JPS6135548A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6135548A
JPS6135548A JP59155228A JP15522884A JPS6135548A JP S6135548 A JPS6135548 A JP S6135548A JP 59155228 A JP59155228 A JP 59155228A JP 15522884 A JP15522884 A JP 15522884A JP S6135548 A JPS6135548 A JP S6135548A
Authority
JP
Japan
Prior art keywords
film
substrate
capacitor
dielectric constant
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59155228A
Other languages
Japanese (ja)
Inventor
Taijo Nishioka
西岡 泰城
Hiroshi Jinriki
博 神力
Kiichiro Mukai
向 喜一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59155228A priority Critical patent/JPS6135548A/en
Publication of JPS6135548A publication Critical patent/JPS6135548A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce a defect density in dielectric for a capacitor without reducing a capacitance, by heating an insulating fiom with a high dielectric constant formed on Si substrate having a thin oxidation film on the surace in a dried oxidizing atmosphere. CONSTITUTION:After an insulating films 2 for separating elements one another are formed at the vicinities of regions for capacitors to be formed on an Si substrate 1, the surface of the Si substrate 1 is oxidized at a temperature of 950 deg.C using oxidization gas diluted with nitrogen gas to form an SiO2 film 3 using reactive sputtering, and is annealed,for example at a temperature of 800 deg.C for about 30min, in a dried oxygen atmosphere, with the result that damage of the SiO2 film 3 resulted from the sputtering of the Ta2O5 can be recovered, resulting in the dense Ta2O5 film 4 and increasing the specific inductive capacity, and defects in the Ta2O5 film can be recoverd. Next, an Al thin film is patterned as upper electrodes of capacitors for the purpose of forming capacitors between the substrate 1 and the Al electrode 5.

Description

【発明の詳細な説明】 C発明の利用分野〕 本発明は大規模集積回路(LSI)用キャパシタの製造
方法に係り、特に誘電体膜が薄くなっても良好な88耐
圧を有するキャパシタの製造方法に関する。
[Detailed Description of the Invention] C. Field of Application of the Invention] The present invention relates to a method for manufacturing a capacitor for a large-scale integrated circuit (LSI), and in particular a method for manufacturing a capacitor that has a good 88 withstand voltage even when the dielectric film is thin. Regarding.

【発明の背景〕[Background of the invention]

LSI、特にバイポーラメモリにおいては高速動作を行
ったり、α線によるソフトエラーの発生を防止するため
にプリッププロップ型メモリセルの負荷抵抗に並列にキ
ャパシタを形成することは特開昭53−43485号に
記載されているように周知の事実である。
Japanese Patent Laid-Open No. 53-43485 describes the formation of a capacitor in parallel with the load resistance of a flip-prop type memory cell in order to achieve high-speed operation in LSI, especially bipolar memory, and to prevent the occurrence of soft errors due to alpha rays. As stated, it is a well-known fact.

上記バイポーラメモリ用キャパシタは現在ショットキバ
リアダイオードの接合容量を利用している。しかし、上
記ショットキバリアダイオードの容量密度は最大3.4
fF/μm2程度であり、上記メモリセルが高速かつα
線によるソフトエラーを発生せずに動作するためには、
上記キャパシタは1個当り0.5 P F程度の静電容
量が必要である。
The bipolar memory capacitor currently uses the junction capacitance of a Schottky barrier diode. However, the maximum capacitance density of the Schottky barrier diode is 3.4
fF/μm2, and the above memory cell is high speed and α
In order to operate without generating soft errors due to lines,
Each of the above capacitors requires a capacitance of about 0.5 PF.

したがって、1個のキャパシタの面積はショットキダイ
オードのみを用いた場合には約150μm2にもなって
しまい、メモリセルの面積の大部分を占有してしまい高
集積化の大きな障害となっていた。
Therefore, when only a Schottky diode is used, the area of one capacitor is about 150 μm2, which occupies most of the area of the memory cell and becomes a major obstacle to high integration.

しかし、キャパシタを導入する場合、メモリセルの設計
上の問題から、メモリセルを縮小するためには、少なく
とも容量密度は7.0 f F/μm2以上あることが
望ましい。
However, when introducing a capacitor, it is desirable that the capacitance density be at least 7.0 f F/μm 2 or more in order to reduce the size of the memory cell due to problems in designing the memory cell.

上記キャパシタ材の一つとして熱酸化膜が考えられるが
、熱酸化膜では比誘電率が3.8 と小さいため、7.
0fF/μm程度の容量密度を得るためには熱酸化膜の
膠原は50人程度となって、現在の熱酸化技術ではLS
I用キャパ−シタ材として充分に欠陥密度の低い絶R膜
を得ることが難しかった。
A thermal oxide film can be considered as one of the above capacitor materials, but since the relative dielectric constant of a thermal oxide film is as small as 3.8, 7.
In order to obtain a capacitance density of about 0 fF/μm, the collagen of the thermal oxide film must be about 50, and with the current thermal oxidation technology, the LS
It has been difficult to obtain an absolute R film with a sufficiently low defect density as an I capacitor material.

従って、充分低い欠陥密度を持ちかつ所望静電容量を持
つキャパシタを得る一つの方法として、Si基板上のS
in、上に、比誘電率の大きい、Ta、O,、Tie、
Nb、Os、HfO,等の高誘電率材料膜をfeWJす
ることによって容量の減少を少なくしてピンホールを減
少させることが考えられる。
Therefore, one way to obtain a capacitor with a sufficiently low defect density and a desired capacitance is to
in, on top, Ta, O,, Tie, with a large dielectric constant,
It is possible to reduce the decrease in capacitance and pinholes by performing feWJ on a film made of a high dielectric constant material such as Nb, Os, HfO, etc.

しかし、上記の高誘電率絶縁膜はスパッタ法や反応性ス
パッタ法によって形成されることが多く。
However, the above-mentioned high dielectric constant insulating film is often formed by a sputtering method or a reactive sputtering method.

下地のSin、等にプラズマによるダメージを与えたり
、又、Sin、と高誘電率t13緑膜との界面の不整合
が大きい、高誘電率材料膜の化学的世論的組成比からの
ずれが生ずるなどと推測される原因によって、キャパシ
タの耐圧の落ちこぼれが生じ、LSI用キャパシタの誘
電体として充分な信頼性が得られなかった。
This may cause plasma damage to the underlying Sin, etc., or there may be a large mismatch at the interface between the Sin and the high dielectric constant T13 green film, or a deviation from the chemical composition ratio of the high dielectric constant material film may occur. Due to these presumed causes, the withstand voltage of the capacitor dropped, and sufficient reliability as a dielectric material for LSI capacitors could not be obtained.

また“KatoらによるSymp、VLSI Thec
hnol、Dig。
Also, “Symp, VLSI Thec by Kato et al.
hnol, Dig.

Paper、 (1983) 、pp、86−87”お
よび特開昭59−4142号  −公報に示されている
ように、水蒸気中でのTa、Os/ S iの酸化によ
ってTa2O,とSiの界面にSin、を形成する方法
では、SiO2単層膜よりも耐圧が高いキャパシタを形
成できるが、この界面に生成するSiO□が容量密度を
下げてしまい、Ta、0.’ の高誘電率材料の特徴が
失われてしまうという欠点があった。
Paper, (1983), pp. 86-87'' and JP-A No. 59-4142-8, the oxidation of Ta, Os/Si in water vapor causes the oxidation of TaO and Si at the interface. With the method of forming Si, a capacitor with a higher withstand voltage than a single SiO2 film can be formed, but the SiO□ generated at this interface lowers the capacitance density, and the characteristics of the high dielectric constant material of Ta, 0.' The disadvantage was that the information was lost.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点に鑑み、静電容量
を減することなくキャパシタ用誘電体の欠陥密度を減ら
すことが可能な半導体の製造方法を提供することにある
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the prior art, an object of the present invention is to provide a semiconductor manufacturing method that can reduce the defect density of a capacitor dielectric without reducing capacitance.

(発明の概要〕 本発明の概念は表面に薄い酸化膜を有するSi基板上に
形成された高誘電串絶t′?、膜を乾燥酸化性雰囲気中
で加熱することにより、高誘電率絶縁IIAとSiの界
面のSin、の膵厚の増加を抑制し、諒Sun、のダメ
ージおよびTa、O,の特性を改善し、欠陥密度の少な
いキャパシタ用誘電体を形成することにある。
(Summary of the Invention) The concept of the present invention is to create a high dielectric constant insulation IIA by heating the film in a dry oxidizing atmosphere. The object of the present invention is to suppress the increase in the thickness of the Si at the interface between Si and Si, improve the damage of the Si, and the properties of Ta, O, and form a dielectric for a capacitor with a low defect density.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の(π念を実施例にて説明する。 Hereinafter, the concept of the present invention will be explained using examples.

第1図に本発明の41ス念を用いて形成したキャパシタ
の製造工程を断面図により説明する。
FIG. 1 illustrates the manufacturing process of a capacitor formed using the 41st idea of the present invention using cross-sectional views.

第1図(a)に示すように、Si基板1上のキャパシタ
が形成される領域の周辺に素子量分F41絶縁膜2を形
成したのち、第り図(b)〜に示ずように、Si基板1
の表面を950℃で、窒素ガスで希釈された酸素ガスを
用いて酸化し、20人程度のSi0.3を形成する6次
に、第ill (c)に示すように、Ta205膜4を
110人程程度応性スパッタ法を用いて5iO23上に
被着する。この反応性スパッタ法とは、Taの金屑ター
ゲットを酸素ガスを含むアルゴンガスのプラズマ中でス
パッタするものである。この後、乾燥酸素雰囲気中で、
例えば800℃、30分程度アニールすると、Ta−2
0、のスパッタのさい生じたSiO□3のダメージが回
復し、かつ、Taz○、膜4も密な構造となり、比誘電
率が増大するとともに、Ta、O,膜中の欠陥も回復す
るものと予想される。次に、第1図(d)に示すように
、キャパシタの上部電極として、AQ薄膜をパターニン
グ形成して、基板1とA、Q電極5との間にキャパシタ
を形成する。
As shown in FIG. 1(a), after forming the F41 insulating film 2 for the element amount around the region on the Si substrate 1 where the capacitor is formed, as shown in FIG. Si substrate 1
The surface of the Ta205 film 4 is oxidized at 950°C using oxygen gas diluted with nitrogen gas to form about 20 SiO. Deposited onto 5iO23 using a process-responsive sputtering method. In this reactive sputtering method, a Ta gold scrap target is sputtered in a plasma of argon gas containing oxygen gas. After this, in a dry oxygen atmosphere,
For example, when annealing at 800°C for about 30 minutes, Ta-2
The damage to SiO□3 that occurred during the sputtering of 0 is recovered, and the Taz○ film 4 also becomes a dense structure, the dielectric constant increases, and the defects in the Ta and O films are also recovered. It is expected to be. Next, as shown in FIG. 1(d), a capacitor is formed between the substrate 1 and the A and Q electrodes 5 by patterning an AQ thin film as the upper electrode of the capacitor.

第3図は、本発明の方法によって形成したキャパシタの
欠陥密度と上記の酸素アニール温度との関係を示す。第
3図よりわかるようにアニール温度が600℃を越える
と欠陥密度は著しく減少する。なお、ここで欠陥とは、
キャパシタの面積が1 mm”のもので−An電極5と
Si基板1の間のリーク電流が10−”Aのときの電圧
が平均の電圧の1/2以下になっているものを示してい
る。
FIG. 3 shows the relationship between the defect density of a capacitor formed by the method of the present invention and the above oxygen annealing temperature. As can be seen from FIG. 3, when the annealing temperature exceeds 600° C., the defect density decreases significantly. Note that the defect here means
The capacitor has an area of 1 mm" and the voltage when the leakage current between the -An electrode 5 and the Si substrate 1 is 10-"A is 1/2 or less of the average voltage. .

第4図は、上記キャパシタの加熱温度と容量密度の関係
を示している。加熱温度が400℃までは容量密度はほ
とんど変化しないが、600℃でわずかに減少し、70
0℃以上で増加し、1000℃で減少する。また、リー
ク電流は800℃までは変化がなく 1000℃で減少
する。
FIG. 4 shows the relationship between the heating temperature and capacitance density of the capacitor. The capacitance density hardly changes until the heating temperature reaches 400℃, but it decreases slightly at 600℃ and increases to 70℃.
It increases at temperatures above 0°C and decreases at 1000°C. Furthermore, the leakage current remains unchanged up to 800°C and decreases at 1000°C.

従って、本発明の乾燥酸素アニール法によって。Therefore, by the dry oxygen annealing method of the present invention.

容量の減少、リーク電流の増大がない状態で、欠陥密度
の著しく少ないTa、 O,/ S LO,/ S i
型キャパシタを形成できる。
Ta, O, / S LO, / Si with extremely low defect density without decreasing capacity or increasing leakage current
type capacitor can be formed.

本発明の実施例として、高誘電率絶縁膜として酸化タン
タルを用いて説明したが、酸化ニオビウム、酸化チタン
、酸化バナジウム、酸化ジルコニウム、酸化ハフニウム
、酸化アルミニウムあるいは、それらの混合物等を酸化
タンタルの代りに用いても同様の効果が期待できる。ま
た、熱処理の雰囲気として1本実施例では、乾燥酸素を
用いたが、その他Ar、N、等で希釈された酸素ガスや
No2などを用いても本発明の概念は適用されることは
いうまでもない。
In the embodiments of the present invention, tantalum oxide was used as the high dielectric constant insulating film, but niobium oxide, titanium oxide, vanadium oxide, zirconium oxide, hafnium oxide, aluminum oxide, or a mixture thereof may be used instead of tantalum oxide. A similar effect can be expected when used in In addition, although dry oxygen was used in this example as the heat treatment atmosphere, it goes without saying that the concept of the present invention can also be applied to other oxygen gas diluted with Ar, N, etc., No2, etc. Nor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Ta205/sio、/siの構造を
用いたキャパシタの耐圧、容量を減少させることなしに
欠陥密度を減少させることができるので、Ta、0./
SiO,の膜厚が薄くなっても、1.SI用キャパシタ
材として充分な信頼性を得ることができる。
According to the present invention, the defect density can be reduced without reducing the withstand voltage and capacity of the capacitor using the Ta205/sio,/si structure. /
Even if the film thickness of SiO becomes thinner, 1. Sufficient reliability can be obtained as a capacitor material for SI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の方法によるキャパシタの製造工程を
示す図、第2図は酸素アニール温度と欠陥密度の関係を
示す曲線図、第3図は酸素アニール温度と容量密度の関
係を示す曲線図である。 1・・・Si基板、2・・・素子間分離絶縁膜、3・・
・篤 1  図 (欠) Cb) (d) 藁 2 図 第3図
Figure 1 is a diagram showing the capacitor manufacturing process according to the method of the present invention, Figure 2 is a curve diagram showing the relationship between oxygen annealing temperature and defect density, and Figure 3 is a curve diagram showing the relationship between oxygen annealing temperature and capacitance density. It is a diagram. 1... Si substrate, 2... Inter-element isolation insulating film, 3...
・Atsushi 1 Figure (missing) Cb) (d) Straw 2 Figure 3

Claims (1)

【特許請求の範囲】 1、Si基板上にSiO_2と高誘電率絶縁膜をそれぞ
れ積層し、高誘電率絶縁膜/SiO_2/Siが形成さ
れている半導体装置を、乾燥した酸化性雰囲気中で加熱
することを特徴とする半導体装置の製造方法。 2、特許請求の範囲第1項記載の高誘電率絶縁膜は、酸
化タンタル、酸化ニオビウム、酸化チタン、酸化バナジ
ウム、酸化ジルコニウム、酸化ハフニウム、酸化アルミ
ニウムの群より選ばれた少なくとも1つを構成要素とし
ていることを特徴とする半導体装置の製造方法。
[Claims] 1. A semiconductor device in which SiO_2 and a high dielectric constant insulating film are laminated on a Si substrate, and a high dielectric constant insulating film/SiO_2/Si is formed is heated in a dry oxidizing atmosphere. A method for manufacturing a semiconductor device, characterized in that: 2. The high dielectric constant insulating film according to claim 1 contains at least one constituent selected from the group of tantalum oxide, niobium oxide, titanium oxide, vanadium oxide, zirconium oxide, hafnium oxide, and aluminum oxide. A method for manufacturing a semiconductor device, characterized in that:
JP59155228A 1984-07-27 1984-07-27 Manufacture of semiconductor device Pending JPS6135548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59155228A JPS6135548A (en) 1984-07-27 1984-07-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59155228A JPS6135548A (en) 1984-07-27 1984-07-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6135548A true JPS6135548A (en) 1986-02-20

Family

ID=15601323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59155228A Pending JPS6135548A (en) 1984-07-27 1984-07-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6135548A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221848A (en) * 1990-03-16 1992-08-12 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
JPH0744466U (en) * 1988-06-18 1995-11-21 ペータース・マシーネンファブリーク・ゲーエムベーハー Corrugated roller for single-sided corrugated board making machine
US6290822B1 (en) * 1999-01-26 2001-09-18 Agere Systems Guardian Corp. Sputtering method for forming dielectric films
JP2004523134A (en) * 2000-09-19 2004-07-29 マットソン テクノロジイ インコーポレイテッド Method of forming dielectric film
US7385264B2 (en) 2002-03-29 2008-06-10 Kabushiki Kaisha Toshiba Method of forming semiconductor device and semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744466U (en) * 1988-06-18 1995-11-21 ペータース・マシーネンファブリーク・ゲーエムベーハー Corrugated roller for single-sided corrugated board making machine
JPH04221848A (en) * 1990-03-16 1992-08-12 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
US6290822B1 (en) * 1999-01-26 2001-09-18 Agere Systems Guardian Corp. Sputtering method for forming dielectric films
JP2004523134A (en) * 2000-09-19 2004-07-29 マットソン テクノロジイ インコーポレイテッド Method of forming dielectric film
US7385264B2 (en) 2002-03-29 2008-06-10 Kabushiki Kaisha Toshiba Method of forming semiconductor device and semiconductor device
US8227356B2 (en) 2002-03-29 2012-07-24 Kabushiki Kaisha Toshiba Method of forming semiconductor device and semiconductor device

Similar Documents

Publication Publication Date Title
EP0137196B1 (en) Process for making high dielectric constant nitride based materials and devices using the same
JPS58220457A (en) Method of forming dielectric material
JPH04279053A (en) High-valued tantalum oxide capacitor
JPH01225149A (en) Capacitor and manufacture thereof
JPS62234360A (en) Semiconductor device and its manufacture
JPS60153158A (en) Manufacture of semiconductor device
US6235594B1 (en) Methods of fabricating an integrated circuit device with composite oxide dielectric
JP2861129B2 (en) Semiconductor device
EP0167208A2 (en) A method for growing an oxide layer on a silicon surface
JPS6135548A (en) Manufacture of semiconductor device
JPS63226981A (en) Superconducting integrated circuit device and its manufacture
JPS5810861A (en) Semiconductor device and manufacture thereof
JPH04369861A (en) Manufacture of compound semiconductor integrated circuit capacitor
JPH0864763A (en) Capacitor and manufacture thereof
JPS5911663A (en) Manufacture of capacitor for semiconductor device
JPS61145854A (en) Semiconductor device
JPS61101069A (en) Manufacture of semiconductor device
JPH054828B2 (en)
JPH06209049A (en) Manufacture of semiconductor device
JPS59188957A (en) Manufacture of capacitor for semiconductor device
JPS61214553A (en) Capacitor
JPS58112360A (en) Capacitor for semiconductor device and manufacture thereof
JPS61150236A (en) Semiconductor device
JP2002134737A (en) Field effect transistor and its manufacturing method
JPS61265856A (en) Capacitor