and generating strip flames along the furnace wall, the drawbacks of the previous technology described above can be overcome, and of course, the disadvantages of the axial burner can be overcome. There are no drawbacks caused by the nose section, and it is possible to control the temperature in the width direction of the furnace, and it can be operated with minimum fuel consumption even over a wide range of heating temperatures from low-temperature heating to high-temperature heating. It becomes possible.

この発明に従う好適な連続鋼片加熱炉の具体例1を第1
図に示し、図中1はパスライン、2は被加熱物、3は炉
体で、3aは炉床、8bは天井を示し、条は加熱空間、
5は帯状火炎バーナーで、5aは燃料ガス多孔ノズル、
I5bは燃焼用エアー多孔・ノズルを示し、6は帯状火
炎である。
Specific example 1 of the preferred continuous steel billet heating furnace according to the present invention is shown in the first example.
In the figure, 1 is the pass line, 2 is the object to be heated, 3 is the furnace body, 3a is the hearth, 8b is the ceiling, and the strips are the heating space,
5 is a strip flame burner, 5a is a fuel gas porous nozzle,
I5b indicates a combustion air hole/nozzle, and 6 indicates a band-shaped flame.

帯状火炎バーナー5は加熱炉の少くとも下部すなわち炉
床8aまたはさらに天井8bに複数設置し、帯状火炎6
を、炉体8の炉床8a又は天井3bに沿って被加熱物2
の搬送方向と平行に形成するd・・なお、図中7は水冷
スキッド、8は冷却水配管、また9は水冷スキッド7に
沿う被加熱物2の搬送方向を示す。
A plurality of belt-shaped flame burners 5 are installed at least at the lower part of the heating furnace, that is, the hearth 8a, or further on the ceiling 8b, and the belt-shaped flame burners 6
The object to be heated 2 is placed along the hearth 8a or ceiling 3b of the furnace body 8.
d is formed parallel to the conveying direction of... In the figure, 7 indicates a water-cooled skid, 8 indicates a cooling water pipe, and 9 indicates the conveying direction of the heated object 2 along the water-cooled skid 7.

帯状火炎バーナー5とそのバーナー設置部10の詳細を
第2図に示し、矢印11.12で燃料ガ1′スと燃焼用
エアの噴流、18にて両噴流の衝突角をあられし、14
+はバーナーボディ、15.16は燃料ガスと燃焼用エ
アーの導管、17.18は燃料ガスヘッダと燃焼用エア
ーヘッダである。
Details of the strip flame burner 5 and its burner installation part 10 are shown in FIG.
+ is a burner body, 15.16 is a fuel gas and combustion air conduit, and 17.18 is a fuel gas header and a combustion air header.

図のように炉体8の外側にて加熱炉の炉幅方向パにわた
り配設した燃料ガスヘッダ17、燃焼用エアーヘッダ1
8から帯状をなすを可とする燃料ガス導管15、燃焼用
エアー導管16を埋設したバーナーボディ14は、炉体
3B貫通して炉内に突出させ1各導管15.16と対応
して燃料ガス多5孔ノズル5a、燃焼用エアー多孔ノズ
ル5bを各導管15.16の先端にて開口させるのであ
る。
As shown in the figure, a fuel gas header 17 and a combustion air header 1 are disposed outside the furnace body 8 across the width direction of the heating furnace.
A burner body 14 in which a fuel gas conduit 15 and a combustion air conduit 16, which can be formed in a belt shape from 8 to 8, are embedded, penetrates the furnace body 3B and protrudes into the furnace. The multi-5-hole nozzle 5a and the combustion air multi-hole nozzle 5b are opened at the tip of each conduit 15.16.

燃料ガス多孔ノズル5aと燃焼用エアー多五〜ノズル2
5は、両者の噴射方向11.12が適切な衝突角1Bで
互いに交わるように開口するものと10する。
Fuel gas porous nozzle 5a and combustion air multi-hole nozzle 2
5 is assumed to be opened such that both injection directions 11 and 12 intersect with each other at an appropriate collision angle 1B.

バーナーボディー14は各多孔ノズル孔の列を加熱炉幅
方向にわたってヘッダ17.18と平行な向きにて複数
組を、第1図X−X断面に示すように、たとえば8組列
設し、さらに第1図のよう1−′に炉長方向の間@なお
いて必要段数たとえば4段配設する。
The burner body 14 has a plurality of rows of multi-hole nozzle holes arranged in a direction parallel to the header 17.18 across the width of the heating furnace, for example eight sets, as shown in the XX cross section of FIG. As shown in FIG. 1, the required number of stages, for example, four stages, are arranged at intervals 1-' in the furnace length direction.

帯状火炎バーナー5は、燃料ガス噴流11と燃焼用エア
ー噴流12とが適当な衝突角18で交差する向きに噴射
し、両者の唾突点が安定した着火″□位置となって帯状
火炎6が炉体8に沿うように形l成される。
The belt-shaped flame burner 5 injects the fuel gas jet 11 and the combustion air jet 12 in a direction in which they intersect with each other at a suitable collision angle 18, and the collision point of the two becomes a stable ignition "□" position, and the belt-shaped flame 6 is generated. It is formed along the furnace body 8.

(作 用) 上述のような帯状火炎バーナー5は炉体8の炉床8a及
び/又は天井8bに設置することにより)この発明の加
熱炉は1以下のように機能する。
(Function) The heating furnace of the present invention functions as described below (by installing the strip flame burner 5 as described above on the hearth 8a and/or ceiling 8b of the furnace body 8).

(1)帯状火炎バーナー5の取付は高さが小さく、軸流
バーナ一方式加熱炉のようなノーズ部は形成されず、加
熱炉の有効伝熱面長が最大にとれ、加熱効率が高い。
(1) The mounting height of the strip flame burner 5 is small, and a nose part unlike an axial flow burner one-type heating furnace is not formed, so that the effective heat transfer surface length of the heating furnace can be maximized, and heating efficiency is high.

(2)帯状火炎バーナー5は炉幅方向に複数組設置し、
各バーナーの燃料投入量を訓整することによって被加熱
物2の炉幅方向の均一加熱にはもちろん、さらには温間
分布をつける操作もやり易い。
(2) Multiple sets of strip flame burners 5 are installed in the furnace width direction,
By adjusting the amount of fuel input to each burner, it is possible to not only uniformly heat the object 2 in the width direction of the furnace, but also to easily provide a warm distribution.

(8)帯状火炎6は炉体3の炉壁に沿って形成されるの
で、炉壁が火炎からのガス輻射のみならず、対流によっ
ても加熱され、高温になった炉壁から被加熱物への固体
輻射が行われるので、従来の火炎からのガス輻射伝熱を
主体とする加熱炉″□に較べて加熱効率がはるかに高い
。また同様の1理由で(2)項に述べた炉幅方向の温度
制御の効果も従来の加熱炉に較べて著しい。
(8) Since the strip flame 6 is formed along the furnace wall of the furnace body 3, the furnace wall is heated not only by gas radiation from the flame but also by convection, and the heated furnace wall is transferred to the heated object. Since solid-state radiation is carried out, the heating efficiency is much higher than that of conventional heating furnaces, which mainly rely on gas radiation heat transfer from flames.Also, for the same reason, the furnace width mentioned in section (2) is much higher. The effect of directional temperature control is also remarkable compared to conventional heating furnaces.

(4)帯状火炎6が被加熱物2と平行で、かつ炉壁に沿
って形成されるので、火炎と被加熱物との5間隔を広く
とることができ、その結果低温加熱操業の際、熱料投入
量が絞られて火炎の直進性が弱まり、火炎が吹き上る傾
向を示すような場合であったとしても、炉床3aでの設
置に拘らず火炎が被加熱物2と接触せず、従って局部過
10熱を生じないし、天井8bでの設置では火炎が天井
壁に沿って形成されているので吹き上らなし)0 (5)帯状火炎バーナーは、従来の軸流バーナー、サイ
ドバーナーに較べてバーナーの高さ方向の15サイズが
小さく、かつ火炎も帯状の薄膜であるので、従来の加熱
、炉に較べて炉高を低くすることが可能であり、その結
果、炉体表面積が小さくそれ故炉体放散熱も少なくなっ
て燃料消費量が減じ、また建設コストも低い。    
  ′。
(4) Since the strip flame 6 is formed parallel to the object to be heated 2 and along the furnace wall, the distance between the flame and the object to be heated can be widened, and as a result, during low-temperature heating operation, Even if the amount of heat input is reduced and the straightness of the flame weakens and the flame tends to blow up, the flame will not come into contact with the object to be heated 2 regardless of the installation on the hearth 3a. (Therefore, it does not generate local superheat, and when installed on the ceiling 8b, the flame is formed along the ceiling wall, so there is no blowing up). Since the size of the burner in the height direction is smaller than that of the conventional heating furnace, and the flame is a strip-shaped thin film, it is possible to lower the height of the furnace compared to conventional heating furnaces, and as a result, the surface area of the furnace body can be reduced. Because it is small, the heat dissipated from the furnace body is reduced, resulting in lower fuel consumption and lower construction costs.
'.

(6)帯状火炎バーナーは、従来のルーフバーナー1と
はおもむきを\異にして炉床8bに配置してもノズル孔
が上向きにならないので被加熱物の酢化スケールなどの
落下による性能の損傷を受けない。
(6) The strip flame burner is different from the conventional roof burner 1 in that the nozzle hole does not face upward even if it is placed on the hearth 8b, so performance may be damaged due to falling of acetic scale etc. from the heated object. I don't receive it.

ちなみに第81N(a) 、 (b)、第4図(a) 
、 (b)オヨび第5図(a)、■)にそれぞれ従来の
軸流バーナ一方式、サイドバーナ一方式およびルーフバ
ーナ一方式の各加熱炉を炉体の長手方向および幅方向各
断面で示した。図中1はパスライン、2は被加熱物、そ
l・)して8は炉体であり、また9は搬送方向を示すほ
か、19はバーナーS20は火炎、21はバーナーブリ
ッジ、22はノーズ部である。
By the way, Section 81N (a), (b), Figure 4 (a)
, (b) Figure 5 (a) and (■) respectively show conventional axial burner one-type, side burner one-type, and roof burner one-type heating furnaces in longitudinal and widthwise cross-sections of the furnace body. Ta. In the figure, 1 is a pass line, 2 is an object to be heated, 8 is a furnace body, 9 is a conveyance direction, 19 is a burner S20 is a flame, 21 is a burner bridge, and 22 is a nose. Department.

また第6図には、従来のサイド焚鋼片加熱炉の加熱方法
(特開昭54−8Dfi109号公報)に用15いるバ
ーナーの断面を示し、図中28は向流エアーノズル、2
41ま燃料ガスノズル、25は昇流エアーノズルであり
、この場合燃料投入量(局に応じて第7図の斜線領域に
適合するように昇流空気比率%の調整を行うことにより
1一定の火炎長が保2″(11つ 持され得ることはすでに述べたとおりである。 1以上
、何れの場合にも止揚したこの発明に独特の機能が求む
べくもないことは明らかである。
Furthermore, Fig. 6 shows a cross section of 15 burners used in the conventional heating method for a side-fired billet heating furnace (Japanese Unexamined Patent Publication No. 54-8Dfi109).
41 is a fuel gas nozzle, and 25 is a rising air nozzle. As already mentioned, the length can be 2" (11). It is clear that this invention, which has a length of 2" (11), cannot have a unique function in any case.

(実施例) 第8図には、有効炉長4θm1炉幅Bm、生産5能力1
00 T/Hの2列装入の厚板加熱炉にこの発明を適用
した具体例を示した。
(Example) Figure 8 shows the effective furnace length 4θm1 furnace width Bm, production 5 capacity 1
A specific example in which the present invention is applied to a double-row charging thick plate heating furnace of 0.00 T/H was shown.

この例で、幅150Qsmの帯状火炎バーナー5を被加
熱物2の搬送方向9に逆らって帯状火炎6が形成される
向きにて炉長方向に4mピッチで810組、炉幅方向に
5組を炉床8aと天井8bとに設置しである。この場合
炉高すなわちパスライン1から測った炉床8aおよび天
井8bまでの距離は従来の軸流式加熱炉が何れもほぼ2
゜Ili〜8.0mであったのに対して約1.5mまで
ほぼ生滅した。 11燃焼ゾーンは搬送方向9の方向に
第1加熱帯26、第2加熱帯27、第8加熱帯28、お
よび第4加熱帯29に分割するように各々ゾーン間を仕
切壁80によって区分した。仕切り壁80は、厚さが薄
いのでノーズ部22(第8図参照)のよ2゛。
In this example, 810 sets of belt-shaped flame burners 5 with a width of 150 Qsm are installed at a pitch of 4 m in the furnace length direction, and 5 sets in the furnace width direction, in a direction in which the belt-shaped flame 6 is formed against the conveyance direction 9 of the object to be heated 2. It is installed on the hearth 8a and ceiling 8b. In this case, the distance from the furnace height, that is, the distance from the pass line 1 to the hearth 8a and ceiling 8b, is approximately 2 in both conventional axial flow heating furnaces.
゜Ili~8.0m, but it almost died down to about 1.5m. The 11 combustion zones were divided into a first heating zone 26, a second heating zone 27, an eighth heating zone 28, and a fourth heating zone 29 in the conveying direction 9, with partition walls 80 separating each zone. Since the partition wall 80 is thin, it has a thickness of 2 mm like the nose portion 22 (see FIG. 8).

うな伝熱のデッドスペースとはならない。There is no dead space for heat transfer.

帯状火炎バーナー5は1バーナーピツチが4mであるの
で、帯状火炎6の長さが8mになるよう(こ燃料ガス噴
流と燃焼用エアー噴流の衝突角変18を実験によって求
めたところ、60°が最適であつ)た。なお、火炎長は
角変1Bを太きくとると短炎になり、小さくとると長炎
になるので、バーナーピッチ、燃焼晋に応じる実験など
によって最適角度を設定する。
Since the burner pitch of the strip flame burner 5 is 4 m, the length of the strip flame 6 should be 8 m. It was optimal. As for the flame length, if the angle variation 1B is made thicker, the flame will be shorter, and if it is made smaller, the flame length will be longer, so the optimum angle is determined by experimentation depending on the burner pitch and combustion depth.

次に燃料ガス多孔ノズルlsa、燃焼用エアー多IO孔
ノズル5bについては、この例で何れも1Qsaφ、2
0闘ピツチとしたがやはり実験によって帯状火炎6が安
定して形成されるノズル径とピッチを適当に設定する。
Next, regarding the fuel gas multi-hole nozzle lsa and the combustion air multi-IO hole nozzle 5b, in this example, both are 1Qsaφ, 2
Although the nozzle pitch was set to 0, the nozzle diameter and pitch at which the band-shaped flame 6 is stably formed are set appropriately through experiments.

この加熱炉を原単位・・・278 X 10’KOal
/Tで“゛操業するとき、2800 Koa//Nm 
の燃料ガスを用いると、総燃料ガス量は、加熱能力10
0 T/Hであるから(100T/Hx 278x10
8Kca//T)/2800 Kcal/1m8#12
00 Nm8/H%従ってバーナー1本当りの平均値で
1200 ONm”/H÷80本−2“150 Nm8
/H%そしてこれに対しエアー供給晋は1a5oNm/
Hである。
The basic unit of this heating furnace...278 x 10'KOal
When operating at /T, 2800 Koa//Nm
, the total amount of fuel gas has a heating capacity of 10
Since it is 0 T/H (100T/Hx 278x10
8Kcal//T)/2800 Kcal/1m8#12
00 Nm8/H% Therefore, the average value per burner is 1200 ONm"/H÷80 pieces - 2"150 Nm8
/H% and for this the air supply is 1a5oNm/
It is H.

第9図には、上記加熱炉と従来の軸流バーナ一式加熱炉
との炉内温度分布を実線と破線により比較した。従来加
熱炉の炉内温度分布は、ノーズ部へ22で低温になって
いるので対してこの発明の温度分布は、低温部のないフ
ラットな分布を示し、その結果、同一の有効炉長40m
で90 T/Hの生産能力が約10%向上した。
In FIG. 9, the temperature distribution inside the furnace is compared between the above-mentioned heating furnace and a conventional heating furnace with an axial flow burner set, using solid lines and broken lines. The temperature distribution in the conventional heating furnace has a low temperature at the nose part 22, but the temperature distribution in the present invention shows a flat distribution without a low temperature part, and as a result, the same effective furnace length of 40 m
The production capacity of 90 T/H was increased by approximately 10%.

次ニ、第10 mにサイドバーナ一式加熱炉との10間
(こおける被加熱板の炉幅方向温度分布を比較した。
Second, the temperature distribution of the heated plate in the width direction of the furnace was compared between the heating furnace and the side burner set at the 10th meter.

サイドバーナ一式加熱炉によるスラブ加熱温間は、第1
1図に一例を示したように炉幅中央部で火炎がぶつかり
合って下部から上部燃焼ガスが 1゛20′のように吹
き上るのでスラブ端部Eの位置で第11図の破線のよう
に過熱されるのに対して、この発明では、同図実線のよ
うにスラブ端部Eでの過熱が生じない。
Warm heating of the slab using a heating furnace with a side burner is performed in the first
As shown in Fig. 1, the flames collide at the center of the furnace width, and the upper combustion gas blows up from the bottom in a direction of 1゛20'. In contrast, in the present invention, overheating does not occur at the slab end E, as shown by the solid line in the figure.

更に炉幅方向に複数個設置された帯状火炎バーパ。Furthermore, multiple belt-shaped flame burners are installed in the width direction of the furnace.

ナーのうちスラブ端部に設置するバーナーの燃焼1間を
絞った結果、スラブ湿度はより均一になる。
As a result of narrowing down the combustion period of the burner installed at the end of the slab, the slab humidity becomes more uniform.

このようにして、従来のスラブ幅方向の温間差は80°
Cであったのに対して、この発明により40°Cに下が
り均一加熱能力が向上した。
In this way, the conventional temperature difference in the slab width direction is reduced to 80°.
In contrast, this invention lowered the heating temperature to 40°C, improving uniform heating ability.

また、第12図には第8図の場合とほぼ同一の条件で下
部帯に帯状火炎バーナー5を1そして上部帯にはサイド
バーナー19を配置したこの発明1の他の例を示す。
Further, FIG. 12 shows another example of this invention 1, in which one strip-shaped flame burner 5 is arranged in the lower strip and a side burner 19 is arranged in the upper strip under almost the same conditions as in FIG. 8.

この場合も1ノ一ズ部22がなく、かつ上部帯1([で
はサイドバーナーの火炎が炉幅中央部でぶつかっても吹
き上がらないので、第9図について示した実線に従う炉
内温度分布、および第10図における実線のようなスラ
ブ温変分布が得られ、生産能力、均一加熱能力が従来の
加熱炉に較べて向上1″する。
In this case as well, there is no nozzle part 22, and the upper zone 1 ([In this case, the flame of the side burner does not blow up even if it collides with the center of the furnace width, so the temperature distribution in the furnace follows the solid line shown in FIG. 9, A slab temperature variation distribution as shown by the solid line in FIG. 10 is obtained, and the production capacity and uniform heating capacity are improved by 1'' compared to the conventional heating furnace.

この発明による燃料消費量の低減効果を第1表にまとめ
て示した。燃料原単位は、従来の細流バーナ一式加熱炉
(7) 292.9 x 108Kcal/T ニ対し
て、この発明では炉高が低いので炉体放散熱、冷′。
The effect of reducing fuel consumption by this invention is summarized in Table 1. The fuel consumption rate is 292.9 x 108 Kcal/T for the conventional trickle burner set heating furnace (7).In contrast, in this invention, the furnace height is low, so the heat dissipates from the furnace body and cools.

却損失熱が少なく、第8図の場合272.9 X 10
   +Kcal/T1第12図の場合274,0xl
O8Kcal/T ニなっている。
Loss of heat is small, in the case of Figure 8 272.9 x 10
+Kcal/T1 for Figure 12 274,0xl
O8Kcal/T has become 2.

第  1  表 (発明の効果) この発明によれば、低温加熱から高温加熱まで広範な加
熱温度に対しても最小の燃料消費■の下に適切な連続鋼
片の加熱操業が実現される。
Table 1 (Effects of the Invention) According to the present invention, suitable continuous steel billet heating operations can be realized with minimum fuel consumption (2) even over a wide range of heating temperatures from low-temperature heating to high-temperature heating.

(1B )(1B)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う連続鋼片加熱炉の断面図、 第2図は、要部詳細図1 第8図〜第6図は、在来の加熱炉のスケルtンス図1 第6図は、別の従来例のバーナー断面図、第711は、
そのバーナー制御用グラフ、第8図は、実施例の断面図
1 第9図は、昇温挙動を示すグラフ、 第10図は、スラブの幅方向温間分布の比較グラフ、 第11図は、サイドバーナーの燃焼挙動説明図、第12
図は、他の実施例の断面図である。 8・・・炉体       5・・・帯状火炎バーナー
。パ′第6図 第3図 第7図 燃料膜X量(物 手続補正書(方式〕 昭和59年11月80日 1、事件の表示 昭和59年 特 許 願第159828号2、発明の名
称 連続鋼片加熱炉 3、補正をする者 事件との関係 特許出願人 (125)川崎製鉄株式会社
Fig. 1 is a sectional view of a continuous billet heating furnace according to the present invention; Fig. 2 is a detailed view of the main parts; Figs. 8 to 6 are skeleton diagrams of a conventional heating furnace; Fig. 6; 711 is a sectional view of another conventional burner,
The graph for burner control, FIG. 8 is a cross-sectional view of the example. FIG. 9 is a graph showing the temperature increase behavior. FIG. 10 is a comparison graph of the warm distribution in the width direction of the slab. Side burner combustion behavior explanatory diagram, 12th
The figure is a sectional view of another embodiment. 8...Furnace body 5...Strip flame burner. Figure 6 Figure 3 Figure 7 Fuel film Relationship between billet heating furnace 3 and the amended case Patent applicant (125) Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 1、加熱炉の少なくとも下部に、炉幅方向及び炉長方向
に複数の帯状火炎バーナーを配列してなることを特徴と
する連続鋼片加熱炉。
1. A continuous billet heating furnace characterized by having a plurality of belt-shaped flame burners arranged in the furnace width direction and the furnace length direction at least in the lower part of the heating furnace.
JP15932884A 1984-07-31 1984-07-31 Continuous billet heating furnace Pending JPS6137915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15932884A JPS6137915A (en) 1984-07-31 1984-07-31 Continuous billet heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15932884A JPS6137915A (en) 1984-07-31 1984-07-31 Continuous billet heating furnace

Publications (1)

Publication Number Publication Date
JPS6137915A true JPS6137915A (en) 1986-02-22

Family

ID=15691410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15932884A Pending JPS6137915A (en) 1984-07-31 1984-07-31 Continuous billet heating furnace

Country Status (1)

Country Link
JP (1) JPS6137915A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782424A (en) * 1980-11-07 1982-05-22 Ishikawajima Harima Heavy Ind Co Ltd Heating furnace with radiation pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782424A (en) * 1980-11-07 1982-05-22 Ishikawajima Harima Heavy Ind Co Ltd Heating furnace with radiation pipe

Similar Documents

Publication Publication Date Title
EP1119733B1 (en) Method and apparatus for uniformly heating a furnace
JPS6137915A (en) Continuous billet heating furnace
US4388068A (en) Metal heating furnace
JP3396922B2 (en) Continuous heating furnace and combustion method thereof
JP3419917B2 (en) Continuous heating device
KR20010088418A (en) Improvements to the preheating of metal strip, especially in galvanizing or annealing lines
JP3845194B2 (en) Heating operation method of steel for continuous hot rolling
JPH0828830A (en) High temperature air burner
JPH08291328A (en) Continuous heating apparatus
JPH1025515A (en) Continuous type heating furnace
JP2000212645A (en) Continuous heating of steel material
JPS6215232Y2 (en)
JP2776110B2 (en) Combustion control method for vertical open flame heating furnace
KR100458263B1 (en) walking beam type furnace
JP2733885B2 (en) Continuous heat treatment of steel strip
JPS6036586Y2 (en) steel heating furnace
JP3686449B2 (en) Continuous heating furnace
JPH0213011B2 (en)
JPH08291327A (en) Continuous heating apparatus
JPS5839722A (en) Heating method in heating furnace
JPS60149760A (en) Galvannealing furnace
JP2598345B2 (en) Heating method of steel strip heating furnace
JPS6319313Y2 (en)
RU1827012C (en) Continuous furnace
JP2001317875A (en) Continuous heating device for steel stock and heating method