JPS58151952A - Method for cooling casting mold using electromagnetic stirring - Google Patents

Method for cooling casting mold using electromagnetic stirring

Info

Publication number
JPS58151952A
JPS58151952A JP3323382A JP3323382A JPS58151952A JP S58151952 A JPS58151952 A JP S58151952A JP 3323382 A JP3323382 A JP 3323382A JP 3323382 A JP3323382 A JP 3323382A JP S58151952 A JPS58151952 A JP S58151952A
Authority
JP
Japan
Prior art keywords
temp
copper plate
temperature
mold
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3323382A
Other languages
Japanese (ja)
Inventor
Tetsuya Ueoka
植岡 哲也
Tsutomu Ikeda
力 池田
Shogo Takigawa
滝川 勝吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3323382A priority Critical patent/JPS58151952A/en
Publication of JPS58151952A publication Critical patent/JPS58151952A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the deterioration of copper plates and to improve the efficiency of electrostatic stirring, by detecting the average temp. of the copper plate near the meniscus of a casting mold for electromagnetic stirring, and controlling the flow rate of cooling water for the mold to keep the temp. of the copper plate in an optimum range. CONSTITUTION:Plural thermocouples 3 are provided in the vertical direction in the position around about 100mm. lower than the meniscus of molten steel to a copper plate 2 of a casting mold 1 having an electromagnetic stirrer in contact with the molten steel, and the temps. of the plate 2 in said position are detected. The detected temps. are converted to electric currents with temp. transducers 7, and further an average temp. is determined with a calculator 8. The difference thereof from a set temp. is determined. Said temp. difference is outputted to a flow rate controller 10 which controls the openings of a flow rate control valve 12 for cooling water interposed in a piping 5 through a low limiter 11. The copper plate 2 is thus cooled so that the temp. thereof is kept within the range of 120-240 deg.C which are adequate temps. for which both of high-temp. yield strength and the damping factor of magnetic flux are taken into consideration.

Description

【発明の詳細な説明】 この発明は、連続鋳造機における電磁攪拌装置を有する
鋳型の冷却方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling a mold having an electromagnetic stirring device in a continuous casting machine.

一般に、連続鋳造機における鋳型では、鋳型銅板の温度
は、第1図に示す如く、鋳型内のメニスカス(溶鋼の表
面)下100ar*近辺で最高となり、下方になるほど
温度は低下し、かつ、鋳造速度が速いほど銅板の温度は
高くなる。一方、銅板の耐力は高温になるほど低下し、
特に250°C以上では急激に低下する。そのため、鋳
型銅板の冷却は、銅板の高温耐力と冷却水の局部沸騰を
考慮して出来るだけ低い温度に冷却するのが有利である
とされている。よって、従来は、最高速度の鋳造時に銅
板のメニスカス近辺の温度が250°C以下憂こなるよ
うに銅板の最高温度を基準として決定し、鋳造速度が遅
くなっても同一冷却水量としている。
Generally, in a mold for a continuous casting machine, the temperature of the copper plate of the mold reaches its maximum around 100 ar* below the meniscus (the surface of molten steel) in the mold, and the temperature decreases as it goes lower, as shown in Figure 1. The faster the speed, the higher the temperature of the copper plate. On the other hand, the yield strength of copper plates decreases as the temperature increases.
In particular, it decreases rapidly above 250°C. Therefore, it is said that it is advantageous to cool the mold copper plate to a temperature as low as possible in consideration of the high-temperature yield strength of the copper plate and local boiling of the cooling water. Therefore, conventionally, the maximum temperature of the copper plate is determined so that the temperature near the meniscus of the copper plate is 250° C. or less during casting at the highest speed, and the amount of cooling water is kept the same even when the casting speed is slow.

これに対して、溶鋼攪拌のために電磁攪拌装置を有する
鋳型では、磁束は銅板によって減衰され、その減衰率は
次式によって求められる。
On the other hand, in a mold having an electromagnetic stirring device for stirring molten steel, the magnetic flux is attenuated by the copper plate, and the attenuation rate is determined by the following equation.

上記銅板の体積固有抵抗ρは銅板の温度が高くなるほど
大きくなるので、磁束の減衰率εは高温になるほど小さ
くなる。即ち、磁束の減衰率からいえば、銅板の温度は
高温はど好ましいこととなる。よって、従来の如く、銅
板の高温耐力の点より冷却温度を低くすると、磁束の減
衰率が大きくなるという欠点が生じる。また、従来のク
ロく、鋳造速度が遅くなり銅板の温度が低くなっても無
関係に常に最高の鋳造速度に合わせて決定された冷却水
を送水していることは不経済であり、特に、上記磁束の
減衰という点から問題となる。
Since the volume resistivity ρ of the copper plate increases as the temperature of the copper plate increases, the magnetic flux attenuation rate ε decreases as the temperature increases. That is, in terms of the attenuation rate of magnetic flux, it is preferable that the temperature of the copper plate be high. Therefore, if the cooling temperature is set lower than the high temperature strength of the copper plate as in the conventional method, a drawback arises in that the attenuation rate of the magnetic flux increases. In addition, it is uneconomical to always send cooling water determined according to the highest casting speed, regardless of whether the casting speed is slow and the temperature of the copper plate is low. This poses a problem in terms of magnetic flux attenuation.

この発明は、上記した問題に鑑みてなされたものであり
、電磁攪拌装置を有する鋳型の銅板の平均温度が、銅板
の高温耐力と磁束の減衰の両者を考、(ばして最適範囲
となるようζこ鋳型冷却水をコントロールするようにし
たことを特徴とする電磁攪拌用鋳型の冷却方法を提供す
るものである。
This invention was made in view of the above-mentioned problems, and it is determined that the average temperature of the copper plate of the mold with the electromagnetic stirring device falls within the optimum range by considering both the high temperature proof stress of the copper plate and the attenuation of magnetic flux. The present invention provides a method for cooling a mold for electromagnetic stirring, characterized in that mold cooling water is controlled.

以下、この発明を詳述すると、鋳型銅板の平均温度と高
温耐力、磁束減衰率の関係は第2図に示す関係(!:な
る。この第2図より明らかなようlこ、銅板の平均温度
120°C〜240’Cの範囲が望ましく、特に、15
0°C〜180°Cの間が最適範囲である。よって、実
操業に際して、鋳造速度に応じて変化する鋳型銅板の平
均温度を上記150°C〜180°Cの範囲内となるよ
うに鋳型に送給する冷却水量を制御している。例えば前
記第1図の鋳造速度と鋳型内平均温度分布より、鋳造速
度が最も遅い0.5 m / ginの時には、メニス
カス近辺の銅板の平均温度は約140°Cとなっており
、北記最適範囲より低い温度となっているが、これは、
速い鋳造速度0.9 m / giで決定された冷却水
着で冷却しているためであり、0.5 m / mis
のときにメニスカス下100mg近辺の銅板の平均温度
を170°Cにするには、0.9m1mのときの冷却水
量の70%の冷却水量でよいことになる。
Describing this invention in detail below, the relationship between the average temperature of the molded copper plate, high-temperature proof stress, and magnetic flux decay rate is as shown in Figure 2. The range of 120°C to 240'C is desirable, especially 15
The optimum range is between 0°C and 180°C. Therefore, during actual operation, the amount of cooling water supplied to the mold is controlled so that the average temperature of the mold copper plate, which changes depending on the casting speed, is within the range of 150°C to 180°C. For example, from the casting speed and average temperature distribution in the mold shown in Figure 1 above, when the casting speed is the slowest, 0.5 m/gin, the average temperature of the copper plate near the meniscus is about 140°C, which is the optimal The temperature is lower than the range, but this is because
This is due to cooling with a cooling swimsuit determined at a fast casting speed of 0.9 m/gi, and 0.5 m/mis
In order to make the average temperature of the copper plate near 100 mg below the meniscus 170°C, the amount of cooling water required is 70% of the amount of cooling water for 0.9 ml/m.

上記冷却水をコントロールする装置を、図面に示す実施
例により説明する。
The apparatus for controlling the cooling water described above will be explained with reference to embodiments shown in the drawings.

電磁攪拌装置(図示せず)を有する鋳型1の溶鋼と接す
る銅板2には、溶鋼のメニスカスSより下10011n
f近辺の位置に、上下方同番こ間隔をあけて3個の熱電
対3を板厚の中央部まで背面側より埋め込み、該位置(
メニスカス下100顛)の銅板2の温度を検出するよう
にしている。上記銅板2の背部にはウォータジャケット
4を配設し、銅板2の背面に沿って冷却水通路5を設け
、該冷却水通路5に配管6より冷却水を送給し、銅板2
を冷却するようにしてい葛。上記各熱電対3はそれぞれ
温度変換器7に接続して、検出した温度を電流に変換し
、該温度変換器7を演算器8に接続して3点の温度の平
均値を算出している。上記演算器8は温度調節B9に接
続し、演算器8より出力された平均温度と予め入力され
ている設定温度(120°C〜240°C1好ましくは
150°σ〜18・9”C)との差により、接続した流
量調節計1.0に出力するようにしている。該流量調節
計10はローリミッタ11を介して、上記配管5に介設
した流量制御弁12の弁の開度をコントロールしている
The copper plate 2 in contact with the molten steel of the mold 1, which has an electromagnetic stirring device (not shown), has 10011n below the meniscus S of the molten steel.
Embed three thermocouples 3 from the back side up to the center of the plate thickness at a position near
The temperature of the copper plate 2 (100 frames below the meniscus) is detected. A water jacket 4 is disposed on the back of the copper plate 2, a cooling water passage 5 is provided along the back of the copper plate 2, and cooling water is supplied to the cooling water passage 5 from a pipe 6.
Let the kudzu cool. Each of the thermocouples 3 is connected to a temperature converter 7 to convert the detected temperature into a current, and the temperature converter 7 is connected to a calculator 8 to calculate the average value of the temperatures at three points. . The arithmetic unit 8 is connected to the temperature controller B9, and the average temperature output from the arithmetic unit 8 and the set temperature input in advance (120°C to 240°C, preferably 150°σ to 18.9”C) Based on the difference between are doing.

上記ローリミッタ11は流量制御弁12の弁の開度が所
定開度以下(例えば50%開度)にならないようにする
もので、鋳造開始前後においても、一定量の冷却水を鋳
型に送水する機能を有するものである〇 上記した構成とすることIこより、銅板2のメニ 。
The low limiter 11 prevents the opening degree of the flow rate control valve 12 from falling below a predetermined opening degree (for example, 50% opening degree), and has a function of supplying a fixed amount of cooling water to the mold even before and after the start of casting. 〇 Having the above-mentioned configuration, the menu of the copper plate 2 is as follows.

スカス下100Hの温度を検出し、該検出値に基いて冷
却水量をコントロールしているため、銅板2の温度を高
温耐力と磁束の減衰率との両方の点より好適な温度(1
50°C〜180°C)に冷却することかできる。よっ
て、鋳造速度が遅くなった時には、冷却水量は少なくな
り、所定温度より銅板が低下する°ことが防止でき、磁
束の減衰率を小さくできると共に、冷却水の節水効果も
図られる。
Since the temperature of the bottom 100H of the scum is detected and the amount of cooling water is controlled based on the detected value, the temperature of the copper plate 2 is set to a temperature (1
50°C to 180°C). Therefore, when the casting speed is slowed down, the amount of cooling water is reduced, preventing the copper plate from dropping below a predetermined temperature, reducing the magnetic flux attenuation rate, and conserving cooling water.

以上の説明より明らかなように、この発明によれば、メ
ニスカス近辺の銅板の温度を検出して冷却水量をコント
ロールし、銅板の温度を高温耐力と磁束の減衰の両者を
考慮して好ましい範囲になるようにしているため、上記
範囲より温度が低下して電磁攪拌効率が低下することを
防止でき、かつ、上詰範囲より温度が上昇して銅板の劣
化を招くことが防止できる。よって、電磁攪拌効率が良
く、かつ、寿命の長い鋳型とすることができる。
As is clear from the above description, according to the present invention, the temperature of the copper plate near the meniscus is detected, the amount of cooling water is controlled, and the temperature of the copper plate is kept within a preferable range in consideration of both high temperature proof stress and magnetic flux attenuation. Therefore, it is possible to prevent the temperature from falling below the above range and the electromagnetic stirring efficiency from decreasing, and it is also possible to prevent the temperature from rising above the upper range and causing deterioration of the copper plate. Therefore, a mold with good electromagnetic stirring efficiency and long life can be obtained.

しかも、冷却水量を鋳造速度に応じた銅板の温度により
制御するため、鋳造速度が遅(銅板温度が低い時には節
水でき、省エネルギーにも役立つ等の利点を有するもの
である。
Moreover, since the amount of cooling water is controlled by the temperature of the copper plate according to the casting speed, the casting speed is slow (when the temperature of the copper plate is low, water can be saved, and it has the advantage of being useful for energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋳型内温変分布と鋳造速度の関係を示すグラフ
、第2図は銅板の高温耐力と磁束減衰率の関係を示すグ
ラフ、第3図はこの発明の実施例を示す概略図である。 1・・・鋳型、 2・・・銅板、 3・・・熱電対、 
4・・・ウォータジャケット、  5・・・冷却水路、
 6・・・配管、 7・・・温度変換器、 9・・・温
度調節器、12・・・流目制御弁。 特 許 出 願 人 株式会社神戸製鋼所代 理 人 
弁理士 前出 葆 ほか2名第1図 第2図 銅板のf均1崖 第3図
Fig. 1 is a graph showing the relationship between the temperature distribution inside the mold and the casting speed, Fig. 2 is a graph showing the relationship between the high temperature proof stress of a copper plate and the magnetic flux decay rate, and Fig. 3 is a schematic diagram showing an embodiment of the present invention. be. 1... Mold, 2... Copper plate, 3... Thermocouple,
4...Water jacket, 5...Cooling channel,
6... Piping, 7... Temperature converter, 9... Temperature controller, 12... Stream control valve. Patent applicant: Agent of Kobe Steel, Ltd.
Patent attorney Maeda Ao and two others Figure 1 Figure 2 Copper plate f-level 1 cliff Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造機において、電磁攪拌装置を併用した鋳
型のメニスカス近辺の銅板の平均温度を検出し、上記銅
板の平均温度が120°C〜240°Cの範囲となるよ
うに鋳型冷却水を制御するようにしたことを特徴とする
電磁攪拌用鋳型の冷却方法。
(1) In a continuous casting machine, the average temperature of the copper plate near the meniscus of the mold is detected using an electromagnetic stirring device, and mold cooling water is supplied so that the average temperature of the copper plate is within the range of 120°C to 240°C. A cooling method for an electromagnetic stirring mold, characterized in that the cooling method is controlled.
JP3323382A 1982-03-02 1982-03-02 Method for cooling casting mold using electromagnetic stirring Pending JPS58151952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323382A JPS58151952A (en) 1982-03-02 1982-03-02 Method for cooling casting mold using electromagnetic stirring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323382A JPS58151952A (en) 1982-03-02 1982-03-02 Method for cooling casting mold using electromagnetic stirring

Publications (1)

Publication Number Publication Date
JPS58151952A true JPS58151952A (en) 1983-09-09

Family

ID=12380732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323382A Pending JPS58151952A (en) 1982-03-02 1982-03-02 Method for cooling casting mold using electromagnetic stirring

Country Status (1)

Country Link
JP (1) JPS58151952A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613645A (en) * 1984-06-18 1986-01-09 Kawasaki Steel Corp Method for controlling flow rate of cooling water for continuous casting mold
FR2661120A3 (en) * 1990-04-20 1991-10-25 Siderurgie Fse Inst Rech Ingot mould for the continuous casting of liquid metal equipped with means for controlling the solidification of the liquid metal
EP1103323A2 (en) * 1999-11-29 2001-05-30 SMS Demag AG Process and device for continuous casting of steel
EP1103322A1 (en) * 1999-11-25 2001-05-30 SMS Demag AG Process for continuous casting slabs, especially thin slabs, and device for carrying out the process
WO2003028921A3 (en) * 2001-09-28 2003-10-23 Sms Demag Ag Method and device for cooling the copper plates of a continuous casting ingot mould for liquid metals, especially liquid steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613645A (en) * 1984-06-18 1986-01-09 Kawasaki Steel Corp Method for controlling flow rate of cooling water for continuous casting mold
FR2661120A3 (en) * 1990-04-20 1991-10-25 Siderurgie Fse Inst Rech Ingot mould for the continuous casting of liquid metal equipped with means for controlling the solidification of the liquid metal
EP1103322A1 (en) * 1999-11-25 2001-05-30 SMS Demag AG Process for continuous casting slabs, especially thin slabs, and device for carrying out the process
US6776217B1 (en) 1999-11-25 2004-08-17 Sms Demag Ag Method for continuous casting of slab, in particular, thin slab, and a device for performing the method
EP1103323A2 (en) * 1999-11-29 2001-05-30 SMS Demag AG Process and device for continuous casting of steel
EP1103323A3 (en) * 1999-11-29 2001-09-19 SMS Demag AG Process and device for continuous casting of steel
WO2003028921A3 (en) * 2001-09-28 2003-10-23 Sms Demag Ag Method and device for cooling the copper plates of a continuous casting ingot mould for liquid metals, especially liquid steel

Similar Documents

Publication Publication Date Title
JPS58151952A (en) Method for cooling casting mold using electromagnetic stirring
US3622678A (en) Electrode feed arrangements
US3851090A (en) Means for melting, holding and tapping metals or metal alloys
RU2142863C1 (en) Plate mould for production of copper ingots
JPS5782437A (en) Refining method for aluminum
US3192303A (en) Method of reducing overheating in melting troughs and similar devices in melting and holding furnaces
JP2010089152A (en) Tundish for continuous casting
JP2962788B2 (en) Control method of drift of molten steel in continuous casting mold
JP2922363B2 (en) Flow control device for molten steel in continuous casting mold
JPS59202142A (en) Heating method of nozzle to be immersed into tundish
CN217192464U (en) Crucible cooling device for titanium alloy smelting furnace
JPH0381049A (en) Method for mater-cooling continuous casting mold
JPH04344862A (en) Method for controlling molten metal surface of mold in continuous casting device
CN220372196U (en) Tundish cooling device of billet continuous casting machine
CN214867235U (en) Positioning water feeding port of steelmaking tundish
JPH0871716A (en) Method for controlling molten steel flow in mold in continuous casting
JPH0484650A (en) Method for restraining drift of molten steel in continuous casting mold
JP2517550Y2 (en) Power supply control device for melting furnace
JPS5725259A (en) Mold for horizontal continuous casting
SU1502178A1 (en) Method and apparatus for controlling the process of continuous casting of metal
JP2978372B2 (en) Plasma heating controller for molten steel in tundish in continuous casting facility
JPH08309483A (en) Continuous casting method for stainless steel containing boron
SU874259A1 (en) Device for automatic control of continuous casting of metal
SU754708A1 (en) Induction channel furnace
JPH08185972A (en) Plasma heating method of fused metal and device therefor