JPS6136142B2 - - Google Patents

Info

Publication number
JPS6136142B2
JPS6136142B2 JP54151980A JP15198079A JPS6136142B2 JP S6136142 B2 JPS6136142 B2 JP S6136142B2 JP 54151980 A JP54151980 A JP 54151980A JP 15198079 A JP15198079 A JP 15198079A JP S6136142 B2 JPS6136142 B2 JP S6136142B2
Authority
JP
Japan
Prior art keywords
weight
selective absorption
stainless steel
oxide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54151980A
Other languages
Japanese (ja)
Other versions
JPS5577667A (en
Inventor
Toshihiro Ishibashi
Kinya Horibe
Masaharu Ishida
Yoji Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP15198079A priority Critical patent/JPS5577667A/en
Publication of JPS5577667A publication Critical patent/JPS5577667A/en
Publication of JPS6136142B2 publication Critical patent/JPS6136142B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

【発明の詳細な説明】 本発明は太陽熱利用集熱器の選択吸収性受熱
面、殊に鏡面を有する基板上に一定の組成を有す
る金属組成物の酸化被膜を一定の厚さ密着して形
成した選択吸収性受熱面に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to forming an oxide film of a metal composition having a certain composition to a certain thickness on a selectively absorbing heat receiving surface of a solar heat collector, especially a substrate having a mirror surface. The present invention relates to a selectively absorbing heat-receiving surface.

太陽熱を集熱するに当つて、受熱面に黒色塗料
等の完全黒体に近い物質を塗布しその上部を赤外
域において不透明であるが、可視域においては透
明な物質にて覆うことにより温室効果を利用して
集熱する方法は従来からよく知られている。なお
この方法において、被覆物質は温室効果と共に対
流伝導による熱損失を減少せしめる効果をも有す
る。
To collect solar heat, the heat-receiving surface is coated with a substance that is close to a completely black body, such as black paint, and the upper part is covered with a substance that is opaque in the infrared region but transparent in the visible region, thereby reducing the greenhouse effect. The method of collecting heat using In addition, in this method, the coating material has the effect of reducing heat loss due to convection and conduction as well as the greenhouse effect.

しかし、このような方法は集熱器運転温度が約
50℃以下の場合に用いられる方法であつて、運転
温度が上昇するにしたがつて集熱器の集熱効率は
大巾に減少する欠点を有する。
However, such methods require that the collector operating temperature is approximately
This method is used when the temperature is below 50°C, and has the disadvantage that the heat collection efficiency of the heat collector decreases significantly as the operating temperature rises.

この欠点を除去する方法としては、受熱面とし
て太陽熱放射の波長帯(0.3〜2.5μm)において
は完全黒体と同程度のエネルギー吸収率を有する
が集熱器運転温度と同一温度の黒体放射の波長帯
(100℃運転温度の場合、波長3〜50μm)におい
ては低い放射率となる光学的分光特性を有する面
(通常選択吸収面と呼ばれている)を使用する事
が知られている。
A method to eliminate this drawback is to use a black body as a heat receiving surface, which has the same energy absorption rate as a perfect black body in the solar radiation wavelength range (0.3 to 2.5 μm), but has a black body radiation at the same temperature as the collector operating temperature. It is known to use a surface (usually called a selective absorption surface) that has optical spectral characteristics that have a low emissivity in the wavelength range of 3 to 50 μm at an operating temperature of 100°C. .

この様な分光特性を有する面すなわち選択吸収
面は自然には得られがたく、またよく研摩した亜
鉛あるいは空中で自然に酸化された銅等は若干の
選択吸収性を有するが黒色塗料等の温室効果を利
用した集熱器の欠点を補うのには十分でない。
Surfaces with such spectral characteristics, that is, selectively absorbing surfaces, are difficult to obtain naturally, and well-polished zinc or copper that is naturally oxidized in the air has some selective absorption, but black paint and other greenhouse materials It is not enough to compensate for the shortcomings of heat collectors using the effect.

このため、選択吸収面を人工的に作ることがな
されている。従来人工的に作られた選択吸収面と
しては、銅表面を化成処理することにより銅表面
に黒色酸化被膜を施したもの、亜鉛びき鉄板上に
黒色ニツケルメツキを施したもの、または真空蒸
着法、スパツタリング法、アーク放電法等によつ
て鏡面基板上に可視域では不透明(すなわち吸収
率大)であるが赤外域では透明な物質を被覆しさ
らに可視域での吸収をより良くする為に反射防止
膜として透明な物質を被覆したもの、たとえば、
アルミニウム基板上にシリコンを蒸着し、さらに
その上に反射防止膜としてSiO2を蒸着したもの
などがある。
For this reason, selective absorption surfaces are artificially created. Traditionally, artificially created selective absorption surfaces include those in which a black oxide film is applied to the copper surface by chemical conversion treatment, black nickel plating on a galvanized iron plate, vacuum evaporation method, and sputtering. A material that is opaque in the visible range (that is, has a high absorption rate) but transparent in the infrared range is coated on a mirror substrate by a method such as a method or an arc discharge method, and an antireflection film is applied to improve absorption in the visible range. Covered with a transparent substance, for example,
There is one in which silicon is vapor-deposited on an aluminum substrate, and SiO 2 is further vapor-deposited on top of that as an anti-reflection film.

薄膜の干渉作用による反射防止効果をも持つた
選択吸収面の製作に当つては、従来真空蒸着法に
よる製作が最も確かな方法とされていた。なぜな
らば、各層の膜厚を制御しなければならなかつた
事、各層をなす物質(単体あるいは化合物)を任
意に選択しなければならなかつた事、言い換えれ
ば適当な屈折率を有する物質を密着せねばならな
かつたからである。
Vacuum deposition has traditionally been considered the most reliable method for producing a selective absorption surface that also has an antireflection effect due to the interference effect of a thin film. This is because the film thickness of each layer had to be controlled, and the material (single substance or compound) forming each layer had to be arbitrarily selected.In other words, materials with appropriate refractive indexes were closely attached. Because I didn't have to.

もつとも、真空蒸着法によつて生成した各層の
密着性には問題が多く、このためスパツタリング
法、アーク放電法等の特殊蒸着法が開発されてい
る。
However, there are many problems with the adhesion of each layer produced by vacuum deposition, and for this reason special deposition methods such as sputtering and arc discharge have been developed.

しかしながら、蒸着法は生産能力およびコスト
の面で難点があり、したがつて蒸着法以外の方法
によつて反射防止効果を有する選択受熱面の製作
方法が試みられており、この方法として化成処理
法(湿式及び乾式)、メツキ法等がある。
However, the vapor deposition method has drawbacks in terms of production capacity and cost.Therefore, methods other than the vapor deposition method to produce a selective heat-receiving surface with an antireflection effect have been attempted, and this method includes chemical conversion treatment. (wet method and dry method), the Metsuki method, etc.

メツキ法に例を取れば、太陽熱利用集熱器の選
択吸収面処理としては一般的な黒色ニツケルメツ
キ法がある。これはアルミニウム又は亜鉛引き鉄
板上にニツケルの硫化物又はニツケルと亜鉛との
硫化物被膜を生成し、その選択吸収性と干渉作用
による反射防止効果とを兼ね備えるものである。
Taking the nickel method as an example, there is a general black nickel method as a selective absorption surface treatment for solar heat collectors. This produces a sulfide film of nickel sulfide or sulfide of nickel and zinc on an aluminum or galvanized iron plate, and has both selective absorption and an antireflection effect due to interference.

また、化成処理法(湿式及び乾式)に例を取れ
ば、鉄板上の酸化被膜および本発明の不銹鋼上の
酸化被膜は黒色ニツケルメツキ法による被膜と同
様な機構により反射防止効果を兼ね備えた選択吸
収性を有するものである。
Taking chemical conversion treatment methods (wet and dry) as an example, the oxide film on the iron plate and the oxide film on the stainless steel of the present invention have a selective absorption property that also has an anti-reflection effect due to the same mechanism as the film produced by the black nickel plating method. It has the following.

このような化成処理法およびメツキ法によつて
生成した被膜は前述した蒸着法および特殊蒸着法
によつて生成した被膜と選択吸収を引き起こす機
能としては同じであるが、これらが選択吸収面と
して蒸着法、特殊蒸着法によるものに劣らない性
能を有する為には適正膜厚の設定が必要である。
The films produced by such chemical conversion treatment methods and plating methods have the same function of causing selective absorption as the films produced by the above-mentioned vapor deposition methods and special vapor deposition methods, but these films can be deposited as selective absorption surfaces. It is necessary to set an appropriate film thickness in order to have performance comparable to those made using the special vapor deposition method or the special vapor deposition method.

本発明はしたがつて、選択吸収性を有しなおか
つこれを更に良くする干渉作用による反射防止効
果をも有する被膜物質として一定組成を有する金
属組成物の酸化物を取り上げ、これを一定の特性
の鏡面を有する基板上の適正な膜厚で密着せしめ
て太陽熱利用集熱器の選択吸収性受熱面を提供せ
んとするものである。
Therefore, the present invention uses an oxide of a metal composition having a certain composition as a coating material that has selective absorption and also has an antireflection effect due to an interference effect that improves this property. The purpose is to provide a selectively absorbing heat receiving surface for a solar heat collector by closely adhering the film to a substrate having a mirror surface with an appropriate film thickness.

本発明で使用する一定組成を有する金属組成物
の1つは、フエライト系不銹鋼に耐腐蝕性、加工
性、溶接性を改善するため低炭素にしたもの、他
の添加元素を配合したものまたは低炭素にしてし
かも他の添加元素を配合したものである。
One of the metal compositions having a certain composition used in the present invention is a ferritic stainless steel made with low carbon to improve corrosion resistance, workability, and weldability, or a metal composition with other additive elements or low carbon. It is made of carbon and contains other additive elements.

かゝる金属組成物はC 0.005−0.12重量%、
Si 0.005−1.00重量%、Mn 0.005−1.00重量%、
Cr 11.00−26.00重量%および添加元素として
Ti,Re,Nb,Ta,U,Th,W,Zr,Hfから選
ばれた少なくとも1種類の金属0.1−1.25重量
%、場合によつてはMo 0.75−5.00重量%、残部
Feより成り、各添加元素の重量と、CとNとの
和の重量比(Me/C+N)が5.0以上の金属組成
物が好ましい。添加元素がNb,Ta,Zr,Tiなど
の場合には上記重量比が8.0以上の場合が好まし
い。
Such a metal composition contains 0.005-0.12% by weight of C,
Si 0.005−1.00% by weight, Mn 0.005−1.00% by weight,
Cr 11.00−26.00% by weight and as additional elements
0.1-1.25% by weight of at least one metal selected from Ti, Re, Nb, Ta, U, Th, W, Zr, Hf, optionally 0.75-5.00% by weight of Mo, balance
A metal composition made of Fe and having a weight ratio of the weight of each additive element to the sum of C and N (Me/C+N) of 5.0 or more is preferable. When the additive element is Nb, Ta, Zr, Ti, etc., the above weight ratio is preferably 8.0 or more.

かゝる金属組成物として市販されているものに
はC 0.005−0.12重量%、Si 0.005−0.75重量
%、Mn 0.005−1.00重量%、Cr 11.00−26.00重
量%、Ti 0.1−1.0重量%、残部Fe〔組成物
A〕:C 0.005−0.12重量%、Si 0.005−0.75重
量%、Mn 0.005−1.00重量%、Cr 11.00−26.00
重量%、Ti 0.1−1.0重量%、Mo 0.75−1.24重量
%および残部Fe〔組成物B〕がある。
Commercially available such metal compositions include 0.005-0.12% by weight of C, 0.005-0.75% by weight of Si, 0.005-1.00% by weight of Mn, 11.00-26.00% by weight of Cr, 0.1-1.0% by weight of Ti, and the balance. Fe [Composition A]: C 0.005-0.12% by weight, Si 0.005-0.75% by weight, Mn 0.005-1.00% by weight, Cr 11.00-26.00
% by weight, Ti 0.1-1.0% by weight, Mo 0.75-1.24% by weight and balance Fe [composition B].

前記金属組成物の酸化物を製造する方法には、 1 前記金属組成物の湿式及び乾式化成処理法。 The method for producing the oxide of the metal composition includes: 1. Wet and dry chemical conversion treatment methods for the metal composition.

2 前記金属組成物例えば一定組成を有する不銹
鋼を該不銹鋼以外の鏡面を有する基板上に密着
させこれを化成処理する方法。
2. A method in which the metal composition, for example, rustless steel having a certain composition, is brought into close contact with a substrate having a mirror surface other than the stainless steel and subjected to chemical conversion treatment.

3 前記金属組成物例えば一定組成を有する不銹
鋼を活性真空蒸着法、活性スパツタリング法、
活性アーク放電法等によつて酸化させながら鏡
面を有する基板上に密着させ不銹鋼の酸化被膜
を形成させる方法がある。
3. The metal composition, for example, stainless steel having a certain composition, is processed by active vacuum evaporation method, active sputtering method,
There is a method of forming an oxide film of stainless steel by closely adhering it to a substrate having a mirror surface while oxidizing it by an active arc discharge method or the like.

前記方法のうち特に好ましい方法は酸性酸化法
及びアルカリ性酸化法である。
Among the above methods, particularly preferred are the acidic oxidation method and the alkaline oxidation method.

a 酸性酸化法 酸化条件は次の如くである。a Acidic oxidation method The oxidation conditions are as follows.

重クロム酸ナトリウムもしくは 重クロム酸カリウム又は無水ク ロム酸 100〜400 g/ 硫酸 400〜800 g/ 温度 50℃ないし沸点 好ましくは 70〜120℃ 浸漬時間 3〜40分 b アルカリ性酸化法 酸化条件は次の如くである。 Sodium dichromate or Potassium dichromate or anhydrous Romic acid 100-400 g/ Sulfuric acid 400-800 g/ Temperature 50℃ or boiling point Preferably 70-120℃ Soaking time 3-40 minutes b Alkaline oxidation method The oxidation conditions are as follows.

水酸化ナトリウム又はカリウム130〜200g/ リン酸三ナトリウム又はカリウム30〜40g/ 亜鉛酸ナトリウム又はカリウム 20〜30g/ 水酸化第二鉄 1〜3g/ 過酸化鉛 20〜30g/ 温度 100〜110℃ 浸漬時間 3〜30分 化成処理に際しては被覆面を予じめ前処理する
ことが適当である。
Sodium or potassium hydroxide 130-200g / Trisodium or potassium phosphate 30-40g / Sodium or potassium zincate 20-30g / Ferric hydroxide 1-3g / Lead peroxide 20-30g / Temperature 100-110℃ Immersion Time: 3 to 30 minutes When performing chemical conversion treatment, it is appropriate to pre-treat the coated surface in advance.

処理方法には酸性酸化法では硝酸1容と水1容
との混液に1時間程度浸漬する方法、過塩素酸30
重量%と塩化カリ1重量%との水溶液に2−3分
浸漬する方法などがある。
Treatment methods include immersion in a mixture of 1 volume of nitric acid and 1 volume of water for about 1 hour in the acid oxidation method, and 30% perchloric acid.
There are methods such as immersion for 2 to 3 minutes in an aqueous solution of 1% by weight of potassium chloride.

金属組成物として不銹鋼を用いる場合、どの条
件でも生成する酸化物は主としてフエライト系で
はFeO(Fe・Cr)2O3、オースラナイト系では
(Fe,Ni)O(FeCr)2O3類似の構成を有し欠格
をもつたスピネル型である。
When stainless steel is used as a metal composition, the oxides produced under any conditions are mainly FeO(Fe・Cr) 2 O 3 for ferrite systems, and (Fe, Ni) O(FeCr) 2 O 3 for auslanite systems, with similar compositions. It is a spinel type with a positive and negative character.

次に金属組成物の酸化物を密着させる場合(鏡
面を有する基板には特に制限はないが)次の諸要
件を具備することが必要である。
Next, when adhering the oxide of the metal composition (although there are no particular restrictions on the substrate having a mirror surface), it is necessary to meet the following requirements.

1 選択吸収面の特性(赤外域で反射率が高いこ
と)を具備するため、酸化物は赤外域で透明で
赤外線を照射すれば酸化物を透過して基板で反
射されること。
1. Because it has the characteristics of a selective absorption surface (high reflectance in the infrared region), the oxide is transparent in the infrared region, and when infrared rays are irradiated, it passes through the oxide and is reflected by the substrate.

2 酸化被膜の生長は基板の凹凸に左右される
が、生成する被膜は堅く密着性が良いこと。
2. The growth of the oxide film depends on the unevenness of the substrate, but the film that is formed should be hard and have good adhesion.

3 可視および近赤外域において鏡面を有するこ
とで干渉効果がぼけない。
3. Having a mirror surface in the visible and near-infrared regions prevents interference effects from blurring.

従つて反射防止効果がしつかり現われる。 Therefore, the anti-reflection effect appears strongly.

吸収に関しては粗面化した面においても吸収
率が増すがどちらの効果を重視するかの選択は
製作者の選択による。
Regarding absorption, the absorption rate increases even on a roughened surface, but it is up to the manufacturer to choose which effect to emphasize.

4 基板の平滑さについては基板の赤外線放射を
低くすることが必要で、そのためには赤外線に
対して殆んど平滑であることが必要である。鏡
面が過度に粗面化した場合には選択吸収面の吸
収域が波長3〜8μmの赤外領域まで達し分光
特性上好ましくない。
4. Regarding the smoothness of the substrate, it is necessary to reduce the infrared radiation of the substrate, and for this purpose, it is necessary that the substrate be almost smooth with respect to infrared rays. If the mirror surface is excessively roughened, the absorption range of the selective absorption surface will reach the infrared region with a wavelength of 3 to 8 μm, which is unfavorable in terms of spectral characteristics.

基板の材料には例えば、各種金属板、不銹鋼
板、合成樹脂板などが使用される。太陽放射の波
長帯において吸収率が大(すなわち反射率が小)
で、赤外域における放射率が小(すなわち反射率
大)なる選択吸収面の分光的特性を十二分に発揮
させる為には不銹鋼酸化物を密着させる基板の密
着前の面状態が非常に重要なものとなる。
Examples of materials used for the substrate include various metal plates, stainless steel plates, and synthetic resin plates. High absorption rate (i.e. low reflectance) in the wavelength range of solar radiation
In order to make full use of the spectral characteristics of the selective absorption surface, which has a small emissivity in the infrared region (that is, a large reflectance), the surface condition of the substrate to which the non-rusting steel oxide is attached before adhesion is extremely important. Become something.

通常選択吸収面の性能向上の為には太陽放射の
波長に対しては十分粗面であり、赤外波長に対し
ては十分平滑な面が良しとされているが、明確な
実験的裏付けはなされていない。粗面化された面
は繰り返し反射により吸収率を増すが干渉効果を
利用した反射防止膜にはマイナスの効果が予想さ
れる。しかしこの事も実際は面の凹凸の程度によ
るものである。
Normally, in order to improve the performance of a selective absorption surface, it is said that a surface that is sufficiently rough for the wavelength of solar radiation and sufficiently smooth for infrared wavelengths is good, but there is no clear experimental support. Not done. A roughened surface increases absorption through repeated reflections, but antireflection films that utilize interference effects are expected to have negative effects. However, this actually depends on the degree of unevenness of the surface.

したがつて本発明の意図するところの1つは
種々の面状態の基板に不銹鋼酸化物を密着せしめ
その選択吸収面としての性能を比較する事により
密着前の基板の適正な面状態を指定する事にあ
る。
Therefore, one of the purposes of the present invention is to specify the appropriate surface condition of the substrate before adhesion by attaching stainless steel oxide to substrates with various surface conditions and comparing its performance as a selective absorption surface. It's true.

適正な面状態を指定する為の実験方法の一例を
示せば、すなわち基板としてC 0.005−0.12重
量%、Si 0.005−0.75重量%、Mn 0.005−1.00重
量%、Cr 16.00〜18.00重量%、微量添加物残部
Feよりなる金属組成物(各々JIS−SUS430,
AISI−430,ISO−683/8に相当)を選び酸
性酸化法(重クロム酸ナトリウム100g/、硫
酸400g/、温度106〜108℃、30〜35分浸漬処
理)によつて不銹鋼酸化物を密着せしめ密着前の
基板の面状態と太陽放射に対する吸収率(α)と
黒体放射に対する放射率(ε)、及び効率(η)
との関係を調べた。ここで効率(η)とはη=α
−εσT/Jで表わされる(σ;ステフアン・ボル ツマンの定数4.88×10-8 kcal/m2・h・゜K,
T;絶対温度373゜K J;日照量800kcal/m2
h。
An example of an experimental method for specifying an appropriate surface condition is as follows: C 0.005-0.12% by weight, Si 0.005-0.75% by weight, Mn 0.005-1.00% by weight, Cr 16.00-18.00% by weight, trace amounts added as a substrate. remnants
Metal composition consisting of Fe (JIS-SUS430,
(equivalent to AISI-430, ISO-683/8) and adhering non-rusting steel oxide using acid oxidation method (sodium dichromate 100g/, sulfuric acid 400g/, temperature 106-108℃, immersion treatment for 30-35 minutes) Surface condition of the substrate before tight contact, absorption rate for solar radiation (α), emissivity for blackbody radiation (ε), and efficiency (η)
We investigated the relationship between Here, efficiency (η) is η=α
−εσT 4 /J (σ; Stefan-Boltzmann constant 4.88×10 -8 kcal/m 2・h・゜K,
T: Absolute temperature 373°K J: Sunshine amount 800kcal/m 2
h.

基板の面状態を指定するにあたつてはJIS−B
−0601に規定されるRa(中心線平均あらさ)及
びRz(十点平均あらさ)による。第1図は表面
粗さの違いによる選択吸収面の分光反射特性の相
異を示した。図中の番号について表面あらさを詳
述すると、曲線はRaが0.36μ、Rzが3.5μ、曲
線はRaが0.19μ、Rzが0.6μ、曲線はRaが
0,12μ、Rzが0.5μ、曲線はRaが0.08μ、Rz
が0.3μ、曲線はRaが0.04μ、Rzが0.1μであ
る。図から明らかな様に表面粗さの変化に対し可
視領域では余り影響を受けないのに対し赤外領域
では反射率に大きく影響し、Ra値;Rz値が小さ
ければ小さい程高い反射率を示す。
When specifying the surface condition of the board, use JIS-B.
Based on Ra (center line average roughness) and Rz (ten point average roughness) specified in -0601. Figure 1 shows the differences in spectral reflection characteristics of selective absorption surfaces due to differences in surface roughness. Detailing the surface roughness of the numbers in the figure: Ra is 0.36μ, Rz is 3.5μ; curve is Ra is 0.19μ, Rz is 0.6μ; Ra is 0.08μ, Rz
is 0.3μ, and the curve has Ra of 0.04μ and Rz of 0.1μ. As is clear from the figure, changes in surface roughness do not affect much in the visible region, but in the infrared region, reflectance is greatly affected, and the smaller the Ra value; Rz value, the higher the reflectance. .

第2図はRa値と吸収率(α)、放射率(ε)、
効率(η)との関係をあらわしたグラフである。
Figure 2 shows the Ra value, absorption rate (α), emissivity (ε),
It is a graph showing the relationship with efficiency (η).

グラフが示すように吸収率(α)はRa値にあ
まり影響を受けないが、放射率(ε)はRaが
0.07以下では急激に減り、0.07以上では比例的に
増大する。又効率(η)もRaが0.07付近から急
激に増大し、75%以上の高い値を示す。この様に
Raが0.07以下の面状態を有する不銹鋼を黒色酸
化処理して得られる選択吸収面は非常に優れてい
る。第3図はRz値と吸収率(α)、放射率
(ε)、効率(η)(前記と同条件)との関係を示
したグラフである。グラフが示すように吸収率
(α)はRz値に余り影響を受けないのに対し放射
率はRzが0.2以下で急激に減り、効率(η)も0.2
以下で75%以上の高い値を示す事がわかる。この
様にRzが0.2以下の面状態を有する不銹鋼を黒色
酸化処理して得られる選択吸収面は非常に優れて
いる。
As the graph shows, the absorption rate (α) is not affected much by the Ra value, but the emissivity (ε) is
Below 0.07, it decreases rapidly, and above 0.07, it increases proportionally. Furthermore, the efficiency (η) increases rapidly from around 0.07, reaching a high value of 75% or more. like this
The selective absorption surface obtained by black oxidation treatment of stainless steel having a surface condition with Ra of 0.07 or less is very excellent. FIG. 3 is a graph showing the relationship between the Rz value and absorption rate (α), emissivity (ε), and efficiency (η) (same conditions as above). As the graph shows, the absorption rate (α) is not affected much by the Rz value, whereas the emissivity decreases rapidly when Rz is less than 0.2, and the efficiency (η) also decreases to 0.2.
It can be seen below that it shows a high value of over 75%. As described above, the selective absorption surface obtained by black oxidation treatment of stainless steel having a surface condition with Rz of 0.2 or less is extremely excellent.

前記した表面粗さを有する鏡面は赤外域におい
て十分平滑であり、拡散反射の半球反射(正反射
と拡散反射とを合わせた反射)に対する比を小さ
くしくり返し反射による反射率の減衰を防ぐ結果
7μm以上の波長の赤外領域に対し80%以上の半
球反射率を示し、太陽熱集熱板としての選択吸収
性の向上に大き寄与するものである。また不銹鋼
に黒色酸化処理を施こす際、安定で均一な酸化皮
膜を得る為に金属素地の表面状態が均一である事
が必要である。厳密には不銹鋼は組織、成分、加
工方法、局部的熱処理、内部応力の分布が不均一
で、表面状態が均一でないのが普通であるからそ
の点を解決しないと均一な酸化皮膜が得られずむ
らを生ずる原因になつていたが、本発明は不銹鋼
表面を鏡面仕上げする事により太陽熱集熱板とし
ての選択吸収性を向上させるのみならず研摩によ
つて表面を均一にする事により前記の不均一性の
欠点を解消せしめる点およびその効果の重要性は
大きい。金属基板の表面加工は機械研摩、化学研
摩、電解研摩の方法によつてなされる。
The mirror surface with the above-mentioned surface roughness is sufficiently smooth in the infrared region, and the ratio of diffuse reflection to hemispherical reflection (reflection that combines specular reflection and diffuse reflection) is reduced to 7 μm, which prevents attenuation of reflectance due to repeated reflections. It exhibits a hemispherical reflectance of 80% or more in the infrared region of wavelengths above, and greatly contributes to improving the selective absorption properties of solar heat collecting plates. Furthermore, when performing black oxidation treatment on rustless steel, it is necessary that the surface condition of the metal base be uniform in order to obtain a stable and uniform oxide film. Strictly speaking, stainless steel has an uneven structure, composition, processing method, local heat treatment, and internal stress distribution, and the surface condition is usually uneven, so unless these points are solved, it will not be possible to obtain a uniform oxide film. However, the present invention not only improves the selective absorption properties of a solar heat collecting plate by mirror-finishing the stainless steel surface, but also eliminates the above-mentioned unevenness by making the surface uniform by polishing. The importance of eliminating the drawback of uniformity and its effects are great. The surface of the metal substrate is processed by mechanical polishing, chemical polishing, or electrolytic polishing.

次に金属組成物の酸化物を基板に密着させる方
法は次の方法がある。
Next, the following method can be used to bring the oxide of the metal composition into close contact with the substrate.

1 一定組成を有する不銹鋼自体の表面を酸性酸
化法又はアルカリ性酸化法で化成処理する法。
1 A method in which the surface of stainless steel itself, which has a certain composition, is chemically treated using an acid oxidation method or an alkaline oxidation method.

2 密着性を改善するためスパツタリング法、ア
ーク放電法などの特殊活性蒸着法。
2 Special activated vapor deposition methods such as sputtering and arc discharge methods to improve adhesion.

この方法では活性化ガスとして酸素が使用さ
れ、酸素中で蒸着すれば金属酸化物の被膜が得
られる。
In this method, oxygen is used as the activating gas, and metal oxide coatings are obtained when deposited in oxygen.

3 金属組成物の酸化物粉末を可視光線および赤
外線において比較的透明なバインダー例えばポ
リエチレン、ケイ素樹脂で接着させる方法。
3. A method of bonding oxide powder of a metal composition with a binder that is relatively transparent in visible light and infrared rays, such as polyethylene or silicone resin.

4 不銹鋼以外の基板上に不銹鋼を密着させこれ
を化成処理する方法。密着方法には例えば鉄板
上にクロマイジング(クロムを拡散浸透する方
法)を施す方法、クラツドメタル等がある。
4. A method of attaching rustless steel to a substrate other than stainless steel and chemically treating it. Examples of adhesion methods include chromizing (a method of diffusing and penetrating chromium) on an iron plate, clad metal, and the like.

次にこのようにして形成された一定組成を有す
る金属の酸化物薄膜による選択吸収性受熱面の分
光学特性および反射防止効果について説明する。
Next, the spectroscopic characteristics and antireflection effect of the selectively absorbing heat-receiving surface formed by the metal oxide thin film having a constant composition formed in this way will be explained.

この選択吸収性受熱面の分光学特性は、前述し
たように太陽放射の波長帯(0.3〜2.5μm)にお
いて反射が少なく赤外域(3〜50μm)において
反射が大きなものでなければならない。
As mentioned above, the spectroscopic properties of this selectively absorbing heat-receiving surface must be such that reflection is low in the solar radiation wavelength range (0.3 to 2.5 μm) and large in the infrared region (3 to 50 μm).

第4図は不銹鋼を利用した集熱板の1部の例を
示し、鏡面を有する基板上になんらかの膜が密着
している場合の入射光の空気−膜界面及び膜−基
板界面での反射状態を示す。
Figure 4 shows an example of a part of a heat collecting plate using stainless steel, and shows the state of reflection of incident light at the air-film interface and film-substrate interface when some kind of film is in close contact with a substrate having a mirror surface. shows.

第4図において、空気中1から入射して来る太
陽光線の一部は空気1−酸化物2の界面にて反射
され反射光4となる。太陽光線の残りは酸化物2
中に吸収されて進行し吸収しきれない部分は酸化
物2−基板3との界面で反射され反射光5とな
る。反射光4と5とは互いに干渉し合い酸化物の
膜厚が適当な場合弱め合つて反射防止効果を引き
起こす。
In FIG. 4, a part of the sunlight entering from the air 1 is reflected at the air 1-oxide 2 interface and becomes reflected light 4. The rest of the sunlight is oxide 2
The portion that is not completely absorbed is reflected at the interface between the oxide 2 and the substrate 3 and becomes reflected light 5. The reflected lights 4 and 5 interfere with each other and, if the oxide film thickness is appropriate, weaken each other to produce an antireflection effect.

次に〔683/ 8(ISO),430(AISI),
SUS430(JIS)〕に相当する組成を有する金属組
成物を酸性酸化法(重クロム酸ナトリウム100
g/、硫酸400g/、106〜108℃で30〜35分
間浸漬処理)によつて化成処理したFe3O4
(Fe2O3・FeO又はFe3O4)及びクロムの酸化物を
主体とする不銹鋼酸化物を鏡面基板上に密着させ
た面の干渉作用を無視した場合の分光反射特性を
第6図曲線6に示し、不銹鋼酸化物自体の分光透
過特性を第5図に示す。
Next [683/8 (ISO), 430 (AISI),
A metal composition having a composition equivalent to SUS430 (JIS)] was oxidized using an acidic oxidation method (sodium dichromate
Fe 3 O 4 chemically treated with sulfuric acid 400 g/, immersion treatment at 106-108°C for 30-35 minutes)
(Fe 2 O 3・FeO or Fe 3 O 4 ) and chromium oxide, and the spectral reflection characteristics when ignoring the interference effect of the surface of the stainless steel oxide, which is mainly made of chromium oxide, adhered to the mirror substrate are shown in Fig. 6. 6, and the spectral transmission characteristics of the stainless steel oxide itself are shown in FIG.

不銹鋼酸化被膜がある程度の膜厚を有して鏡面
基板上に密着している場合には干渉効果を無視し
てもそれだけでかなりの選択吸収性を有する。ま
た、干渉作用による太陽熱放射の波長帯での反射
防止効果が充分起こりうる様な膜厚にした場合に
はその選択吸収面としての分光反射特性はさらに
良くなり第6図の曲線7に示すようになる。
If the rustless steel oxide film has a certain thickness and is in close contact with the mirror substrate, it will have considerable selective absorption by itself, even if interference effects are ignored. Furthermore, if the film thickness is set to such a value that the interference effect can sufficiently prevent reflection in the wavelength range of solar thermal radiation, the spectral reflection characteristics as a selective absorption surface will further improve, as shown by curve 7 in Figure 6. become.

一般に、二種の光学特性の異なる物質の界面に
おける反射率を引き下げる為には、両者の間に両
者の屈折率の中間の屈折率を有し透過性の誘電体
物質をコーテイングする事が行なわれている。完
全に透過性のある物質であれば干渉作用による吸
収帯は深く鋭いものであるが、誘導体と伝導体と
の中間的物質であつても透過光が存在する限り干
渉作用が現われる。不銹鋼酸化物は完全な誘電体
物質ではないが不銹鋼酸化物自体がかなりの選択
性をもつているので干渉効果も加え合わせると非
常に優れた選択吸収面となる。鏡面基板上にコー
テイングされている物質の屈折率をn1、空気の屈
折率をn0=1、基板の屈折率をn2とすると、下記
の条件を満たす時反射を最小にする事が出来る。
Generally, in order to reduce the reflectance at the interface between two materials with different optical properties, a transparent dielectric material having a refractive index intermediate between the two is coated between the two materials. ing. If the material is completely transparent, the absorption band due to the interference effect will be deep and sharp, but even if the material is intermediate between a dielectric and a conductor, the interference effect will appear as long as there is transmitted light. Although rust-free steel oxide is not a perfect dielectric material, since rust-free steel oxide itself has considerable selectivity, when the interference effect is added, it becomes an extremely excellent selective absorption surface. If the refractive index of the substance coated on the mirror substrate is n 1 , the refractive index of air is n 0 = 1, and the refractive index of the substrate is n 2 , reflection can be minimized when the following conditions are met: .

=n0・n2 =n2 …… n1d=λ/4,3λ/4,5λ/4,7λ/4,……
この式において、dはコーテイングされる物
質の膜厚を示し、n1d=λ/4は一次の吸収帯の分光 反射曲線上の位置を示すものである。
n 2 1 = n 0・n 2 = n 2 ... n 1 d = λ/4, 3 λ/4, 5 λ/4, 7 λ/4,...
In this equation, d indicates the film thickness of the material to be coated, and n 1 d=λ/4 indicates the position of the first-order absorption band on the spectral reflection curve.

不銹鋼を第4図に示す基板3として選べばその
屈折率n2は3.5〜3.9であり、不銹鋼酸化物の屈折
率n1を偏光解析装置にて測定した結果は2.0〜2.5
であつた。
If stainless steel is selected as the substrate 3 shown in Figure 4, its refractive index n2 is 3.5 to 3.9, and the refractive index n1 of stainless steel oxide measured with an ellipsometer is 2.0 to 2.5.
It was hot.

この不銹鋼酸化被膜の屈折率の値(2.0〜2.5)
は上記条件式を完全に満足するものではなく、
膜の光学的厚さがλ/4になる第1次の吸収帯におけ る反射率が0%にはならないが、第7図に示すご
とく曲線8,9の様な優れた選択特性が得られ
る。
The refractive index value of this stainless steel oxide film (2.0 to 2.5)
does not completely satisfy the above conditional expression,
Although the reflectance in the first absorption band where the optical thickness of the film is λ/4 is not 0%, excellent selection characteristics as shown by curves 8 and 9 in FIG. 7 can be obtained.

第7図は、第1次の吸収帯を太陽熱放射の最大
波長(約0.5μm)の所に持たせた場合の分光反
射率曲線9とを示している。
FIG. 7 shows a spectral reflectance curve 9 in the case where the first absorption band is located at the maximum wavelength of solar radiation (approximately 0.5 μm).

曲線8に示される様に1次の吸収帯11を太陽
熱放射の最大波長すなわち0.5μmに置いた場合
が最も良い選択吸収特性を示すかのように考えら
れるが、太陽熱放射の波長に対するエネルギ分布
を考えると1次の吸収帯を約0.8μmに置いた方
が吸収率の大きな選択面が得られる。事実、大気
質量2における曲線8,9の太陽熱放射に対する
吸収率(α)を算出してみると、曲線8において
はα=0.90、曲線9においてはα=0.94が得られ
た。
As shown in curve 8, it seems that placing the first-order absorption band 11 at the maximum wavelength of solar thermal radiation, that is, 0.5 μm, provides the best selective absorption characteristics. If you think about it, placing the first-order absorption band at about 0.8 μm will provide a selective surface with a higher absorption rate. In fact, when calculating the absorption rate (α) for solar thermal radiation for curves 8 and 9 at an atmospheric mass of 2, α = 0.90 for curve 8 and α = 0.94 for curve 9 were obtained.

なお長波長域における放射率(ε)は両者共に
ε0.12とほぼ同一の値が得られる。また、曲線
8,9における第1次吸収帯の谷11の深さおよ
び光学的膜厚がλ/2である第1次の山12の高さは おのおの酸化被膜此び基板の光学定数の波長に対
する分散の為若干の相異を生ずるが、この事から
も第1次吸収帯を0.5μmよりむしろ0.8μmに置
いた方が良いという理由の一つになる。すなわち
曲線9における第1次吸収帯11の谷の深さは曲
線8における第1次吸収帯11の谷の深さよりも
深く、一方曲線9における第1次の山12の高さ
は曲線8における第1次の山12の高さよりも低
いという結果を得た。
In addition, the emissivity (ε) in the long wavelength region is approximately the same value as ε0.12 for both. Further, the depth of the valley 11 of the first-order absorption band in curves 8 and 9 and the height of the first-order peak 12 whose optical film thickness is λ/2 are the wavelength of the optical constant of the oxide film and the substrate. Although a slight difference occurs due to the dispersion of the light, this is one of the reasons why it is better to place the first absorption band at 0.8 μm rather than 0.5 μm. That is, the depth of the valley of the primary absorption band 11 in the curve 9 is deeper than the depth of the valley of the primary absorption band 11 in the curve 8, while the height of the primary peak 12 in the curve 9 is deeper than that of the primary absorption band 11 in the curve 8. The result was that it was lower than the height of the first mountain 12.

なお、第7図の曲線10は100℃の運転温度を
有する選択吸収面の理想的分光反射特性を示す。
Note that curve 10 in FIG. 7 shows the ideal spectral reflection characteristics of a selective absorption surface having an operating temperature of 100°C.

更に、前述した不銹鋼酸化物の屈折率について
説明を付け加えると、不銹鋼酸化物は不銹鋼上で
特定方向に成長したもので多孔性物質であつた。
多孔性物質の場合、その屈折率は多孔比が大きく
なればなるほど空気の屈折率に近づき、多孔比が
小さくなるほどその物質自体の屈折率に近づく。
マグネタイト(Fe3O4)の屈折率は可視域におい
て2.4〜2.5であり、偏光解析装置より得られた不
銹鋼酸化物の屈折率は2.0〜2.5であつた。これは
不銹鋼酸化物の多孔比が0〜20%である事を意味
し、このことは透過型電子顕微鏡等による観察で
も示された。
Furthermore, to add an explanation about the refractive index of the above-mentioned stainless steel oxide, the stainless steel oxide is a porous substance that grows in a specific direction on the stainless steel.
In the case of a porous material, the larger the porosity ratio, the closer the refractive index is to that of air, and the smaller the porosity ratio, the closer the refractive index is to the refractive index of the material itself.
The refractive index of magnetite (Fe 3 O 4 ) was 2.4 to 2.5 in the visible range, and the refractive index of stainless steel oxide obtained using an ellipsometer was 2.0 to 2.5. This means that the porosity ratio of the stainless steel oxide is 0 to 20%, and this was also shown by observation using a transmission electron microscope or the like.

したがつて、干渉作用による反射防止効果をも
兼ね備えた不銹鋼酸化被膜の適正膜厚(dc)は
膜の光学的厚さn1dが1250Å≦n,d≦2500Åで
屈折率(n1)が2.0≦n1≦2.5N,5とすると、500
Å≦d≦1250Åとなる。適正膜厚がこの範囲から
若干ずれた場合でも選択吸収面としての性能はか
なりのものがあるため、適正膜厚の範囲は500Å
〜2000Åしても何等差しつかえない。
Therefore, the appropriate film thickness (dc) of a stainless steel oxide film that also has an antireflection effect due to interference is that the optical thickness n 1 d of the film is 1250 Å≦n, d≦2500 Å, and the refractive index (n 1 ) is 2.0≦n 1 ≦2.5N, 5, then 500
Å≦d≦1250Å. Even if the proper film thickness deviates slightly from this range, the performance as a selective absorption surface is quite good, so the range of the proper film thickness is 500Å.
Even if it is ~2000Å, there is no problem.

この値は基板として不銹鋼を選んだ場合のみで
なく、不銹鋼以外の適当な鏡面を有する基板上に
不銹鋼酸化被膜を密着せしめた場合でも有効であ
る。この場合、基板の屈折率が4.0以上の高い値
を示す材料を基板として選んだ場合には基板とし
て不銹鋼を使用した場合よりも一層優れた選択吸
収面となる。
This value is valid not only when stainless steel is selected as the substrate, but also when a stainless steel oxide film is closely adhered to a substrate other than stainless steel with a suitable mirror surface. In this case, if a material with a high refractive index of 4.0 or higher is selected as the substrate, the selective absorption surface will be more excellent than if stainless steel is used as the substrate.

次に不銹鋼面を化成処理して不銹鋼面上に酸化
被膜を密着させる方法において、適正の膜厚
(500〜2000Å)が得られる酸化条件を選べば干渉
作用による反射防止効果をも兼ね備えたすぐれた
分光反射特性を有する選択吸収面が得られること
を実証するため次の実験をおこなつた。
Next, in the method of applying a chemical conversion treatment to the rust-free steel surface to form an oxide film that adheres to the surface, if the oxidation conditions are chosen to obtain an appropriate film thickness (500 to 2000 Å), an excellent film that also has an anti-reflection effect due to the interference effect can be obtained. The following experiment was conducted to demonstrate that a selective absorption surface with spectral reflection characteristics can be obtained.

〔683/8(ISO),430(AISI),SUS430
(JIS)〕に相当する組成の不銹鋼をA,Bの組成
を有する処理液にて化成処理して不銹鋼上に酸化
被膜を密着させるに当り、処理時間をかえた多く
の試料の分光反射特性を調べ干渉作用による吸収
帯の移動及びそれぞれの試料の太陽放射(大気質
量2)に対する吸収率、集熱器運転温度(50〜
100℃の場合)の場合と同一の黒体放射による放
射率(ε)の算出を行ない、適正な吸収率および
放射率と膜厚との関係を調べた。
[683/8 (ISO), 430 (AISI), SUS430
(JIS)] was chemically treated with treatment solutions having compositions A and B to adhere an oxide film on the stainless steel. The movement of the absorption band due to the interference effect, the absorption rate of each sample for solar radiation (atmospheric mass 2), and the collector operating temperature (50~
We calculated the emissivity (ε) using black body radiation in the same manner as in the case of 100°C), and investigated the relationship between the appropriate absorption rate, emissivity, and film thickness.

化成処理条件は次の如くであつた。 The chemical conversion treatment conditions were as follows.

(A)重クロム酸ナトリウム 100g/ 硫 酸 400g/ 処理温度 106〜108℃ (B)無水クロム酸 250g/ 硫 酸 500g/ 処理時間 70℃ 第8図は光学的膜厚(n1d)がn1d=λ/4なる1次 吸収帯の位置の移動を測定する事によつて得られ
た膜厚と処理時間との関係を示す。屈折率につい
ては前述した2.0〜2.5の値の中間値2.2を使つてい
る。
(A) Sodium dichromate 100g / Sulfuric acid 400g / Treatment temperature 106-108℃ (B) Chromic anhydride 250g / Sulfuric acid 500g / Treatment time 70℃ Figure 8 shows that the optical film thickness (n 1 d) is n 1 shows the relationship between the film thickness and processing time obtained by measuring the shift in the position of the primary absorption band where d=λ/4. Regarding the refractive index, we use the intermediate value of 2.2 among the values of 2.0 to 2.5 mentioned above.

第8図において、曲線13は処理条件Aによる
ものであり、曲線14は処理条件Bによるもので
ある。
In FIG. 8, curve 13 is based on processing condition A, and curve 14 is based on processing condition B.

第9図は、太陽熱放射に対する吸収率α及び集
熱器運転温度と同一温度(この場合100℃)にお
ける黒体放射に対する放射率εと膜厚との関係を
示す。第9図において、曲線15は吸収率αに対
するものであり、また曲線16は放射率εに対す
るものである。吸収率αは膜厚500〜2000Åにお
いて0.80以上を示し、約900Å、すなわち干渉作
用による第1吸収帯が0.8μmの場合の吸収率
0.94を示す。膜厚1000Åを過ぎると吸収率はゆる
やかに減少する。放射率εは膜厚約1500Åまでゆ
るやかに増加するが、2000Åを越すと0.2以上と
なる。
FIG. 9 shows the relationship between the absorption rate α for solar thermal radiation, the emissivity ε for blackbody radiation at the same temperature as the collector operating temperature (100° C. in this case), and the film thickness. In FIG. 9, curve 15 is for absorption rate α, and curve 16 is for emissivity ε. The absorption coefficient α is 0.80 or more at a film thickness of 500 to 2000 Å, and is approximately 900 Å, that is, the absorption coefficient when the first absorption band due to interference is 0.8 μm.
Shows 0.94. When the film thickness exceeds 1000 Å, the absorption rate gradually decreases. The emissivity ε increases slowly up to a film thickness of about 1500 Å, but becomes 0.2 or more when the thickness exceeds 2000 Å.

第9図から明らかな様に、不銹鋼酸化被膜の膜
厚が500〜2000Åの場合は充分優れた選択吸収面
が得られる。
As is clear from FIG. 9, when the thickness of the stainless steel oxide film is 500 to 2000 Å, a sufficiently excellent selective absorption surface can be obtained.

以上のように化成処理方法に関係なく膜厚が
500〜2000Åの場合には優れた諸特性を有する選
択吸収面が得られることがわかつた。
As mentioned above, the film thickness increases regardless of the chemical conversion treatment method.
It was found that a selective absorption surface with excellent properties can be obtained in the case of 500 to 2000 Å.

例。example.

フエライト系不銹鋼〔683/8(ISO),
430(AISI),SUS430(JIS)〕を用いた選択吸収
面は分光特性がすぐれ且つコストも安価である
が、溶接性、加工性、耐蝕性が劣るためこれらの
欠点を改善するため炭素含量を低くししかも添加
元素を加えたフエライト系低炭素不銹鋼を用い、
次の条件で化成酸化して酸化被膜を形成させた。
Ferritic stainless steel [683/8 (ISO),
430 (AISI), SUS430 (JIS)] has excellent spectral properties and is inexpensive, but it has poor weldability, workability, and corrosion resistance, so it is necessary to reduce the carbon content to improve these drawbacks. Using ferritic low carbon stainless steel with added elements,
An oxide film was formed by chemical oxidation under the following conditions.

酸化条件 重クロム酸ナトリウム 100g/ 硫 酸 400g/ 106〜108℃にて30〜35分浸漬処理。Oxidation conditions Sodium dichromate 100g/ Sulfuric acid 400g/ Immersion treatment at 106-108℃ for 30-35 minutes.

得られた選択吸収面と他の選択吸収面との分光
反射特性を比較しその結果を第10図に示した。
The spectral reflection characteristics of the obtained selective absorption surface and other selective absorption surfaces were compared, and the results are shown in FIG.

このフエライト系不銹鋼の組成は前記組成物A
であつた。
The composition of this ferritic stainless steel is the above-mentioned composition A.
It was hot.

上記のようにして得られた選択吸収面の分光特
性は曲線1に示す。またチタン、モリブデンなど
の添加元素を含まないフエライト系低炭素不銹鋼
を材料として得られる選択吸収面の分光特性を曲
線2に示しまた選択吸収面としての理想的な分光
特性を曲線3に示した。第10図からわかるよう
に本発明による選択吸収面(曲線1)は添加元素
を含まない一般的なフエライト系不銹鋼により得
られる選択吸収面(曲線2)と同じ程度の優れた
分光特性を有していることがわかつた。また化成
酸化法によつて施された酸化膜は均一な安定した
皮膜であり、不銹鋼以外の物質を基板とした場合
にも集熱板としての耐熱性は不銹鋼を基板とした
場合と同等な性能が得られる。
The spectral characteristics of the selective absorption surface obtained as described above are shown in curve 1. Further, curve 2 shows the spectral characteristics of a selective absorption surface obtained using ferritic low carbon stainless steel that does not contain additive elements such as titanium or molybdenum, and curve 3 shows the ideal spectral characteristics of the selective absorption surface. As can be seen from FIG. 10, the selective absorption surface according to the present invention (curve 1) has excellent spectral characteristics comparable to that of the selective absorption surface (curve 2) obtained from general ferritic stainless steel containing no additive elements. I found out that In addition, the oxide film applied by the chemical oxidation method is a uniform and stable film, and even when the substrate is made of a material other than stainless steel, the heat resistance as a heat collecting plate is equivalent to that when the substrate is made of stainless steel. is obtained.

なお曲線3は100℃の運転温度を有する集熱器
の選択吸収面の理想的な分光反射特性を示すもの
である。
Note that curve 3 shows the ideal spectral reflection characteristics of the selective absorption surface of a heat collector having an operating temperature of 100°C.

次に本発明による添加元素を加えたフエライト
系低炭素不銹鋼による選択吸収面を使用する好適
な太陽熱利用集熱器の構造を示す断面図を第11
図に示す。
Next, the 11th cross-sectional view showing the structure of a suitable solar heat collector using a selective absorption surface made of ferritic low carbon stainless steel with added elements according to the present invention is shown.
As shown in the figure.

図中矢印で示すように上方より入射して来る太
陽光線は保温及び太気曝露を防止する為の透過性
の良いガラス又はアクリル系樹脂等の合成樹脂透
明体1(1枚ないし3枚の透明体よりなる)を透
過した空気層2を通つて本発明によるフエライト
系又はオーステナイト系不銹鋼の酸化皮膜3にて
吸収され熱に変換される。変換された熱は片面に
酸化被膜が密着している基板4及びこれに圧接、
溶接、拡散接合などの方法で接合された他の材料
5を通つて空気又は水等の熱媒に伝導される。6
は保温の為の空気層であり、7はグランウール、
アスベスト又はハニカム構造を利用した断熱層で
ある。
As shown by the arrow in the figure, the sun's rays entering from above are covered with a transparent material 1 (1 to 3 transparent sheets of glass or synthetic resin such as acrylic resin) with good transparency to retain heat and prevent exposure to the air. The heat is absorbed by the oxide film 3 of the ferritic or austenitic stainless steel according to the present invention through the air layer 2 that has passed through the body (consisting of the body), and is converted into heat. The converted heat is transferred to the substrate 4, which has an oxide film in close contact with one side, and to the substrate 4, which is pressed against the substrate 4.
The heat is conducted to a heat medium such as air or water through another material 5 joined by a method such as welding or diffusion bonding. 6
is an air layer for heat retention, 7 is ground wool,
This is a heat insulating layer using asbestos or honeycomb structure.

本発明による添加元素を加えたフエライト系低
炭素不銹鋼を化学的に酸化してなる選択吸収面を
上記の構造を有する太陽熱利用集熱器に使用する
場合優れた集熱効果が得られた。
When the selective absorption surface formed by chemically oxidizing ferritic low carbon stainless steel to which additive elements according to the present invention have been added is used in a solar heat collector having the above structure, an excellent heat collecting effect was obtained.

本発明の選択吸収面の特長を示せば次の如くで
ある。
The features of the selective absorption surface of the present invention are as follows.

(1) 材料として不銹鋼を用いる場合、耐久性、耐
熱性、耐蝕性、密着性にすぐれている。
(1) When stainless steel is used as a material, it has excellent durability, heat resistance, corrosion resistance, and adhesion.

従来の銅酸化物を用いるものに比較して、
銅酸化物では180〜200℃(24hr)における分
光特性上の劣化は少ないが、表面組織変化に
より変色し、210℃以上(24hr)では表面組
織破壊により分光特性値も劣化するが本発明
の選択吸収面にはかゝる諸現象は見られな
い。
Compared to those using conventional copper oxide,
With copper oxide, there is little deterioration in spectral properties at 180 to 200°C (24 hours), but it discolors due to changes in surface structure, and at 210°C or higher (24 hours), spectral property values deteriorate due to surface structure destruction. No such phenomena are observed on the absorption surface.

銅酸化物を用いた選択吸収面では2ケ月間
大気中に曝露し表面状態と分光特性との変化
を観察した結果雨水による表面組織の劣化が
激しく酸化物層の剥離現象が起る。又分光特
性においても赤外領域での放射率が極度に悪
くなり放射率の値が非常に高くなり選択吸収
面としての性能を著しく欠くが本発明の選択
吸収面ではかゝる現象は観察されなかつた。
A selective absorption surface using copper oxide was exposed to the atmosphere for two months and changes in surface condition and spectral characteristics were observed. As a result, the surface structure was severely degraded by rainwater and the oxide layer peeled off. Also, in terms of spectral characteristics, the emissivity in the infrared region becomes extremely poor and the value of emissivity becomes extremely high, resulting in a significant lack of performance as a selective absorption surface, but such a phenomenon has not been observed with the selective absorption surface of the present invention. Nakatsuta.

(2) 基板としてフエライト系不銹鋼を用いる場合
は分光特性がすぐれ安価である利点があるが、
溶接性、加工性、耐蝕性においてオーステナイ
ト系不銹鋼に比べ若干劣るのでこれらの諸欠点
を改良するためフエライト系不銹鋼を基体とし
これを低炭素にするか、特定の添加元素を配合
するか又は低炭素にしてしかも特定の添加元素
を配合することによつて加工に当りオーステナ
イト系不銹鋼に多く見られる応力腐蝕の発生を
防止しうるし又その機械的性質も使用に当り充
分満足できるものである。従つてオーステナイ
ト系不銹鋼に代つて使用することができる。
(2) When using ferritic stainless steel as the substrate, it has the advantage of excellent spectral characteristics and low cost;
It is slightly inferior to austenitic stainless steel in terms of weldability, workability, and corrosion resistance, so in order to improve these drawbacks, it is necessary to use ferritic stainless steel as a base and make it low carbon, mix specific additive elements, or make it low carbon. Moreover, by incorporating specific additive elements, it is possible to prevent stress corrosion, which is often seen in austenitic stainless steels, during processing, and its mechanical properties are sufficiently satisfactory for use. Therefore, it can be used in place of austenitic stainless steel.

本発明の要旨は特許請求の範囲に記載の如くで
あるが以下の実施の態様を有する。
The gist of the present invention is as described in the claims, and has the following embodiments.

(1) 金属組成物はC 0.005−0.03重量%、Si
0.005−0.75重量%、Mn 0.005−1.00重量%、
Cr 16.00−18.00重量%、Ti 0.1−1.0重量%、
残部Feより成る不銹鋼である特許請求の範囲
第1項記載の選択吸収面。
(1) The metal composition is C 0.005-0.03% by weight, Si
0.005−0.75% by weight, Mn 0.005−1.00% by weight,
Cr 16.00−18.00 wt%, Ti 0.1−1.0 wt%,
The selective absorbing surface according to claim 1, which is stainless steel with the remainder being Fe.

(2) 金属組成物はC 0.005−0.03重量%、Si
0.005−0.75重量%、Mn 0.005−1.00重量%、
Cr 16.00−18.00重量%、Ti 0.1−1.0重量%、
Mo 0.75−1.25重量%、残部Feより成る不銹鋼
である特許請求の範囲第1項記載の選択吸収
面。
(2) Metal composition: C 0.005-0.03% by weight, Si
0.005−0.75% by weight, Mn 0.005−1.00% by weight,
Cr 16.00−18.00 wt%, Ti 0.1−1.0 wt%,
The selective absorption surface according to claim 1, which is a stainless steel comprising 0.75-1.25% by weight of Mo and the balance Fe.

(3) 基板の表面加工は機械研摩、化学研摩、電解
研摩の方法によつて実施される特許請求の範囲
第2項および第5項のいずれかに記載の選択吸
収面。
(3) The selective absorption surface according to any one of claims 2 and 5, wherein the surface of the substrate is processed by mechanical polishing, chemical polishing, or electrolytic polishing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表面粗さの違いによる選択吸収面の分
光反射特性を示す図、第2図はRa値と吸収率
α、放射率ε、効率ηとの関係を示す図、第3図
は、Rz値と吸収率α、放射率ε、効率ηとの関
係を示す図、第4図は不銹鋼を利用した集熱板の
1例を示す図、第5図は不銹鋼酸化物の分光透過
特性を示す図、第6図は干渉作用を無視した場合
の分光反射特性および干渉作用を考慮した場合の
分光反射特性を示す図、第7図は波長と反射率と
の関係を示す図、第8図は膜厚と処理時間との関
係を示す図、第9図は吸収率αおよび放射率εと
膜厚との関係を示す図、第10図は本発明による
フエライト系低炭素不銹鋼酸化膜の選択吸収面の
分光反射特性を示す図、および第11図は本発明
の太陽熱利用集熱器の断面図である。
Fig. 1 is a diagram showing the spectral reflection characteristics of selective absorption surfaces due to differences in surface roughness, Fig. 2 is a diagram showing the relationship between Ra value and absorption rate α, emissivity ε, and efficiency η. A diagram showing the relationship between the Rz value and absorption rate α, emissivity ε, and efficiency η. Figure 4 is a diagram showing an example of a heat collector plate using stainless steel. Figure 5 is a diagram showing the spectral transmission characteristics of stainless steel oxide. Figure 6 is a diagram showing the spectral reflection characteristics when interference effects are ignored and when interference effects are considered, Figure 7 is a diagram showing the relationship between wavelength and reflectance, and Figure 8 is a diagram showing the relationship between wavelength and reflectance. 9 is a diagram showing the relationship between film thickness and treatment time, FIG. 9 is a diagram showing the relationship between absorption rate α and emissivity ε and film thickness, and FIG. 10 is a diagram showing the selection of the ferrite-based low carbon non-staining steel oxide film according to the present invention. A diagram showing the spectral reflection characteristics of the absorption surface and FIG. 11 are cross-sectional views of the solar heat collector of the present invention.

Claims (1)

【特許請求の範囲】 1 C 0.005−0.12重量%、Si 0.005−1.00重量
%、Mn 0.005−1.00重量%、Cr 11.00−26.00重
量%および添加元素としてTi,Nb,Ta,U,
Th,W,Zr,Hfから選ばれる少なくとも1種類
の元素0.1〜1.25重量%、残部Feより成る金属組
成物の酸化物であつて、500−2000Åの膜厚を有
し、しかも0.3ないし2.5μmの波長帯において高
エネルギー吸収率を示すとともに、3ないし50μ
mの波長帯において低いエネルギー放射率を示す
被膜を、鏡面を有する基板上に形成し、しかも前
記鏡面がJIS BO601に規定される表面あらさRa
が0.07μ以下またはRzが0.2μ以下である表面状
態を有することを特徴とする、太陽熱利用集熱器
の選択吸収面。 2 特許請求の範囲第1項記載のものにおいて、
前記金属組成物が、任意成分として、さらにMo
0.75−5.00重量%を含有するものである、太陽熱
利用集熱器の選択吸収面。 3 C 0.005−0.12重量%、Si 0.005−1.00重量
%、Mn 0.005−1.00重量%、Cr 11.00−26.00重
量%および添加元素としてTi,Nb,Ta,U,
Th,W,Zr,Hfから選ばれる少なくとも1種類
の元素0.1−1.25重量%、残部Feよりなる組成を
有し、しかもJIS BO601に規定される表面あらさ
Raが0.07μ以下またはRzが0.2μ以下である表面
状態を有する不銹鋼板を100−400g/の重クロ
ム酸ナトリウム又は重クロム酸カリウムまたは無
水クロム酸と400−800g/の硫酸との酸性浴中
で温度50ないし沸点、浸漬時間3〜40分間化成処
理して膜厚500−2000Åの酸化被膜を形成させる
ことを特徴とする、太陽熱利用集熱器の選択吸収
面の製法。 4 特許請求の範囲第3項記載の製法において、
前記不銹鋼板が、組成中に、任意成分として、さ
らにMo 0.75−5.00重量%を含有するものであ
る、太陽熱利用集熱器の選択吸収面の製法。 5 C 0.005−0.12重量%、Si 0.005−1.00重量
%、Mn 0.005−1.00重量%、Cr 11.00−26.00重
量%および添加元素としてTi,Nb,Ta,U,
Th,W,Zr,Hfから選ばれる少なくとも1種類
の元素0.1−1.25重量%、残部Feよりなる組成を
有し、しかもJIS BO601に規定される表面あらさ
Raが0.07μ以下またはRzが0.2μ以下である表面
状態を有する不銹鋼板を水酸化ナトリウム又はカ
リウム130〜200g/、リン酸三ナトリウム又は
カリウム30〜40g/、亜硝酸ナトリウム又はカ
リウム20〜30g/、水酸化第二鉄1〜3g/
、過酸化鉛20〜30g/のアルカリ浴中で温度
100−110℃、浸漬時間3〜30分間化成処理して膜
厚500−2000Åの酸化被膜を形成させることを特
徴とする、太陽熱利用集熱器の選択吸収面の製
法。 6 特許請求の範囲第5項記載の製法において、
前記不銹鋼板が、組成中に、任意成分として、さ
らにMo 0.75−5.00重量%を含有するものであ
る、太陽熱利用集熱器の選択吸収面の製法。
[Claims] 1 C 0.005-0.12% by weight, Si 0.005-1.00% by weight, Mn 0.005-1.00% by weight, Cr 11.00-26.00% by weight, and additional elements such as Ti, Nb, Ta, U,
It is an oxide of a metal composition consisting of 0.1 to 1.25% by weight of at least one element selected from Th, W, Zr, and Hf, and the balance is Fe, and has a film thickness of 500 to 2000 Å and 0.3 to 2.5 μm. It exhibits high energy absorption in the wavelength range of 3 to 50μ.
A film exhibiting low energy emissivity in the wavelength band of
A selective absorption surface of a solar heat collector, characterized in that it has a surface state in which Rz is 0.07μ or less or Rz is 0.2μ or less. 2. In what is stated in claim 1,
The metal composition further contains Mo as an optional component.
0.75-5.00% by weight of the selected absorbing surface of the solar thermal collector. 3 C 0.005-0.12% by weight, Si 0.005-1.00% by weight, Mn 0.005-1.00% by weight, Cr 11.00-26.00% by weight, and additional elements such as Ti, Nb, Ta, U,
It has a composition consisting of 0.1-1.25% by weight of at least one element selected from Th, W, Zr, and Hf, and the balance is Fe, and has a surface roughness specified by JIS BO601.
A rustless steel plate with a surface condition of Ra of 0.07 μ or less or Rz of 0.2 μ or less is placed in an acid bath of 100-400 g of sodium dichromate or potassium dichromate or chromic anhydride and 400-800 g of sulfuric acid. A method for manufacturing a selective absorption surface of a solar heat collector, characterized by forming an oxide film with a thickness of 500 to 2000 Å by chemical conversion treatment at a temperature of 50 to boiling point for 3 to 40 minutes. 4 In the manufacturing method described in claim 3,
A method for producing a selective absorption surface for a solar heat collector, wherein the rustless steel plate further contains 0.75-5.00% by weight of Mo as an optional component in its composition. 5 C 0.005-0.12% by weight, Si 0.005-1.00% by weight, Mn 0.005-1.00% by weight, Cr 11.00-26.00% by weight, and additional elements such as Ti, Nb, Ta, U,
It has a composition consisting of 0.1-1.25% by weight of at least one element selected from Th, W, Zr, and Hf, and the balance is Fe, and has a surface roughness specified by JIS BO601.
A rustless steel plate with a surface condition in which Ra is 0.07 μ or less or Rz is 0.2 μ or less is prepared using 130 to 200 g of sodium or potassium hydroxide, 30 to 40 g of trisodium or potassium phosphate, and 20 to 30 g of sodium or potassium nitrite. , ferric hydroxide 1-3g/
, temperature in an alkaline bath containing 20-30 g of lead peroxide.
A method for manufacturing a selective absorption surface of a solar heat collector, characterized by forming an oxide film with a thickness of 500-2000 Å by chemical conversion treatment at 100-110°C for 3-30 minutes. 6 In the manufacturing method described in claim 5,
A method for producing a selective absorption surface for a solar heat collector, wherein the rustless steel plate further contains 0.75-5.00% by weight of Mo as an optional component in its composition.
JP15198079A 1979-11-26 1979-11-26 Selective absorption section of solar heat collector and method of producting the same Granted JPS5577667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15198079A JPS5577667A (en) 1979-11-26 1979-11-26 Selective absorption section of solar heat collector and method of producting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15198079A JPS5577667A (en) 1979-11-26 1979-11-26 Selective absorption section of solar heat collector and method of producting the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50113747A Division JPS6014275B2 (en) 1975-09-22 1975-09-22 Selective absorption surface of solar heat collector and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5577667A JPS5577667A (en) 1980-06-11
JPS6136142B2 true JPS6136142B2 (en) 1986-08-16

Family

ID=15530422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15198079A Granted JPS5577667A (en) 1979-11-26 1979-11-26 Selective absorption section of solar heat collector and method of producting the same

Country Status (1)

Country Link
JP (1) JPS5577667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125393A1 (en) * 2015-02-06 2016-08-11 株式会社豊田自動織機 Solar heat collection tube, solar light/heat conversion device, and solar power generation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747799B2 (en) * 1989-11-29 1995-05-24 新日本製鐵株式会社 Stainless steel for engine exhaust gas materials with excellent corrosion resistance
JP2011096770A (en) * 2009-10-28 2011-05-12 Kyoto Univ Antireflective film and emitter for thermophotovoltaic generation of electricity
JP5344103B1 (en) 2011-11-22 2013-11-20 新日鐵住金株式会社 Ferritic heat resistant steel and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415327A (en) * 1977-07-07 1979-02-05 Obayashi Gumi Kk Hydraulic concrete crusher

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415327A (en) * 1977-07-07 1979-02-05 Obayashi Gumi Kk Hydraulic concrete crusher

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125393A1 (en) * 2015-02-06 2016-08-11 株式会社豊田自動織機 Solar heat collection tube, solar light/heat conversion device, and solar power generation device
JP2016145653A (en) * 2015-02-06 2016-08-12 株式会社豊田自動織機 Solar heat collection pipe, sunlight-heat conversion device, solar heat power generation device
CN107208934A (en) * 2015-02-06 2017-09-26 株式会社丰田自动织机 Solar energy heat collection pipe, Solar thermal conversion device and device of solar generating
CN107208934B (en) * 2015-02-06 2019-12-24 株式会社丰田自动织机 Solar heat collecting tube, solar-thermal conversion device, and solar power generation device

Also Published As

Publication number Publication date
JPS5577667A (en) 1980-06-11

Similar Documents

Publication Publication Date Title
JPS6014275B2 (en) Selective absorption surface of solar heat collector and its manufacturing method
Niklasson et al. Surfaces for selective absorption of solar energy: an annotated bibliography 1955–1981
US4334523A (en) Solar energy collector having solar selective coating of low reflectance
JP2005523870A5 (en)
CA1088404A (en) Absorption surface of solar collector
JPS6136142B2 (en)
JPS6237299B2 (en)
Gogna et al. Selective black nickel coatings on zinc surfaces by chemical conversion
Xu et al. Optical optimization and thermal stability of SiN/Ag/SiN based transparent heat reflecting coatings
US4437455A (en) Stabilization of solar films against hi temperature deactivation
JPH013036A (en) Low reflective coated articles
Chain et al. Chemically vapor-deposited black molybdenum films of high IR reflectance and significant solar absorptance
CN106679202A (en) Tower-type heat collector light-thermal conversion coating and preparation method thereof
AU2012266168A1 (en) Process for producing an element for absorbing solar radiation for a thermal concentrating solar power plant
KR820001485B1 (en) Absorbing surface of solar collecting
US4490412A (en) Method of making a solar energy collector element
JPS5956661A (en) Manufacture of solar heat collector
JPS6135456B2 (en)
JP3194064B2 (en) Solar heat absorber
KR820001483B1 (en) Method for manufacturing surface of absorption for solar collector
CN111397231A (en) Graphene-based selective absorption film system and preparation method of absorption layer thereof
US4574041A (en) Method for obtaining a selective surface for collectors of solar and other radiation
JPS5936172B2 (en) Heat collection member for solar heat collection
Uma et al. Spectrally selective surfaces on stainless steel produced by chemical conversion
Carver et al. Tin oxide-black molybdenum photothermal solar energy converters