JPS6131622B2 - - Google Patents

Info

Publication number
JPS6131622B2
JPS6131622B2 JP2503080A JP2503080A JPS6131622B2 JP S6131622 B2 JPS6131622 B2 JP S6131622B2 JP 2503080 A JP2503080 A JP 2503080A JP 2503080 A JP2503080 A JP 2503080A JP S6131622 B2 JPS6131622 B2 JP S6131622B2
Authority
JP
Japan
Prior art keywords
evaporator
liquid
liquid reservoir
cooling medium
heat transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2503080A
Other languages
Japanese (ja)
Other versions
JPS56122151A (en
Inventor
Haruo Tetsuno
Shogo Itano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2503080A priority Critical patent/JPS56122151A/en
Publication of JPS56122151A publication Critical patent/JPS56122151A/en
Publication of JPS6131622B2 publication Critical patent/JPS6131622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 この発明は凝縮性冷却媒体の液相と気相間の相
変化を利用して、半導体素子を冷却する沸騰冷却
式半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporative cooling type semiconductor device that cools a semiconductor element by utilizing a phase change between a liquid phase and a gas phase of a condensable cooling medium.

一般に沸騰冷却式半導体装置は、半導体素子と
接触した蒸発器の上部に液溜め容器、凝縮器を設
け蒸発器と液溜め容器、および液溜め容器と凝縮
器間にそれぞれ熱輸送管で連通して冷却媒体を流
通させるように構成してある。
In general, a boiling-cooled semiconductor device has a liquid reservoir and a condenser placed above the evaporator that is in contact with the semiconductor element, and the evaporator and the liquid reservoir are connected through heat transport pipes, and the liquid reservoir and the condenser are communicated with each other. It is configured to allow a cooling medium to flow therethrough.

従来のものは第1図に示すようにフロン等の凝
縮性の冷却媒体が封入された蒸発器6と半導体素
子1または絶縁物2とを交互に積み重ねて図示し
ていない締付装置によつて圧接し、蒸発器6と液
溜め容器7とを熱輸送管9で連通している。さら
に液溜め容器7と凝縮器8とを熱輸送管10およ
び11で連通している。
As shown in FIG. 1, the conventional system stacks an evaporator 6 filled with a condensable cooling medium such as fluorocarbon and semiconductor elements 1 or insulators 2 alternately and uses a tightening device (not shown). The evaporator 6 and the liquid reservoir 7 are in pressure contact with each other through a heat transport pipe 9. Further, the liquid reservoir 7 and the condenser 8 are communicated with each other through heat transport pipes 10 and 11.

フロン等の冷却媒体12は蒸発器6、熱輸送管
9液溜め容器7に所定量の液相を封入し、液溜め
容器の上部空間および凝縮器8の内部には冷却媒
体12の気相で満たされている。
A predetermined amount of liquid phase of a cooling medium 12 such as fluorocarbon is sealed in an evaporator 6, a heat transport pipe 9, and a liquid storage container 7, and a vapor phase of the cooling medium 12 is placed in the upper space of the liquid storage container and inside the condenser 8. be satisfied.

半導体装置の回路における最大電圧が半導体素
子の定格電圧を越える場合は第2図に示すように
半導体素子を複数個直列に接続して用いられ、抵
抗器等の電圧分担用並列素子3を、半導体素子1
に並列に接続することは周知の如くである。
When the maximum voltage in the circuit of a semiconductor device exceeds the rated voltage of the semiconductor element, a plurality of semiconductor elements are connected in series as shown in Figure 2. Element 1
It is well known that the circuits are connected in parallel.

抵抗器等の並列素子3は発熱を伴うので半導体
素子1と同様に冷却媒体による沸騰冷却を行なう
ことによつて並列素子3の小形化を図り半導体装
置全体を小形化することが行なわれる。
Since the parallel element 3 such as a resistor generates heat, it is boiled and cooled with a cooling medium in the same manner as the semiconductor element 1, thereby reducing the size of the parallel element 3 and the overall semiconductor device.

第1図はこの並列素子3を液溜め容器7内に冷
却媒体12に浸漬するようにして設け、液溜め容
器7の壁面を貫通して設けた気密端子4と並列素
子3とを、導体5で接続し気密端子4と蒸発器6
に設けた端子6Aに導体5で接続し第2図に示す
回路を構成していた。
In FIG. 1, this parallel element 3 is provided in a liquid reservoir 7 so as to be immersed in a cooling medium 12, and an airtight terminal 4 provided through the wall of the liquid reservoir 7 and the parallel element 3 are connected to a conductor 5. Connect airtight terminal 4 and evaporator 6 with
A conductor 5 was connected to a terminal 6A provided at the terminal 6A to form a circuit shown in FIG.

〓〓〓〓
しかし、上記構成のものにおいては、液溜め容
器7の壁面を貫通して気密端子4を設けているた
めに気密端子4自体の機械的強度が小さくしかも
溶接個所が増えることから蒸発器6、液溜め容器
7、凝縮器8および熱輸送管9,10,11で構
成した密封容器の気密に対する信頼性が低下する
とともに製作コストが高価となるという欠点があ
つた。
〓〓〓〓
However, in the above configuration, since the airtight terminal 4 is provided penetrating the wall surface of the liquid reservoir 7, the mechanical strength of the airtight terminal 4 itself is small and the number of welding points increases. There were disadvantages in that the reliability of the airtightness of the sealed container constituted by the storage container 7, the condenser 8, and the heat transport pipes 9, 10, and 11 was lowered, and the manufacturing cost was increased.

この発明は、上記従来の欠点を改善し実用性の
高い半導体装置を提供しようとするものである。
The present invention aims to improve the above-mentioned conventional drawbacks and provide a highly practical semiconductor device.

第3図はこの発明の一実施例を示す図で蒸発器
6、液溜め容器7、熱輸送管9の構成を示す断面
図であり、第1図と同符号は同一物を示してい
る。
FIG. 3 is a diagram showing one embodiment of the present invention, and is a sectional view showing the structure of the evaporator 6, the liquid reservoir 7, and the heat transport pipe 9, and the same reference numerals as in FIG. 1 indicate the same parts.

図に示す如く、液溜め容器7の内部には並列素
子3を冷却媒体12の液相に十分浸漬して設け
る。(取付構造は図示せず) 並列素子3と半導体素子1との電気的接続は第
3図に示すように、半導体素子1に圧接している
蒸発器6の内部に導体5の一端をろう付けやねじ
止め等の方法で接続し、導体5の他端を熱輸送管
9の内部に配設した絶縁物で作られた中空パイプ
13の内部を通して並列素子3の端子に半田付け
等の方法で接続する。
As shown in the figure, the parallel element 3 is provided inside the liquid reservoir 7 so as to be fully immersed in the liquid phase of the cooling medium 12. (The mounting structure is not shown.) The electrical connection between the parallel element 3 and the semiconductor element 1 is made by brazing one end of the conductor 5 inside the evaporator 6 which is in pressure contact with the semiconductor element 1, as shown in FIG. The other end of the conductor 5 is connected to the terminal of the parallel element 3 by a method such as soldering through the inside of the hollow pipe 13 made of an insulating material arranged inside the heat transport pipe 9. Connecting.

熱輸送管9は、一端が液溜め容器7に連結され
た絶縁管9Aと、両端がこの絶縁管9Aの他端と
蒸発器8とにそれぞれ連結されたベローズ9Bと
から構成され、蒸発器6と液溜め容器7とを電気
的に絶縁し、又、半導体素子1が破壊した時に図
示していない締付装置を操作して蒸発器6と半導
体素子1との圧接荷重を解除して蒸発器6を第3
図の左右方向に移動することによつて半導体素子
1の交換を容易にできる構造となつている。
The heat transport tube 9 is composed of an insulating tube 9A having one end connected to the liquid reservoir 7, and a bellows 9B having both ends connected to the other end of the insulating tube 9A and the evaporator 8. and the liquid reservoir container 7, and when the semiconductor element 1 breaks down, a tightening device (not shown) is operated to release the pressurized load between the evaporator 6 and the semiconductor element 1, and the evaporator is closed. 6 to 3rd
The structure is such that the semiconductor element 1 can be easily replaced by moving it in the left-right direction in the figure.

この熱輸送管9の内部に導体5を通す方法は次
の製作順序により達成することができる。
A method for passing the conductor 5 inside the heat transport pipe 9 can be achieved by the following manufacturing sequence.

蒸発器6にあらかじめ導体5を接続し導体5を
ベローズ9Bに通した後、ベローズ9Bの一端と
蒸発器6とを溶接する。その後更に導体5を絶縁
管9Aに通して絶縁管9Aの一端とベローズ9B
の他端とを溶接する。その後上部を開放した液溜
め容器7の底板に設けられた穴7Aに導体5を通
した後、絶縁管9Aの他端と液溜め容器7とを溶
接連結する。上記順序で蒸発器6、熱輸送管9、
液溜め容器7とを結合した後、導体5を中空パイ
プ13の内部に通し、中空パイプ13を熱輸送管
9の内部に液溜め容器7の上方から挿入し第3図
に示すように配設して固定する。(固定の構造は
図示せず) 上記の作業の後、液溜め容器7の側板上縁部に
上ぶたを溶接し、第3図に示す半導体装置を構成
する。
After connecting the conductor 5 to the evaporator 6 in advance and passing the conductor 5 through the bellows 9B, one end of the bellows 9B and the evaporator 6 are welded. After that, the conductor 5 is further passed through the insulating tube 9A, and the bellows 9B is connected to one end of the insulating tube 9A.
Weld the other end of the Thereafter, the conductor 5 is passed through the hole 7A provided in the bottom plate of the liquid reservoir 7 with its top open, and then the other end of the insulating tube 9A and the liquid reservoir 7 are connected by welding. In the above order, the evaporator 6, the heat transport pipe 9,
After connecting the liquid reservoir 7, the conductor 5 is passed through the hollow pipe 13, and the hollow pipe 13 is inserted into the heat transport pipe 9 from above the liquid reservoir 7, and arranged as shown in FIG. and fix it. (The fixing structure is not shown.) After the above operations, an upper lid is welded to the upper edge of the side plate of the liquid reservoir 7, and the semiconductor device shown in FIG. 3 is constructed.

この沸騰冷却式半導体装置の作用を述べると、
半導体素子1で発生した熱は蒸発器6に伝達し蒸
発器6の内面に接触している冷却媒体12の液相
が沸騰して気相に変化する。この冷却媒体12の
気相は気泡となつて熱輸送管9と中空パイプ13
との間隙を上昇して液溜め容器7を経て蒸気用熱
輸送管10を通つて凝縮器8へと導かれる。
To describe the function of this boiling-cooled semiconductor device,
The heat generated in the semiconductor element 1 is transferred to the evaporator 6, and the liquid phase of the cooling medium 12 in contact with the inner surface of the evaporator 6 boils and changes to a gas phase. The gas phase of this cooling medium 12 becomes bubbles and connects the heat transport pipe 9 and the hollow pipe 13.
The steam rises through the gap between the steam tank 7 and the steam heat transport pipe 10 and is guided to the condenser 8.

一方液溜め容器7内に設けた並列素子3が発熱
すると、並列素子3に接触している冷却媒体12
の液相が沸騰して気相に相変化し上記蒸発器6で
発生した気相と同様、蒸気用熱輸送管10より凝
縮器8へと導かれる。
On the other hand, when the parallel element 3 provided in the liquid reservoir 7 generates heat, the cooling medium 12 in contact with the parallel element 3
The liquid phase is boiled and changed into a gas phase, and like the gas phase generated in the evaporator 6, it is guided to the condenser 8 through the steam heat transport pipe 10.

凝縮器8に入つた冷却媒体12の気相は冷却さ
れて液化し、凝縮器8下部から液用熱輸送管11
を通つて液溜め容器7に戻る。液溜め容器7内の
冷却媒体12は、各熱輸送管9の内部に設けられ
た中空パイプ13の内部を通して各蒸発器6に供
給される。
The gas phase of the cooling medium 12 that has entered the condenser 8 is cooled and liquefied, and is passed from the lower part of the condenser 8 to the liquid heat transport pipe 11.
and returns to the liquid reservoir 7 through the liquid. The cooling medium 12 in the liquid reservoir 7 is supplied to each evaporator 6 through a hollow pipe 13 provided inside each heat transport pipe 9 .

以上のサイクルで冷却媒体12が循環し、半導
体素子1および並列素子3が冷却される。
The cooling medium 12 circulates through the above cycle, and the semiconductor element 1 and the parallel element 3 are cooled.

尚、以上述べた実施例では、液溜め容器7内に
並列素子3を設けた場合について説明したが、凝
縮器8の底部に冷却媒体12の液相部が存在する
ものに於いては、凝縮器8の底部に並列素子3を
設置してもよい。この場合、並列素子3が浸漬さ
れる冷却媒体12が存在する凝縮器8の底部、即
ち液溜室が前記液溜め容器7に相当することにな
る。
In the embodiments described above, the parallel element 3 was provided in the liquid reservoir 7, but in the case where the liquid phase portion of the cooling medium 12 is present at the bottom of the condenser 8, the condensation A parallel element 3 may be installed at the bottom of the vessel 8. In this case, the bottom of the condenser 8 in which the cooling medium 12 in which the parallel elements 3 are immersed, that is, the liquid storage chamber, corresponds to the liquid storage container 7.

以上のようにこの発明の半導体装置は、液溜め
容器よりの凝縮性の冷却媒体が封入充填された蒸
発器とこれの外側面に配設される半導体素子とを
交互に積み重ねて圧接するとともに上記蒸発器と
液溜め容器と凝縮器とを熱輸送管で連通し、かつ
上記液溜め容器内には上記半導体素子に並列接続
する並列素子を冷却媒体の液相に浸漬するように
設置するとともにこの並列素子と蒸発器とを線条
導体によつて電気的に接続し、該線条導体は上記
〓〓〓〓
蒸発器と液溜め容器とを連通接続する熱輸送管の
内部に設けた絶縁性の中空パイプ内に貫通配設し
たことにより、従来のような気密端子を設ける必
要がなく、気密に対する信頼性が向上し製作コス
トが低減する特長を有する。
As described above, in the semiconductor device of the present invention, an evaporator filled with a condensable cooling medium from a liquid storage container and a semiconductor element disposed on the outer surface of the evaporator are alternately stacked and pressed into contact with each other. The evaporator, the liquid reservoir, and the condenser are connected through a heat transport pipe, and a parallel element connected in parallel to the semiconductor element is installed in the liquid reservoir so as to be immersed in the liquid phase of the cooling medium. The parallel element and the evaporator are electrically connected by a wire conductor, and the wire conductor is
Because it is installed through an insulating hollow pipe installed inside the heat transport pipe that communicates and connects the evaporator and the liquid reservoir, there is no need to provide an airtight terminal like in the past, and the reliability of airtightness is improved. It has the advantage of improving performance and reducing manufacturing costs.

また、並列素子接続用導体は絶縁物で作られた
中空パイプの内部を通すため、裸線を使用しても
液溜め容器との絶縁が確保されるという特長も有
し、極めて簡単な構成でもつて実用性の高い半導
体装置を製作することが出来る。
In addition, since the conductor for connecting parallel elements passes through the inside of a hollow pipe made of insulating material, it has the advantage of ensuring insulation from the liquid reservoir even if bare wires are used, and even with an extremely simple configuration. Therefore, a highly practical semiconductor device can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の半導体装置を示す図で、
aは正面図、bは側面図である。第2図は半導体
回路の接続を示す接続図、第3図はこの発明の一
実施例を示す正面要部縦断面図である。 図中、1は半導体素子、3は並列素子、5は導
体、6は蒸発器、7は液溜め容器、8は凝縮器、
9は熱輸送管、13は中空パイプである。なお、
図中同一符号は同一もしくは相当部分を示す。 〓〓〓〓
Figures 1a and 1b are diagrams showing a conventional semiconductor device.
A is a front view, and b is a side view. FIG. 2 is a connection diagram showing connections of semiconductor circuits, and FIG. 3 is a front longitudinal cross-sectional view of an essential part showing an embodiment of the present invention. In the figure, 1 is a semiconductor element, 3 is a parallel element, 5 is a conductor, 6 is an evaporator, 7 is a liquid reservoir, 8 is a condenser,
9 is a heat transport pipe, and 13 is a hollow pipe. In addition,
The same reference numerals in the figures indicate the same or corresponding parts. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 液溜め容器よりの凝縮性の冷却媒体が封入充
満された蒸発器とこれの外側面に配設される半導
体素子とを交互に積み重ねて圧接するとともに上
記蒸発器と液溜め容器と凝縮器とを熱輸送管で連
通し、かつ上記液溜め容器内には上記半導体素子
に並列接続する並列素子を冷却媒体の液相に浸漬
するように設置するとともにこの並列素子と蒸発
器とを線条導体によつて電気的に接続し、該線条
導体は上記蒸発器と液溜め容器とを連通接続する
熱輸送管の内部に設けた絶縁性の中空パイプ内に
貫通配設したことを特徴とする半導体装置。 2 液溜め容器は上記凝縮器の底部に設けた液溜
室であることを特徴とする特許請求の範囲第1項
記載の半導体装置。
[Scope of Claims] 1. An evaporator filled with a condensable cooling medium from a liquid storage container and a semiconductor element disposed on the outer surface of the evaporator are alternately stacked and pressed together, and the evaporator and the liquid are The storage container and the condenser are connected through a heat transport pipe, and a parallel element connected in parallel to the semiconductor element is installed in the liquid storage container so as to be immersed in the liquid phase of the cooling medium. electrically connected to the evaporator by a filamentous conductor, and the filamentous conductor is installed through an insulating hollow pipe provided inside a heat transport pipe that communicates and connects the evaporator and the liquid storage container. A semiconductor device characterized by: 2. The semiconductor device according to claim 1, wherein the liquid reservoir is a liquid reservoir chamber provided at the bottom of the condenser.
JP2503080A 1980-02-28 1980-02-28 Semiconductor device Granted JPS56122151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2503080A JPS56122151A (en) 1980-02-28 1980-02-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2503080A JPS56122151A (en) 1980-02-28 1980-02-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS56122151A JPS56122151A (en) 1981-09-25
JPS6131622B2 true JPS6131622B2 (en) 1986-07-21

Family

ID=12154506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2503080A Granted JPS56122151A (en) 1980-02-28 1980-02-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS56122151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168216U (en) * 1986-04-16 1987-10-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326237C (en) * 2003-09-04 2007-07-11 珍通科技股份有限公司 Circular pipe type radiator structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168216U (en) * 1986-04-16 1987-10-26

Also Published As

Publication number Publication date
JPS56122151A (en) 1981-09-25

Similar Documents

Publication Publication Date Title
US4502286A (en) Constant pressure type boiling cooling system
US4036291A (en) Cooling device for electric device
US4330033A (en) Constant pressure type ebullient cooling equipment
US4020399A (en) Vapor cooling device for dissipating heat of semiconductor elements
US4085395A (en) High voltage transformer package
US3852805A (en) Heat-pipe cooled power semiconductor device assembly having integral semiconductor device evaporating surface unit
US4862321A (en) Cooling system for heating body
JPS6131622B2 (en)
KR850001098B1 (en) Boiling / cooling system
JPS583383B2 (en) thyristor stack
CN205724361U (en) A kind of based on heat sink liquid refrigeration semiconductor laser and the folded battle array of insulating
JPS6127915B2 (en)
JPH07161888A (en) Boiling cooling unit and manufacture thereof
US4593532A (en) Evaporation-cooled gas insulated electrical apparatus
JPS6127914B2 (en)
JPS6130292Y2 (en)
KR890002138B1 (en) Radiator for semiconductor device
JPS5941307B2 (en) Boiling cooling device for semiconductor devices
JP3173764B2 (en) Boiling cooling device
JPS6137793B2 (en)
JPH03283454A (en) Semiconductor cooling device
JPH0147013B2 (en)
JP2585479B2 (en) Boiling cooling device
JPH07106478A (en) Boiling and cooling apparatus and its manufacture
US3086070A (en) Mounting for electrical elements