JPS613645A - Method for controlling flow rate of cooling water for continuous casting mold - Google Patents

Method for controlling flow rate of cooling water for continuous casting mold

Info

Publication number
JPS613645A
JPS613645A JP12476684A JP12476684A JPS613645A JP S613645 A JPS613645 A JP S613645A JP 12476684 A JP12476684 A JP 12476684A JP 12476684 A JP12476684 A JP 12476684A JP S613645 A JPS613645 A JP S613645A
Authority
JP
Japan
Prior art keywords
mold
cooling water
temperature
flow rate
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12476684A
Other languages
Japanese (ja)
Inventor
Yoshitaka Oiwa
大岩 美貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12476684A priority Critical patent/JPS613645A/en
Publication of JPS613645A publication Critical patent/JPS613645A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To economize cooling water and to decrease the generation of breakout by controlling the flow rate of the cooling water for cooling a casting mold so that the wall surface temp. of the mold is approximated to the target value of the wall surface temp. of the mold determined from the component values of the molten steel. CONSTITUTION:The wall surface temp. of the casting mold 4 is detected by a thermometer 5. The target value of the wall surface temp. of the mold 4 is determined in accordance with the solidifying point temp. estimated from the component values of the molten steel 2. The flow rate of the cooling water is so controlled that the detected value of the above-described wall surface temp. attains the above-described target value. The cooling water is economized and the generation of the breakout is decreased by the above-mentioned control method.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は連続鋳造用鋳型(以下、単に鋳型という。)の
冷却水制御方法に係り、詳しくは、鋳型壁面温度を検出
し、この値を目標値に合わせるよう、冷却水の流量を制
御する方法に係る。
[Detailed Description of the Invention] <Object of the Invention> Industrial Application Field The present invention relates to a cooling water control method for a continuous casting mold (hereinafter simply referred to as a mold). The present invention relates to a method of controlling the flow rate of cooling water so that this value matches a target value.

従  来  の  技  術 一般に、溶鋼の連続鋳造は溶鋼を取鍋、タンディツシュ
ならびに連続鋳造用鋳型に順次に移送し、連続鋳造用鋳
型において鋳型内面からの冷却によって溶鋼は急速に凝
固間が形成され、その後、この凝固間を外殻として内部
未凝固の状態で順次下方に引抜かれ、鋳型下方のいわゆ
る二次冷却帯においては、散水冷却により完全に凝固さ
れる。従って、初期段階での溶鋼の冷却、すなわち、鋳
型内の冷却は鋳造の高速化及び品質上の観点から重要な
問題とされ、過去、種々の連続鋳造用鋳型の冷却水制御
方法が提案されているが、次の通りの問題点がある。
Conventional technology In general, continuous casting of molten steel involves sequentially transferring the molten steel to a ladle, a tundish, and a continuous casting mold. Thereafter, the solidified shell is used as an outer shell and is sequentially pulled downward in an unsolidified state, and is completely solidified by water spray cooling in a so-called secondary cooling zone below the mold. Therefore, cooling of molten steel in the initial stage, that is, cooling inside the mold, is considered to be an important issue from the viewpoint of speeding up casting and quality, and in the past, various methods of controlling cooling water for continuous casting molds have been proposed. However, there are the following problems.

すなわち、従来から実施されている連鋳鋳型の冷却水制
御方法を大別にすると、(1)定値流量制御方法、(2
)鋳片表面温度を一定に制御する方法、(3)鋳造速度
にカスケードさせる方法等に分けられる。
In other words, the conventional continuous casting mold cooling water control methods can be roughly divided into (1) constant flow rate control method, and (2)
) A method of controlling the slab surface temperature to a constant level, and (3) a method of cascading the casting speed.

この定値流量制御方法とは連鋳鋳型に供給する冷却水の
流量を常時一定流量に確保するよう制御する方法である
。しかし、定値流量制御方法によって冷却水の流量を一
定に保っても、連鋳鋳型壁を通過する熱量は鋳型壁面テ
ーパ、パウダーの分布状況、鋳片サイズ、鋼種等多くの
鋳造条件によって変化し、このため、設定流量は安全率
を大きくとった過大流量として制御することになって、
適冷により鋳片表面に割れが生じる問題がある。
This constant flow rate control method is a method of controlling the flow rate of cooling water supplied to the continuous casting mold so as to always maintain a constant flow rate. However, even if the flow rate of cooling water is kept constant using the constant flow rate control method, the amount of heat passing through the continuous casting mold wall varies depending on many casting conditions such as the mold wall taper, powder distribution, slab size, steel type, etc. Therefore, the set flow rate is controlled as an excessive flow rate with a large safety factor.
There is a problem that cracks occur on the surface of the slab due to proper cooling.

次に、鋳片表面温度を一定に制御する方法は鋳片の表面
温度を計測し、これを一定にするよう、冷却水の流量を
制御する方法である。
Next, the method of controlling the surface temperature of the slab to be constant is to measure the surface temperature of the slab and control the flow rate of cooling water to keep it constant.

しかし、この場合には、鋳片表面温度は2次冷却帯であ
るスプレー冷却水に最も左右されるため、モールド冷却
水の制御はあまり関係が無く、最も基本となる鋳片表面
温度計測自体に問題があり、実施されているところは殆
ど無い。
However, in this case, since the slab surface temperature is most influenced by the spray cooling water in the secondary cooling zone, the mold cooling water control has little to do with it, and the slab surface temperature measurement itself is the most basic. There are problems and very few places are implementing it.

最後に、鋳造速度にカスケードさせる方法は、特開昭4
9−107928号あるいは特開昭52−46331号
に示される姐く、鋳型内を通過する冷却水量と、該冷却
水の鋳型供給側温度と鋳型排出側温度との温度差を用い
て求まる抜熱量とに従って鋳造速度を制御する方法であ
る。しかし、これはタンディツシュ内溶鋼温度とは無関
係に冷却水流mを定流して冷却する方法のため、鋳込温
度の変動により高温鋳片の鋳造上好ましくない必要以上
の熱を鋳片でうばってしまうことがあり、ブレイクアウ
トに至るかの問題がある。
Finally, the method of cascading the casting speed was developed in Japanese Patent Publication No. 4
9-107928 or JP-A No. 52-46331, the amount of heat removed is determined using the amount of cooling water passing through the mold and the temperature difference between the temperature of the cooling water on the mold supply side and the temperature on the mold discharge side. This method controls the casting speed according to the However, since this method uses a constant flow of cooling water m regardless of the temperature of the molten steel in the tundish, fluctuations in the pouring temperature cause the slab to absorb more heat than necessary, which is undesirable for casting high-temperature slabs. There is a problem of whether this can lead to a breakout.

発明が解決しようとする問題点 本発明は上記問題の解決を図ることを目的とし、具体的
には、鋳型壁面温度を検出して、この温度が目標値にな
るよう、鋳型冷却水の流量を制御し、鋳型において、必
要最小限の抜熱を行なわせ、凝固時の表皮を形成する冷
却水の流量制御方法を提案する。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned problems. Specifically, the mold wall temperature is detected and the flow rate of mold cooling water is adjusted so that this temperature becomes a target value. We propose a method for controlling the flow rate of cooling water to remove the minimum necessary heat from the mold and form a skin during solidification.

〈発明°の構成〉 問題点を解決するための 手段ならびにその作用 すなわち、本発明方法は連続鋳造用鋳型を冷却する冷却
水を制御する際に、鋳型壁面温度を検出し、この検出値
が溶鋼成分等にもとすいて定められる目標値になるよう
、冷却水の流量を制御することを特徴とする。
<Structure of the Invention> Means for solving the problem and its operation, that is, the method of the present invention detects the mold wall temperature when controlling the cooling water for cooling the continuous casting mold, and this detected value is determined by the temperature of the molten steel. It is characterized by controlling the flow rate of cooling water so that it reaches a target value determined based on the components, etc.

従って、本発明方法によると鋳型冷却水の流量とともに
、鋳型銅板温度を検出し、これらの検出信号を用いて、
鋳型冷却水の流量制御を行なうところに特徴の一つがあ
り、この特徴によって、冷却水使用量の削減、ブレーク
アウト発生の低減および高温鋳片i造可能等の効果が達
成できる。
Therefore, according to the method of the present invention, the temperature of the mold copper plate is detected together with the flow rate of the mold cooling water, and these detection signals are used to
One of the features is that the flow rate of mold cooling water is controlled, and this feature makes it possible to achieve effects such as reducing the amount of cooling water used, reducing the occurrence of breakouts, and making it possible to produce high-temperature slabs.

そこで、上記構成について詳しく説明すると、次の通り
である。
Therefore, the above configuration will be explained in detail as follows.

連鋳鋳型においては、上記の如く、冷却機能if重要で
、過冷却あるいは冷却不足が起こると、鋳片表面割れや
ブレイクアウト等の問題を引起すのは上記の通りである
As mentioned above, in a continuous casting mold, the cooling function is important, and if overcooling or insufficient cooling occurs, problems such as slab surface cracking and breakout will occur, as described above.

従って、鋳型においては必要最小限の適正の抜熱量を調
整するよう、鋳型を冷却することが重要である。しかし
ながら、従来技術では、鋳型下方に引抜かれた鋳片温度
にもとずいて冷却水量を制御するか、冷却水量の制御に
よって定値の抜熱量を維持するのにとどまって上記の通
り、多くの問題が残っている。連続鋳造において、鋳型
内で必要となる抜熱量は溶鋼のタンデイッシコ内への鋳
込温度の外、溶鋼成分と深く関係している。すなわち、
鋳込温度が高目であれば鋳型内で強冷却を必要とし、低
目であればそれに対応して緩冷却を実現させることが必
要でありるが、この強冷却暖冷却というのは、鋳込温度
と溶鋼成分からくる凝固点温度との差異に外ならない。
Therefore, it is important to cool the mold so as to adjust the necessary minimum appropriate amount of heat removal. However, in the conventional technology, the amount of cooling water is controlled based on the temperature of the slab drawn below the mold, or the amount of heat removed is maintained at a constant value by controlling the amount of cooling water, but as mentioned above, there are many problems. remains. In continuous casting, the amount of heat removal required in the mold is closely related to the molten steel composition as well as the temperature at which the molten steel is poured into the tandyssico. That is,
If the casting temperature is high, strong cooling is required in the mold, and if it is low, it is necessary to achieve slow cooling. This is nothing but the difference between the solidifying temperature and the freezing point temperature, which comes from the molten steel composition.

要するに、連鋳において鋳型で表面割れやブレイクアウ
トの問題を阻止するに必要な冷却は、溶鋼成分からくる
凝固点温度に適合させて必要最小限の熱をうばって凝固
謂の表皮を形成することがポイントとなる。
In short, the cooling necessary to prevent surface cracking and breakout problems in the mold during continuous casting is achieved by matching the freezing point temperature of the molten steel components and using the minimum amount of heat necessary to form a solidifying skin. This is the point.

このところから、本発明においては、上記の如く、鋳型
壁面の温度を測定し、この壁面温度が所定の目標値にな
るように冷却水の流量を制御するとごろに一つの特徴が
あって、このように冷却水の流量を制御すると、鋳込温
度がいかなる値であっても、溶鋼は鋳型内で過不足なく
冷却凝固がはかられ、鋳型内の冷却状況も観察できる。
From this point of view, one feature of the present invention is that, as described above, the temperature of the mold wall surface is measured and the flow rate of cooling water is controlled so that the wall surface temperature reaches a predetermined target value. By controlling the flow rate of cooling water in this way, no matter what the pouring temperature is, the molten steel will be cooled and solidified in the mold in just the right amount, and the cooling status in the mold can also be observed.

更に詳しく説明すると、鋳込温度が高ければ、鋳型壁面
温度は上昇し、また、低ければ鋳型壁面温度は下降する
。従って、本発明方法によって鋳型壁面温度を所定の目
標値に一致覆るよう、冷却水を制御すると、鋳込温度と
V型壁面温度は互いに相関関係にあることがら、鋳型抜
熱量を適正な値に制御できる。なお、この際の抜熱量は
冷却水の流量や冷却水の給、排水の温度差をもとに把握
できる。
To explain in more detail, if the casting temperature is high, the mold wall temperature increases, and if it is low, the mold wall temperature decreases. Therefore, if the cooling water is controlled by the method of the present invention so that the mold wall surface temperature matches a predetermined target value, the mold heat extraction amount can be adjusted to an appropriate value since the casting temperature and the V-shaped wall surface temperature are correlated with each other. Can be controlled. Note that the amount of heat removed at this time can be determined based on the flow rate of cooling water and the temperature difference between cooling water supply and drainage.

更に、第1図ならびに第2図を用いて本発明を具体的に
説明すると、次の通りである。
Further, the present invention will be specifically explained using FIG. 1 and FIG. 2 as follows.

なお、第1図は本発明方法を実施する装置の一例の配置
図であり、第2図は鋳型銅板温度測定装置の一例の断面
図である。
Note that FIG. 1 is a layout diagram of an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a sectional view of an example of a mold copper plate temperature measuring apparatus.

まず、第1図において符号1はタンディツシュ2は溶鋼
、4は鋳型をそれぞれ示し、溶鋼2はタンディツシュ1
から鋳型4に鋳込まれる。その鋳型4壁面温度は鋳型壁
面に埋設された温度測定装置5によって測定されると共
に、鋳型4内の溶鋼2のレベルはレベル計3で測定され
、鋳型4には冷却水供給配管24を経て冷却水が供給さ
れ、この供給配管24には流量計7、流量調節弁8が設
けられ、冷却後の冷却水は冷却水排出配管25から排出
される。鋳型4内に注入された溶鋼2は、鋳型4からの
抜熱によって凝固シェル9が形成されて、下から連続的
に引抜かれる。
First, in Fig. 1, numeral 1 indicates tundish 2, molten steel, 4 indicates a mold, and molten steel 2 indicates tundish 1.
It is then cast into mold 4. The wall temperature of the mold 4 is measured by a temperature measuring device 5 embedded in the mold wall, and the level of molten steel 2 in the mold 4 is measured by a level meter 3, and the mold 4 is cooled via a cooling water supply pipe 24. Water is supplied, and this supply pipe 24 is provided with a flow meter 7 and a flow control valve 8, and the cooling water after cooling is discharged from a cooling water discharge pipe 25. The molten steel 2 injected into the mold 4 forms a solidified shell 9 by removing heat from the mold 4, and is continuously drawn out from below.

次に、以上の通りに連続鋳造する場合に、温度測定装置
5によって鋳型壁面の温度を測定し、この温度が所定の
目標値と一致するよう、冷却水の流量を制御する。この
ように制御すると、溶鋼からの抜熱量は適切かつ最小限
に保持でき、円滑に連続鋳造できる。
Next, when performing continuous casting as described above, the temperature of the mold wall surface is measured by the temperature measuring device 5, and the flow rate of cooling water is controlled so that this temperature coincides with a predetermined target value. By controlling in this manner, the amount of heat removed from the molten steel can be kept at an appropriate and minimum level, and continuous casting can be performed smoothly.

すなわち、鋳型4において溶鋼2からうばう抜熱量0は
(1)式で与えられる。
That is, the amount of heat removed from the molten steel 2 in the mold 4, 0, is given by equation (1).

(1)式において、hはディメンジョン補正係数であり
、鋳型冷却水の流量は流量計7により測定でき、鋳型サ
イズは初めから定まっており、鋳型内溶鋼深さはレベル
計3で測定した値から容易に求めることができる。
In equation (1), h is a dimension correction coefficient, the flow rate of mold cooling water can be measured by flow meter 7, the mold size is determined from the beginning, and the depth of molten steel in the mold is determined from the value measured by level meter 3. can be easily determined.

そこで、この鋳型抜熱量Qを適切かつ最小限に保持する
には、(1)式の△■をその目標値に設定ずれば抜熱量
0は一定に保持できるごとになる。この△1の目標値を
設定することは、鋳型壁面温度を所定目標値に合わせる
ようにする4(とによって達成できる。
Therefore, in order to appropriately maintain the amount of heat removed from the mold Q to a minimum value, the amount of heat removed from the mold 0 can be maintained constant by setting Δ■ in equation (1) to its target value. Setting the target value of Δ1 can be achieved by adjusting the mold wall temperature to a predetermined target value.

すなわち、△■は鋳型冷却水により溶鋼がうばわれる温
度差を示し、Δ■−鋳込温度−鋳型内の鋳片温度(Ts
)である。この場合、温度測定装置5によって計測され
る鋳型銅板温度の計測値に対し、鋳型の伝熱係数で補正
すると鋳型内の鋳片温度(以下、Tsという)は容易に
求めらる。
In other words, △■ indicates the temperature difference at which molten steel is washed away by mold cooling water, and Δ■ - pouring temperature - slab temperature in the mold (Ts
). In this case, the temperature of the slab in the mold (hereinafter referred to as Ts) can be easily determined by correcting the temperature of the mold copper plate measured by the temperature measuring device 5 using the heat transfer coefficient of the mold.

また、この温度差△■を一定にするには、溶鋼の鋳込温
度は通常の条件で鋳込まれるから、冷却水の流量を制御
して、鋳型銅板温度を目標値に一致させるように一定温
度に保持すると、△■が一定となり、(1)式によって
抜熱量0が適切かつ最小限のものでかつ一定に保持され
る。
In addition, in order to keep this temperature difference △■ constant, since the molten steel is poured under normal conditions, the flow rate of cooling water must be controlled to keep the mold copper plate temperature constant so that it matches the target value. When the temperature is maintained, △■ becomes constant, and according to equation (1), the amount of heat removed 0 is appropriate, minimum, and kept constant.

要づるに、本発明方法によって、予め設定された目標値
に鋳型銅板温度計測価を一致させるよう、冷却水流量を
コントロールすれば、(1)式によって鋳片内の抜熱間
Qは一定に保持され、溶鋼は適正に冷却されることにな
る。なお、鋳込速度の変動によって抜熱量が変動したと
きは、その変動分を考慮した形で△■を設定すれば、鋳
込速度変動要因の影響はこの中に含められる。
In short, if the cooling water flow rate is controlled by the method of the present invention so that the temperature measurement value of the mold copper plate matches the preset target value, the heat removal period Q in the slab can be kept constant according to equation (1). This will allow the molten steel to cool properly. Note that when the amount of heat removed changes due to fluctuations in the casting speed, if △■ is set in consideration of the fluctuation, the influence of the casting speed fluctuation factor is included in this.

また、このように冷却水の流量制御時の鋳型壁面温度、
つまり、銅板温度の目標値は溶鋼成分に関連させて次の
通りに定められる。
In addition, when controlling the flow rate of cooling water in this way, the mold wall temperature,
That is, the target value of the copper plate temperature is determined as follows in relation to the molten steel composition.

溶鋼の成分は、連鋳において前もって把握されており、
この溶鋼成分から凝固点温度(以下、■比という。)は
、 ”C<0.5%のとき TL=1538− (55x(%C)+80X(%H2
+13×(%Sil+4,8X(%Mn)+1.5×(
%Cr) + 4.3×(%Ni) )・・・・・・(
2) C>0.5%のとき TLL=1538− (44−24(%C1+52X(
%G)2+13×(%5i)−1−4,8X(%Mn>
+1,5X(%cr) 十4.3X(%N1))・・・
・・・(3)なお、(2)式、(3)式で(%C)、(
%Si)、(%Mn)(%Cr)、(%Ni)は溶鋼中
のC,St、 Mn、 Cr、 Niの各含有量を示す
。パ の如く算出できる。従って、このTLLをもとにすると
、それに安全温度を考慮して、低目にすれば目標値は設
定できる。
The composition of molten steel is known in advance during continuous casting,
From this molten steel composition, the freezing point temperature (hereinafter referred to as ■ ratio) is calculated as follows: When C<0.5%, TL=1538-(55x(%C)+80X(%H2)
+13×(%Sil+4,8X(%Mn)+1.5×(
%Cr) + 4.3×(%Ni) )・・・・・・(
2) When C>0.5%, TLL=1538- (44-24(%C1+52X(
%G)2+13×(%5i)−1−4,8X(%Mn>
+1.5X (%cr) 14.3X (%N1))...
...(3) Furthermore, in equations (2) and (3), (%C), (
%Si), (%Mn) (%Cr), and (%Ni) indicate the respective contents of C, St, Mn, Cr, and Ni in the molten steel. It can be calculated as follows. Therefore, based on this TLL, the target value can be set by taking the safe temperature into consideration and setting it to a low value.

なお、鋳型壁面温度の測定装置は銅板の温度が測定でき
れば何れにも構成できるが、通常は第2図に示す通り構
成する。
Although the mold wall temperature measuring device can be constructed in any way as long as it can measure the temperature of the copper plate, it is usually constructed as shown in FIG.

すなわち、第2図で符号10は鋳型4の内壁を構成する
銅板を示す。銅板10にはその背面に盲孔11が設けら
れ、温度計58として盲孔11に押圧され、密着の図ら
れた熱雷対12が配設される。符号13は熱電対の保護
管、14は補償導線、15はバネを示し、熱電対12の
盲孔11方向の押圧がこのバネ機構でなされ、正確に温
度測定ができる。
That is, in FIG. 2, reference numeral 10 indicates a copper plate constituting the inner wall of the mold 4. A blind hole 11 is provided on the back side of the copper plate 10, and a thermal lightning pair 12 is disposed as a thermometer 58, which is pressed into the blind hole 11 and is in close contact with the copper plate 10. Reference numeral 13 indicates a protective tube for the thermocouple, 14 indicates a compensating conductor, and 15 indicates a spring.The spring mechanism presses the thermocouple 12 in the direction of the blind hole 11, allowing accurate temperature measurement.

符号18はストッパ、17は固定キャップ、18は温”
度計5の取付【プキャンプを示し、19はガイドバイブ
を示す。鋳型4内を流れる冷却水の侵入防止のため銅板
10には○リング20が設けられている。なお、符号2
1は鋳型組立用ボルト、21aはバックプレー1・22
a、22bの間隔を規制する間隔片、23は間隔片固定
ボルトを示づ−0また、上記の如く、冷却水の流量を制
御する場合、第1図に示す如く、制御装置6を設けて自
動的に演算機能と流量調節機能とを行なわせることもで
きる。
Reference numeral 18 is a stopper, 17 is a fixed cap, and 18 is a warmer.
Installation of the meter 5 [Pucamp is shown, 19 is the guide vibe. A ring 20 is provided on the copper plate 10 to prevent the cooling water flowing inside the mold 4 from entering. In addition, code 2
1 is the mold assembly bolt, 21a is the back play 1/22
a and 22b, and 23 indicates a spacing piece fixing bolt. In addition, when controlling the flow rate of cooling water as described above, a control device 6 is provided as shown in FIG. It is also possible to have the calculation function and flow rate adjustment function performed automatically.

すなわち、鋳型内溶鋼レベル信号、鋳型銅板温度信号お
よび鋳型冷却水流量信号を自動計測し、制御装置6によ
って予め設定された鋳型銅板温度の目標と鋳型サイズか
ら(1)式の抜熱量計算を行ない、これを一定とするよ
う、つまり、鋳型銅板温度がその目標値と一致するよう
冷却水流量を制mする。
That is, the molten steel level signal in the mold, the mold copper plate temperature signal, and the mold cooling water flow rate signal are automatically measured, and the amount of heat removed is calculated using equation (1) from the target mold copper plate temperature and mold size set in advance by the control device 6. , the cooling water flow rate is controlled so as to keep this constant, that is, so that the mold copper plate temperature matches its target value.

〈発明の効果〉 以上詳しく説明した通り、本発明方法によって冷却水量
を制御すると、抜熱ωは適切な値として一定に保持され
、冷却水の流量は鋳型銅板温度をもとに制御されている
。このため、パラグーの分布状況、鋼種等の鋳型内壁の
因子や、      1溶鋼鋳片の凝固表皮等の鋳型内
壁面との接触状況等を統合して管理された上での実際の
冷却能が示され、従来例の如く、適冷又は冷却不足の発
生はなくなり、鋳型内で生起する凝固層に大ぎな熱応力
が発生するのを阻止でき、その凝固層の表面性状は改善
され、適切な冷却がなされることがらブレイクアラ]・
発生も阻止できる。
<Effects of the Invention> As explained in detail above, when the amount of cooling water is controlled by the method of the present invention, heat removal ω is kept constant at an appropriate value, and the flow rate of cooling water is controlled based on the temperature of the mold copper plate. . For this reason, the actual cooling capacity is shown after integrating and controlling factors such as the distribution of Paragoo, the inner wall of the mold such as the steel type, and the contact situation of the molten steel slab with the inner wall of the mold such as the solidified skin. This eliminates the need for proper cooling or insufficient cooling as in the conventional case, prevents large thermal stress from occurring in the solidified layer that occurs in the mold, improves the surface properties of the solidified layer, and allows for proper cooling. Break Ala]・
It can also be prevented from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一例の配置図、第
2図は鋳型壁面温度測定装置の一例の断面図である。 符号1・・・・・・タンディツシュ2・旧・・溶鋼3・
・・・・・鋳型内溶鋼レベル計 4・・・・・・鋳型 5・・・・・・鋳型銅板温度計 6・・・・・・鋳型冷却水制御装置 7・・・・・・鋳型冷却水流量計 8・・・・・・流量調節弁
FIG. 1 is a layout diagram of an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a sectional view of an example of a mold wall temperature measuring apparatus. Code 1・・・Tandish 2・Old・Molten steel 3・
... Molten steel level meter in mold 4 ... Mold 5 ... Mold copper plate thermometer 6 ... Mold cooling water control device 7 ... Mold cooling Water flow meter 8...Flow rate control valve

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造用鋳型を冷却する冷却水を制御する際に、鋳型
壁面温度を検出し、この検出値が溶鋼成分等にもとずい
て定められる目標値になるよう、冷却水の流量を制御す
ることを特徴とする連続鋳造用鋳型の冷却水量制御方法
When controlling the cooling water that cools the continuous casting mold, the mold wall temperature is detected and the flow rate of the cooling water is controlled so that this detected value becomes a target value determined based on the molten steel composition, etc. A method for controlling the amount of cooling water in a continuous casting mold, characterized by:
JP12476684A 1984-06-18 1984-06-18 Method for controlling flow rate of cooling water for continuous casting mold Pending JPS613645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12476684A JPS613645A (en) 1984-06-18 1984-06-18 Method for controlling flow rate of cooling water for continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12476684A JPS613645A (en) 1984-06-18 1984-06-18 Method for controlling flow rate of cooling water for continuous casting mold

Publications (1)

Publication Number Publication Date
JPS613645A true JPS613645A (en) 1986-01-09

Family

ID=14893582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12476684A Pending JPS613645A (en) 1984-06-18 1984-06-18 Method for controlling flow rate of cooling water for continuous casting mold

Country Status (1)

Country Link
JP (1) JPS613645A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661120A3 (en) * 1990-04-20 1991-10-25 Siderurgie Fse Inst Rech Ingot mould for the continuous casting of liquid metal equipped with means for controlling the solidification of the liquid metal
KR101461708B1 (en) * 2012-06-13 2014-11-13 주식회사 포스코 Apparatus and method of controlling temperature of mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410232A (en) * 1977-06-24 1979-01-25 Mishima Kosan Co Ltd Mold cooling method capable of adjusting heat distribution during cast removal
JPS5433226A (en) * 1977-08-19 1979-03-10 Nippon Steel Corp Method for measuring surface temperature of cast strip in continuous casting apparatus
JPS58151952A (en) * 1982-03-02 1983-09-09 Kobe Steel Ltd Method for cooling casting mold using electromagnetic stirring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410232A (en) * 1977-06-24 1979-01-25 Mishima Kosan Co Ltd Mold cooling method capable of adjusting heat distribution during cast removal
JPS5433226A (en) * 1977-08-19 1979-03-10 Nippon Steel Corp Method for measuring surface temperature of cast strip in continuous casting apparatus
JPS58151952A (en) * 1982-03-02 1983-09-09 Kobe Steel Ltd Method for cooling casting mold using electromagnetic stirring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661120A3 (en) * 1990-04-20 1991-10-25 Siderurgie Fse Inst Rech Ingot mould for the continuous casting of liquid metal equipped with means for controlling the solidification of the liquid metal
KR101461708B1 (en) * 2012-06-13 2014-11-13 주식회사 포스코 Apparatus and method of controlling temperature of mold

Similar Documents

Publication Publication Date Title
US3886991A (en) Method and apparatus for controlling the withdrawal of heat in molds of continuous casting installations
CN108788032A (en) The adjustable magnesium alloy continuous casting crystallizer of intensity of cooling
KR100663916B1 (en) Method for continuous casting
US3630267A (en) Method of controlling the temperature of molten ferrous metal
JPS613645A (en) Method for controlling flow rate of cooling water for continuous casting mold
JPS6321586B2 (en)
US3593777A (en) Leader for ingot in continuous casting
JPS60187457A (en) Method for controlling cooling water of mold for continuous casting
JPS613644A (en) Method for controlling cooling water for continuous casting mold
JPS6049850A (en) Method for controlling flow rate of secondary coolant in continuous casting plant
JPS63104754A (en) Method for controlling water volume of spray cooled mold
Moon et al. Re-start technology for reducing sticking-type breakout in thin slab caster
JPH06608A (en) Method for continuously casting steel
JPS61279351A (en) Method and mold for continuous casting
JPS6054257A (en) Method for controlling position of solidification completion point in continuous casting
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JPS60115351A (en) Continuous casting method
JPH04339555A (en) Method for controlling surface temperature on continuously cast slab
JPS6250217B2 (en)
JP2914817B2 (en) Missing casting method in continuous casting
JPS60137562A (en) Continuous casting method for thin sheet
JP2004090064A (en) Method for controlling temperature of die-casting mold
JPH04294850A (en) Detection of break-out in multi-strand continuous caster
JPH11123515A (en) Method for controlling solidification at initial stage in continuous casting
SU559767A1 (en) Method of controlling the process of continuous casting of metals