JPS6135456B2 - - Google Patents

Info

Publication number
JPS6135456B2
JPS6135456B2 JP51005422A JP542276A JPS6135456B2 JP S6135456 B2 JPS6135456 B2 JP S6135456B2 JP 51005422 A JP51005422 A JP 51005422A JP 542276 A JP542276 A JP 542276A JP S6135456 B2 JPS6135456 B2 JP S6135456B2
Authority
JP
Japan
Prior art keywords
weight
less
bath
stainless steel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51005422A
Other languages
Japanese (ja)
Other versions
JPS5289837A (en
Inventor
Toshihiro Ishibashi
Kinya Horibe
Masaharu Ishida
Yoji Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP542276A priority Critical patent/JPS5289837A/en
Priority to IL50299A priority patent/IL50299A/en
Priority to CA259,385A priority patent/CA1088404A/en
Priority to GB35243/76A priority patent/GB1554293A/en
Priority to IN1552/CAL/76A priority patent/IN146008B/en
Priority to DE2639388A priority patent/DE2639388C2/en
Priority to MX76100846U priority patent/MX5700E/en
Priority to MX008378A priority patent/MX174597B/en
Priority to NZ181975A priority patent/NZ181975A/en
Priority to IT27016/76A priority patent/IT1068259B/en
Priority to FR7627460A priority patent/FR2325002A1/en
Priority to DK418476A priority patent/DK152624C/en
Priority to GR51703A priority patent/GR61275B/en
Priority to AU17875/76A priority patent/AU496322B2/en
Priority to CH1178176A priority patent/CH620761A5/en
Priority to AR264765A priority patent/AR219059A1/en
Priority to BR7606233A priority patent/BR7606233A/en
Priority to NO763239A priority patent/NO144365C/en
Priority to AT0698276A priority patent/AT372180B/en
Priority to NLAANVRAGE7610523,A priority patent/NL174760C/en
Priority to ES451763A priority patent/ES451763A1/en
Publication of JPS5289837A publication Critical patent/JPS5289837A/en
Priority to AR278511A priority patent/AR229344A1/en
Publication of JPS6135456B2 publication Critical patent/JPS6135456B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は太陽熱利用集熱器の選択吸収性受熱面
殊に鏡面を有する基板上に一定の組成を有する金
属組成物の酸化被膜を一定の厚さ密着して形成し
た選択吸収性受熱面に関する。 従来の太陽熱利用集熱器の受熱面は集熱器運転
温度が上昇するに従つて集熱効率が大巾に減少す
る欠点を有していた。かゝる欠点を除去するため
受熱面として太陽熱放射の波長帯(0.3〜2.5μ
m)において完全黒体と同程度のエネルギー吸収
率を有するが、集熱器運転温度と同一温度の黒体
放射の波長帯(100℃運転温度の場合、波長3〜
50μm)において低いエネルギー放射率となる光
学的分光特性を有するいわゆる選択吸収面が使用
されることが知られている。 しかし、上記分光特性を有する選択吸収面は天
然には得がたいので、本出願人は先にフエライト
系不銹鋼およびオーステナイト系不銹鋼の酸化物
であつて、500−2000Åの膜厚を有し、しかも0.3
ないし2.5μmの波長帯において高いエネルギー
吸収率を示し、また3ないし50μmの波長帯にお
いて低いエネルギー放射率を示す被覆を、JIS
BO601に規定される表面あらさRaが0.07μ以下ま
たはRzが0.2μ以下の表面状態を有する基板上に
施した太陽熱利用集熱器の選択吸収面について特
許出願した。 又本出願人は先に基板としてフエライト系不銹
鋼を用いる場合は分光特性がすぐれ安価である利
点があるが溶接性、加工性、耐蝕性においてオー
ステナイト系不銹鋼に比べ若干劣るのでこれらの
諸欠点を改良するためフエライト系不銹鋼に特定
金属(Ti、Mo、Nb、Ta、U、Th、W、Zr、Hf
など)の少なくとも1種類以上を配合したものを
使用した選択吸収面についても特許出願した。 本発明の目的は、C 0.001−0.15重量%、Si
0.005−3.0重量%、Mn 0.005−10.00重量%、Cr
11.00−30.00重量%、Ni 0.005−22.00重量%およ
び添加元素としてN、Cu、Al、V、Ti、Nb、
Mo、W、Zr、Y、U、Ta、Th、Hfから選ばれ
た少なくとも1種類の元素を各元素につき5.0重
量%以下、残部Feより成る金属組成物の酸化物
であつて500−2000Åの膜厚を有し、しかも0.3な
いし2.5μmの波長帯において高いエネルギー吸
収率を示し、また3ないし50μmの波長帯におい
て低いエネルギー放射率を示す被覆をJIS BO601
に規定される表面あらさRaが0.07μ以下または
Rzが0.2μ以下である表面状態を有する基板上に
施した太陽熱利用集熱器の選択吸収面を提供する
ことにある。 本発明で使用する金属組成物はオーステナイト
系不銹鋼を基体とし、これに一定の添加元素を配
合したもの又はこれを低炭素にしてしかも一定の
添加元素を配合したものである。 その代表的なものはC 0.001−0.15重量%、
Si 0.005−3.00重量%、Mn 0.005−10.00重量
%、Cr 11.00−30.00重量%、Ni 0.005−22.00重
量%および添加元素として、N、Cu、Al、V、
Ti、Nb、Mo、W、Zr、Y、U、Ta、Th、Hfか
ら選ばれた少なくとも1種類の元素を各元素につ
き5.0重量%以下、残部Feより成る金属組成物で
あつて各添加元素(Me)と(C+N)との重量
比Me/C+Nが5.0以上が好ましく、添加元素が
Nb、Ta、Tiなどの場合には8.0以上が好ましい。 前記金属組成物の酸化物を製造する方法には、 1 前記金属組成物の湿式及び乾式化成処理法。 2 前記金属組成物例えば一定組成を有する不銹
鋼を該不銹鋼以外の鏡面を有する基板上に密着
させ、これを化成処理する方法。 3 前記金属組成物例えば一定組成を有する不銹
鋼を活性真空蒸着法、活性スパツタリング法、
活性アーク放電法等によつて酸化させながら鏡
面を有する基板上に密着させ不銹鋼の酸化物被
膜を形成させる方法がある。 前記方法のうち特に好ましい方法は酸性酸化法
およびアルカリ性酸化法である。
The present invention relates to a selectively absorbing heat receiving surface of a solar heat collector, particularly to a selectively absorbing heat receiving surface in which an oxide film of a metal composition having a certain composition is closely adhered to a certain thickness on a substrate having a mirror surface. The heat-receiving surface of conventional solar heat collectors has the drawback that the heat collection efficiency decreases significantly as the operating temperature of the collector increases. In order to eliminate such drawbacks, the solar heat radiation wavelength range (0.3 to 2.5μ) is used as the heat receiving surface.
m) has an energy absorption rate comparable to that of a perfect blackbody, but in the wavelength range of blackbody radiation at the same temperature as the collector operating temperature (in the case of an operating temperature of 100°C, wavelengths 3 to 3
It is known to use so-called selective absorption surfaces which have optical spectral properties that result in a low energy emissivity at 50 μm). However, since it is difficult to obtain a selective absorption surface having the above-mentioned spectral characteristics in nature, the present applicant has developed an oxide of ferritic stainless steel and austenitic stainless steel, which has a film thickness of 500-2000 Å and has a film thickness of 0.3 Å.
Coatings that exhibit high energy absorption in the wavelength range of 3 to 2.5 μm and low energy emissivity in the wavelength range of 3 to 50 μm are specified by JIS.
We have filed a patent application for a selective absorption surface for a solar heat collector formed on a substrate with a surface roughness Ra of 0.07μ or less or Rz of 0.2μ or less as defined in BO601. In addition, the present applicant has previously discovered that using ferritic stainless steel as a substrate has the advantage of excellent spectral properties and low cost, but its weldability, workability, and corrosion resistance are slightly inferior to austenitic stainless steel, so these drawbacks can be improved. Therefore, specific metals (Ti, Mo, Nb, Ta, U, Th, W, Zr, Hf
A patent application has also been filed for a selective absorption surface using a mixture of at least one of the following. The purpose of the present invention is to contain 0.001-0.15% by weight of C, Si
0.005−3.0 wt%, Mn 0.005−10.00 wt%, Cr
11.00-30.00% by weight, Ni 0.005-22.00% by weight and additional elements such as N, Cu, Al, V, Ti, Nb,
An oxide of a metal composition consisting of at least one element selected from Mo, W, Zr, Y, U, Ta, Th, and Hf with 5.0% by weight or less for each element and the balance Fe, with a thickness of 500-2000 Å. JIS BO601 refers to coatings that have a film thickness that exhibits high energy absorption in the wavelength range of 0.3 to 2.5 μm and low energy emissivity in the wavelength range of 3 to 50 μm.
Surface roughness Ra specified by 0.07μ or less or
The object of the present invention is to provide a selective absorption surface for a solar heat collector formed on a substrate having a surface condition in which Rz is 0.2μ or less. The metal composition used in the present invention has austenitic stainless steel as a base material, and has certain additive elements added thereto, or has a low carbon content and also has certain added elements added thereto. The typical ones are C 0.001-0.15% by weight,
Si 0.005-3.00% by weight, Mn 0.005-10.00% by weight, Cr 11.00-30.00% by weight, Ni 0.005-22.00% by weight and additional elements such as N, Cu, Al, V,
A metal composition consisting of at least one element selected from Ti, Nb, Mo, W, Zr, Y, U, Ta, Th, Hf, each element in an amount of 5.0% by weight or less, and the balance being Fe, with each additional element. The weight ratio Me/C+N of (Me) and (C+N) is preferably 5.0 or more, and the additive element is
In the case of Nb, Ta, Ti, etc., 8.0 or more is preferable. The method for producing the oxide of the metal composition includes: 1. Wet and dry chemical conversion treatment methods for the metal composition. 2. A method in which the metal composition, for example, rustless steel having a certain composition, is brought into close contact with a substrate having a mirror surface other than the stainless steel, and this is subjected to chemical conversion treatment. 3. The metal composition, for example, stainless steel having a certain composition, is processed by active vacuum evaporation method, active sputtering method,
There is a method of forming an oxide film of stainless steel by closely adhering it to a substrate having a mirror surface while oxidizing it by an active arc discharge method or the like. Among the above methods, particularly preferred are the acidic oxidation method and the alkaline oxidation method.

【表】 〓〓〓〓
[Table] 〓〓〓〓

【表】 トリウムもしくは硝酸カリ
ウム
以上を基本浴としこれに触媒的作用物質例えば 水酸化第二鉄 1〜3g/ 過酸化鉛 20〜30g/ を添加することができる。 温度 100〜150℃ 浸漬時間 3〜50分 化成処理に際しては、被覆面を予じめ前処理す
ることが適当である。 処理方法には酸性酸化法では硝酸1容、水1容
の混液に1時間程度浸漬する方法、過塩素酸30重
量%、塩化カリ1重量%の水溶液に2−3分浸漬
する方法がある。 次に金属組成物の酸化物を密着させる場合(鏡
面を有する基板には特に制限はないが)次の諸要
件を具備することが必要である。 1 選択吸収面の特性を具備するため、酸化物は
赤外域で透明で赤外線を照射すれば酸化物を透
過して基板で反射されること(赤外域で反射率
が大きいこと)。 2 酸化被膜の生長は基板の凹凸に左右され、平
滑面上に生成する被膜は堅く密着性が良いこ
と。 3 可視および近赤外域において鏡面を有するこ
とは干渉効果がぼけない。 従つて反射防止効果がしつかり現われる。吸
収に関しては粗面化した面においても吸収率が
増すがどちらの効果を重視するかの選択は製作
者の選択による。 4 基板の平滑さについては基板の赤外線放射を
低くすることが必要で、そのためには赤外線に
対して殆んど平滑であることが必要である。 鏡面が過度に粗面化した場合には、選択吸収
面の吸収域が波長3〜8μmの赤外領域まで達
し分光特性上好ましくない。 基板の材料には例えば、各種金属板、不銹鋼
板、合成樹脂板などが使用される。太陽放射の波
長帯において吸収率が大(すなわち反射率が
小)、赤外域における放射率が小(すなわち反射
率大)なる選択吸収面の分光的特性を十二分に発
揮させるためには不銹鋼酸化物を密着させる基板
の密着前の面状態が非常に重要なものとなる。 通常選択吸収面の性能向上のために、太陽熱放
射の波長に対しては十分粗面であり、赤外波長に
対しては十分平滑な面が良しとされているが、明
確な実験的裏付けはなされていない。粗面化され
た面は繰り返し反射により、吸収率を増すが干渉
効果を利用した反射防止膜にはマイナスの効果が
予想される。しかしこの事も実際は面の凹凸の程
度によるものである。 本発明においては、基板表面の粗さは同一出願
人の出願に係る特許第1300825号(特公昭60−
14275号)、明細書に記載の如く、JIS BO601に規
定される表面あらさRaが0.07μ以下またはRzが
0.2μ以下の表面状態が適当である。 金属板の表面加工は機械研摩、化学研摩、電解
研摩の方法によつてなされる。 次に金属組成物の酸化物を基板に密着させる方
法には次の方法がある。 1 一定組成を有する不銹鋼自体の表面を酸性酸
化法又はアルカリ性酸化法で化成処理する方
法。 2 密着性を改善するためのスパツタリング法、
アーク放電法などの特殊活性蒸着法。 この方法では活性化ガスとして酸素が使用さ
れ、酸素中で蒸着すれば金属酸化物の被膜が得
られる。 3 金属組成物の酸化物粉末を可視光線および赤
外線において比較的透明なバインダー例えばポ
リエチレン、ケイ素樹脂で接着させる方法。 4 不銹鋼以外の基板上に不銹鋼を密着させ、こ
れを化成処理する方法。密着方法には例えば鉄
板上にクロマイジング(クロムを拡散浸透する
方法)を施す方法、クラツドメタル等がある。 このようにして形成された一定組成を有する金
属の酸化物薄膜による選択吸収性受熱面の分光学
〓〓〓〓
的特性および反射防止効果は不銹鋼酸化被膜の膜
厚に左右され、干渉作用による反射防止効果をも
兼ね備えた不銹鋼酸化被膜の適正膜厚(de)
は、膜の光学的厚さn.dが1250Å≦n・d≦2500
Åで屈折率(n1)が2.0≦n1≦2.5とすると、500Å
≦d≦1250Åとなる。 適正膜厚がこの範囲から若干ずれた場合でも選
択吸収面としての性能はかなりのものがあるた
め、適正膜厚の範囲は500Åないし2000Åにして
も何等差しつかえない。 この値は、基板として不銹鋼を選んだ場合のみ
でなく、不銹鋼以外の適当な鏡面を有する基板上
に不銹鋼酸化物被膜を密着せしめた場合も有効で
ある。 この場合、基板の屈折率が4.0以上の高い値を
示す材料を基板として選んだ場合には、基板とし
て不銹鋼を使用した場合よりも一層優れた選択吸
収面となる。 例 〔683/ 11(ISO),304(AISI),SUS
304(JIS)〕で代表されるオーステナイト系不銹
鋼にそれぞれ一定量の新規添加元素を配合したも
のを次の酸化条件で酸化処理して酸化被膜を形成
させた。 酸化条件: 重クロム酸ナトリウム 100g/ 硫酸 400g/ 温度 106〜108℃ 処理時間 30〜35分 得られた選択吸収面の分光反射特性を第1図に
示した。第1図において曲線1はオーステナイト
系不銹鋼に新規添加元素を加えたものを酸化処理
した得られた選択吸収面の分光反射特性を示すも
のである。 第1図からわかるようにオーステナイト系不銹
鋼にそれぞれ新規添加元素を加えたものを酸化処
理して得られた選択吸収面の分光反射特性は本出
願人と同一出願人の出願に係る特願昭54−151980
号第10図曲線1に示されるようにフエライト系
不銹鋼にそれぞれ添加元素を加えたものを酸化処
理して得られる選択吸収面の分光反射特性と同程
度の優れた分光反射特性を示すことがわかつた。 本発明の選択吸収面の特長を示せば次の如くで
ある。 基板としてオーステナイト系不銹鋼を用いる場
合は良好な分光特性を有する選択吸収面が得られ
るが、応力腐蝕の発生などの欠点があるのでこれ
を改良するためオーステナイト系不銹鋼に一定の
新規添加元素を配合したものを使用し、特に、オ
ーステナイト系不銹鋼を低炭素含量にしたものに
一定の新規添加元素を配合したものを使用するこ
とによつて応力腐蝕の発生を防止しまたその機械
的、冶金学的、化学的諸性質の向上を図ることも
できた。 追加の関係 特許第1300825号(特公昭60−14275号公報)は
オーステナイト系不銹鋼を基板とした選択吸収面
に関するものであり、本願はオーステナイト系不
銹鋼に特定の添加元素(Ti、Nb、Ta、U、Th、
W、Zr、Hf)を配合して選択吸収面の耐腐蝕
性、加工性、溶接性を改善することに関するもの
である。
[Table] Using thorium or potassium nitrate as a basic bath, it is possible to add a catalytic substance such as ferric hydroxide 1 to 3 g/lead peroxide 20 to 30 g/. Temperature: 100-150°C Immersion time: 3-50 minutes During chemical conversion treatment, it is appropriate to pre-treat the coated surface in advance. The acid oxidation method includes immersion in a mixture of 1 volume of nitric acid and 1 volume of water for about 1 hour, and immersion in an aqueous solution of 30% by weight of perchloric acid and 1% by weight of potassium chloride for 2 to 3 minutes. Next, when adhering the oxide of the metal composition (although there are no particular restrictions on the substrate having a mirror surface), it is necessary to meet the following requirements. 1. Because it has the characteristic of a selective absorption surface, the oxide is transparent in the infrared region, and when infrared rays are irradiated, it passes through the oxide and is reflected by the substrate (high reflectance in the infrared region). 2. The growth of the oxide film depends on the irregularities of the substrate, and the film formed on a smooth surface is hard and has good adhesion. 3. Having a mirror surface in the visible and near-infrared regions prevents interference effects from blurring. Therefore, the anti-reflection effect appears strongly. Regarding absorption, the absorption rate increases even on a roughened surface, but it is up to the manufacturer to choose which effect to emphasize. 4. Regarding the smoothness of the substrate, it is necessary to reduce the infrared radiation of the substrate, and for this purpose, it is necessary that the substrate be almost smooth with respect to infrared rays. If the mirror surface is excessively roughened, the absorption range of the selective absorption surface will reach the infrared region with a wavelength of 3 to 8 μm, which is unfavorable in terms of spectral characteristics. Examples of materials used for the substrate include various metal plates, stainless steel plates, and synthetic resin plates. In order to fully utilize the spectral characteristics of the selective absorption surface, which has a high absorption rate (i.e., low reflectance) in the wavelength band of solar radiation and a low emissivity (i.e., high reflectance) in the infrared region, stainless steel is required. The surface condition of the substrate to which the oxide is adhered before the adhesion is very important. Normally, in order to improve the performance of a selective absorption surface, a surface that is sufficiently rough for the wavelength of solar thermal radiation and sufficiently smooth for infrared wavelengths is considered good, but there is no clear experimental support. Not done. A roughened surface increases absorption through repeated reflections, but antireflection films that utilize interference effects are expected to have negative effects. However, this actually depends on the degree of unevenness of the surface. In the present invention, the roughness of the substrate surface is determined by the roughness of the substrate surface, which is disclosed in Patent No. 1300825 (Japanese Patent Publication No.
No. 14275), as stated in the specification, the surface roughness Ra specified by JIS BO601 is 0.07 μ or less or Rz is
A surface condition of 0.2μ or less is appropriate. The surface of the metal plate is processed by mechanical polishing, chemical polishing, or electrolytic polishing. Next, there are the following methods for bringing the oxide of the metal composition into close contact with the substrate. 1 A method in which the surface of stainless steel itself having a certain composition is chemically treated using an acid oxidation method or an alkaline oxidation method. 2 Sputtering method to improve adhesion,
Special active deposition methods such as arc discharge method. In this method, oxygen is used as the activating gas, and metal oxide coatings are obtained when deposited in oxygen. 3. A method of bonding oxide powder of a metal composition with a binder that is relatively transparent in visible light and infrared rays, such as polyethylene or silicone resin. 4. A method of attaching rustless steel to a substrate other than stainless steel and subjecting it to chemical conversion treatment. Examples of adhesion methods include chromizing (a method of diffusing and penetrating chromium) on an iron plate, clad metal, and the like. Spectroscopy of the selectively absorbing heat-receiving surface of the metal oxide thin film with a constant composition formed in this way〓〓〓〓
The optical characteristics and anti-reflection effect depend on the thickness of the stainless steel oxide film.
The optical thickness nd of the film is 1250 Å≦n・d≦2500
If the refractive index (n 1 ) is 2.0≦n 1 ≦2.5 in Å, then 500 Å
≦d≦1250 Å. Even if the proper film thickness deviates slightly from this range, the performance as a selective absorption surface is quite good, so there is no problem even if the proper film thickness is in the range of 500 Å to 2000 Å. This value is valid not only when stainless steel is selected as the substrate, but also when the stainless steel oxide film is closely adhered to a substrate other than stainless steel with a suitable mirror surface. In this case, if a material with a high refractive index of 4.0 or more is selected as the substrate, the selective absorption surface will be even better than if stainless steel is used as the substrate. Example [683/11 (ISO), 304 (AISI), SUS
304 (JIS)] were mixed with a certain amount of new additive elements, and were oxidized to form an oxide film under the following oxidation conditions. Oxidation conditions: Sodium dichromate 100g/Sulfuric acid 400g/Temperature 106-108°C Treatment time 30-35 minutes The spectral reflection characteristics of the selective absorption surface obtained are shown in FIG. In FIG. 1, curve 1 shows the spectral reflection characteristics of a selective absorption surface obtained by oxidizing austenitic stainless steel to which a new additive element has been added. As can be seen from Figure 1, the spectral reflection characteristics of the selective absorption surfaces obtained by oxidizing austenitic stainless steels to which new additive elements have been added are disclosed in a patent application filed in 1983 by the same applicant as the present applicant. −151980
As shown in curve 1 in Figure 10 of No. 10, it was found that the spectral reflection characteristics were as good as those of the selective absorption surface obtained by oxidizing ferritic stainless steel with each additive element added. Ta. The features of the selective absorption surface of the present invention are as follows. When austenitic stainless steel is used as a substrate, a selective absorption surface with good spectral properties can be obtained, but there are drawbacks such as the occurrence of stress corrosion.To improve this, certain new additive elements were added to austenitic stainless steel. In particular, by using austenitic stainless steel with a low carbon content and certain new additive elements, the occurrence of stress corrosion can be prevented, and its mechanical, metallurgical and It was also possible to improve various chemical properties. Additional Relationships Patent No. 1300825 (Japanese Patent Publication No. 14275/1983) relates to a selective absorption surface using austenitic stainless steel as a substrate, and the present application discloses that specific additive elements (Ti, Nb, Ta, U) are added to austenitic stainless steel. ,Th,
This invention relates to improving the corrosion resistance, workability, and weldability of selective absorption surfaces by blending W, Zr, and Hf.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はオーステナイト系不銹鋼に新規特定添
加元素を加えたものを酸化処理して得られた選択
吸収面の分光反射特性を示す図である。 〓〓〓〓
FIG. 1 is a diagram showing the spectral reflection characteristics of a selective absorption surface obtained by oxidizing austenitic stainless steel to which a new specific additive element has been added. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 C 0.001−0.15重量%、Si 0.005−3.00重量
%、Mn 0.005−10.00重量%、Cr 11.00−30.00重
量%、Ni 0.005−22.00重量%および添加元素と
してN、Cu、Al、V、Ti、Nb、Mo、W、Zr、
Y、U、Ta、Th、Hfから選ばれた少なくとも1
種類の元素を各元素につき5.0重量%以下、残部
Feより成る金属組成物の酸化物であつて500−
2000Åの膜厚を有し、しかも0.3ないし2.5μmの
波長帯において高いエネルギー吸収率を示し、3
ないし50μmの波長帯において低いエネルギー放
射率を示す被覆をJIS BO601に規定される表面あ
らさRaが0.07μ以下またはRZが0.2μ以下の表面
状態を有する基板上に施すことを特徴とする太陽
熱利用集熱器の選択吸収面。 2 C 0.001−0.15重量%、Si 0.005−3.00重量
%、Mn 0.005−10.00重量%、Cr 11.00−30.00重
量%、Ni 0.005−22.00重量%および添加元素と
してN、Cu、Al、V、Ti、Nb、Mo、W、Zr、
Y、U、Ta、Th、Hfから選ばれた少なくとも1
種類の元素を各元素につき5.0重量%以下、残部
Feより成りしかもJIS BO601に規定する表面あ
らさRaが0.07μ以下またはRzが0.2μ以下である
表面状態を有する不銹鋼を100−400g/の重ク
ロム酸ナトリウムもしくは重クロム酸カリウム、
400−800g/の硫酸の酸性浴中又は40−700
g/の無水クロム酸、150−700g/の硫酸の
酸性浴中で温度50℃ないし沸点、浸漬時間3−40
分間化成処理して膜厚500〜2000Åの酸化皮膜を
形成させることを特徴とする太陽熱利用集熱器の
選択吸収面の製法。 3 C 0.001−0.15重量%、Si 0.005−3.00重量
%、Mn 0.005−10.00重量%、Cr 11.00−30.00重
量%、Ni 0.005−22.00重量%および添加元素と
してN、Cu、Al、V、Ti、Nb、Mo、W、Zr、
Y、U、Ta、Th、Hfから選ばれた少なくとも1
種類の元素を各元素につき5.0重量%以下、残部
Feより成りしかもJIS BO601に規定される表面
あらさRaが0.07μ以下またはRzが0.2μ以下の表
面状態を有する不銹鋼表面を130−200g/の水
酸化ナトリウム又は水酸化カリウム、30−40g/
のリン酸三ナトリウム又はリン酸三カリウム、
20−30g/の亜硝酸ナトリウムもしくは亜硝酸
カリウム又は硝酸ナトリウムもしくは硝酸カリウ
ムを基本浴とし、これに触媒として1−3g/
の水酸化第2鉄、20−30g/の過酸化鉛を添加
したアルカリ浴中で温度100−150℃、浸漬時間3
−50分間化成処理して膜厚500〜2000Åの酸化皮
〓〓〓〓
膜を形成させることを特徴とする太陽熱利用集熱
器の選択吸収面の製法。
[Claims] 1 C 0.001-0.15% by weight, Si 0.005-3.00% by weight, Mn 0.005-10.00% by weight, Cr 11.00-30.00% by weight, Ni 0.005-22.00% by weight, and additional elements such as N, Cu, and Al. , V, Ti, Nb, Mo, W, Zr,
At least one selected from Y, U, Ta, Th, Hf
5.0% by weight or less for each element, the balance
An oxide of a metal composition consisting of Fe, 500−
It has a film thickness of 2000 Å and exhibits a high energy absorption rate in the wavelength range of 0.3 to 2.5 μm.
A solar heat utilization collection characterized in that a coating exhibiting low energy emissivity in the wavelength range of 50 μm to 50 μm is applied on a substrate having a surface roughness Ra of 0.07 μm or less or RZ of 0.2 μm or less as specified in JIS BO601. Selective absorbent surface of heating device. 2 C 0.001-0.15% by weight, Si 0.005-3.00% by weight, Mn 0.005-10.00% by weight, Cr 11.00-30.00% by weight, Ni 0.005-22.00% by weight, and additional elements such as N, Cu, Al, V, Ti, and Nb. ,Mo,W,Zr,
At least one selected from Y, U, Ta, Th, Hf
5.0% by weight or less for each element, the balance
Fermentless steel made of Fe and having a surface roughness Ra of 0.07μ or less or Rz of 0.2μ or less as specified in JIS BO601, 100-400g/of sodium dichromate or potassium dichromate,
In an acid bath of 400-800 g/sulfuric acid or 40-700
g/g of chromic anhydride, 150-700 g/g of sulfuric acid in an acidic bath at a temperature of 50°C to boiling point, immersion time of 3-40
A method for manufacturing a selective absorption surface of a solar heat collector, characterized by forming an oxide film with a thickness of 500 to 2000 Å through a minute chemical conversion treatment. 3 C 0.001-0.15% by weight, Si 0.005-3.00% by weight, Mn 0.005-10.00% by weight, Cr 11.00-30.00% by weight, Ni 0.005-22.00% by weight, and additional elements such as N, Cu, Al, V, Ti, and Nb. ,Mo,W,Zr,
At least one selected from Y, U, Ta, Th, Hf
5.0% by weight or less for each element, the balance
The surface of a stainless steel made of Fe and having a surface roughness Ra of 0.07μ or less or Rz of 0.2μ or less as specified in JIS BO601 is treated with 130-200g/of sodium hydroxide or potassium hydroxide and 30-40g/
trisodium phosphate or tripotassium phosphate,
The basic bath is 20-30g/ of sodium nitrite or potassium nitrite or sodium nitrate or potassium nitrate, and 1-3g// of catalyst is added to this as the basic bath.
of ferric hydroxide and 20-30 g of lead peroxide in an alkaline bath at a temperature of 100-150°C for 3 immersion times.
-An oxide film with a film thickness of 500 to 2000 Å after 50 minutes of chemical conversion treatment〓〓〓〓
A method for manufacturing a selective absorption surface of a solar heat collector characterized by forming a film.
JP542276A 1975-09-22 1976-01-22 Selective absorption surface for heat collector utilizing solar heat Granted JPS5289837A (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP542276A JPS5289837A (en) 1976-01-22 1976-01-22 Selective absorption surface for heat collector utilizing solar heat
IL50299A IL50299A (en) 1975-09-22 1976-08-18 Absorption surface for a solar collector and its manufacture
CA259,385A CA1088404A (en) 1975-09-22 1976-08-18 Absorption surface of solar collector
GB35243/76A GB1554293A (en) 1975-09-22 1976-08-24 Solar collector
IN1552/CAL/76A IN146008B (en) 1975-09-22 1976-08-24
DE2639388A DE2639388C2 (en) 1975-09-22 1976-09-01 Selective absorption surface of an absorber for a solar collector and process for their manufacture
MX76100846U MX5700E (en) 1975-09-22 1976-09-06 IMPROVEMENTS IN METHOD TO MANUFACTURE A SELECTIVE ABSORPTION SURFACE OF A SOLAR COLLECTOR
MX008378A MX174597B (en) 1975-09-22 1976-09-06 IMPROVEMENTS IN METHOD TO MANUFACTURE A SELECTIVE ABSORPTION SURFACE OF A SOLAR COLLECTOR
NZ181975A NZ181975A (en) 1975-09-22 1976-09-08 Selective metal oxide coated surface for solar energy collector
IT27016/76A IT1068259B (en) 1975-09-22 1976-09-09 SOLAR COLLECTOR ABSORPTION SURFACE
FR7627460A FR2325002A1 (en) 1975-09-22 1976-09-13 SOLAR COLLECTOR ABSORPTION SURFACE
DK418476A DK152624C (en) 1975-09-22 1976-09-16 SELECTIVE ABSORPTION SURFACE FOR A SUN AND MAKING PROCEDURE
GR51703A GR61275B (en) 1975-09-22 1976-09-16 Absorption surface of solar collector
AU17875/76A AU496322B2 (en) 1976-09-17 Solar energy collector
CH1178176A CH620761A5 (en) 1975-09-22 1976-09-17 Solar collector absorption surface
AR264765A AR219059A1 (en) 1975-09-22 1976-09-20 SELECTIVE ABSORPTION SURFACE FOR SOLAR COLLECTOR AND MANUFACTURING PROCEDURES
BR7606233A BR7606233A (en) 1975-09-22 1976-09-20 SELECTIVE ABSORPTION SURFACE OF A SOLAR COLLECTOR AND PROCESS FOR THE SAME MANUFACTURE
AT0698276A AT372180B (en) 1975-09-22 1976-09-21 SELECTIVE ABSORPTION SURFACE OF A SOLAR ENERGY COLLECTOR AND METHOD FOR THE PRODUCTION THEREOF
NO763239A NO144365C (en) 1975-09-22 1976-09-21 SELECTIVE ABSORPTION SURFACE, FOR SOLAR COLLECTOR, AND PROCEDURE FOR THE PREPARATION OF THIS
NLAANVRAGE7610523,A NL174760C (en) 1975-09-22 1976-09-22 SELECTIVELY ABSORBING SURFACE OF A SUN RADIATION COLLECTOR AND METHOD FOR PRODUCING SUCH SURFACE.
ES451763A ES451763A1 (en) 1975-09-22 1976-09-22 Solar collector
AR278511A AR229344A1 (en) 1975-09-22 1979-10-16 SELECTIVE ABSORPTION SURFACE OF SOLAR COLLECTOR AND MANUFACTURING PROCEDURES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP542276A JPS5289837A (en) 1976-01-22 1976-01-22 Selective absorption surface for heat collector utilizing solar heat

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12345180A Division JPS5653346A (en) 1980-09-08 1980-09-08 Selective absorption face of solar heat utilizing heat collector and preparation thereof

Publications (2)

Publication Number Publication Date
JPS5289837A JPS5289837A (en) 1977-07-28
JPS6135456B2 true JPS6135456B2 (en) 1986-08-13

Family

ID=11610715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP542276A Granted JPS5289837A (en) 1975-09-22 1976-01-22 Selective absorption surface for heat collector utilizing solar heat

Country Status (1)

Country Link
JP (1) JPS5289837A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556414A (en) * 1978-06-26 1980-01-17 Yazaki Corp Manufacture of selective absorbing plane of solar heat collector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426739A (en) * 1977-08-01 1979-02-28 Konishiroku Photo Ind Co Ltd Photosensitive material for zerography

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426739A (en) * 1977-08-01 1979-02-28 Konishiroku Photo Ind Co Ltd Photosensitive material for zerography

Also Published As

Publication number Publication date
JPS5289837A (en) 1977-07-28

Similar Documents

Publication Publication Date Title
JPS6014275B2 (en) Selective absorption surface of solar heat collector and its manufacturing method
US4098956A (en) Spectrally selective solar absorbers
JP2005523870A5 (en)
JPS6237299B2 (en)
JPS6135456B2 (en)
CA1088404A (en) Absorption surface of solar collector
JPS5819950B2 (en) Manufacturing method of solar heat selective absorption board
JPS6136142B2 (en)
US4448487A (en) Photon energy conversion
AU2012266168A1 (en) Process for producing an element for absorbing solar radiation for a thermal concentrating solar power plant
KR820001485B1 (en) Absorbing surface of solar collecting
US4490412A (en) Method of making a solar energy collector element
JP3194064B2 (en) Solar heat absorber
US4330344A (en) Selective absorber of solar energy and process for producing same
JPH0220909B2 (en)
KR820001483B1 (en) Method for manufacturing surface of absorption for solar collector
JPS6042390B2 (en) Manufacturing method for selectively absorbing heat-receiving surface of solar heat collector
FR2476144A1 (en) SELECTIVE SOLAR ENERGY ABSORBER AND METHOD FOR MANUFACTURING THE SAME
JPS5817265B2 (en) Method of manufacturing thermal radiant material
JPS6138783B2 (en)
EP3835682B1 (en) Solar-heat-collecting pipe
FI67267B (en) PHOTOTHERMAL ABSORBER
JPS59205551A (en) Solar heat collector and its manufacture
JPS5811350A (en) Manufacture of solar heat absorber
Carver et al. Tin oxide-black molybdenum photothermal solar energy converters