JPS6131229A - Manufacture of polyolefin family sheet excellent in impact resistance - Google Patents

Manufacture of polyolefin family sheet excellent in impact resistance

Info

Publication number
JPS6131229A
JPS6131229A JP15446084A JP15446084A JPS6131229A JP S6131229 A JPS6131229 A JP S6131229A JP 15446084 A JP15446084 A JP 15446084A JP 15446084 A JP15446084 A JP 15446084A JP S6131229 A JPS6131229 A JP S6131229A
Authority
JP
Japan
Prior art keywords
sheet
rolling
tms
impact resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15446084A
Other languages
Japanese (ja)
Other versions
JPH0414611B2 (en
Inventor
Ryuhei Ueda
上枝 龍平
Kiyonobu Fujii
藤井 清伸
Hiroshi Ubukawa
生川 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP15446084A priority Critical patent/JPS6131229A/en
Publication of JPS6131229A publication Critical patent/JPS6131229A/en
Publication of JPH0414611B2 publication Critical patent/JPH0414611B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain the polyolefin family sheet excellent in impact resistance by rolling crystalline polyolefin family resin in biaxial direction under the temperature condition satisfying the formula, keeping the time equal to 30min or more. CONSTITUTION:It is necessary that rolling temperature T is in the range of Tms-5 deg.K<=T<=Tms+5 deg.K, and preferably in the range of Tms-3 deg.K<=T<=Tms+ 3 deg.K. here, T; rolling temperature, Tms: the melting point of sheet or block like material before rolling. In said temperature range, material must be rolled, while keeping the time equal to 30min or more, and its rolling must be carried out in biaxial direction. This sheet has not the defect of imferior adapting to a mold, and also there is not the sag impeding the process, when a large molded product is produced by vacuum molding or pressure molding. Consequently, the impact resistance of the sheet is heightened, and also its strength and Young's modulus are improved. As the molecular structure of polyolefin has no necessity of denaturation, its original characteristics such as mechanical strength, electrical property, water resistance and chemicals resistance are kept as they are.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は衝撃強度、特に低温における衝撃強度が著しく
改善さ′れ、異方性がなく、かつ成形性に優れたポリオ
レフィン系シートの製造法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for producing a polyolefin sheet that has significantly improved impact strength, especially impact strength at low temperatures, is free from anisotropy, and has excellent formability. Regarding.

〔従来の技術〕[Conventional technology]

ポリオレンイン系シートの多くは各種容器、自動車用部
品、電気器具部品、包装材料等に、そのままの形、ある
いは真空成形、圧空成形、プレス成形等の加工を経て広
く使用されている。しかしながらこれらのシートは超高
分子量のポリエチレンを除いては耐衝撃性が低く、特に
強度、剛性にすぐれるポリプロピレンにいたってはその
傾向が顕著であり、なかでも低温における耐衝撃性は著
しく不良である。
Many polyolefin sheets are widely used in various containers, automobile parts, electrical appliance parts, packaging materials, etc., either as they are or after processing such as vacuum forming, pressure forming, press forming, etc. However, these sheets have low impact resistance, except for ultra-high molecular weight polyethylene, and this tendency is especially noticeable for polypropylene, which has excellent strength and rigidity.In particular, impact resistance at low temperatures is extremely poor. be.

従来よシこの欠点を改良すべく種々の提案がなされてい
る。例えば、ポリオレフィンに他の重合体や、ニジスト
マー、可塑剤をブレンドしたり、オレフィンと他の単量
体との共重合により耐衝撃□より衝撃強度が向上するこ
とが知られている。
Various proposals have been made to improve this drawback. For example, it is known that impact strength can be improved by blending polyolefin with other polymers, nidistomers, or plasticizers, or by copolymerizing olefin with other monomers.

〔発明も解決しようとする問題点〕[Problems that inventions also try to solve]

しかしながら前者の方法においては、衝撃強度について
の改良紘十分でない上に強度、弾性率が低下するという
欠点を生ずる。さらにこれらの方法においては、用いら
れる変性剤によシ成形性、加工性、各種電気特性や耐水
性、耐溶剤溶解性、耐薬品性、耐候性等においてそれぞ
れの性能が低下し易ずいという欠点を生ずる。
However, the former method has the disadvantage that the impact strength is not sufficiently improved and the strength and elastic modulus are lowered. Furthermore, these methods have the disadvantage that the modifiers used tend to deteriorate moldability, processability, various electrical properties, water resistance, solvent solubility, chemical resistance, weather resistance, etc. will occur.

一方、後者の方法においては、耐衝撃性の向上は前者の
方法よりはやや優れた効果は認められるもののその効果
はなお十分でなく、また得られたシート中の樹脂の結晶
部分や非晶部分が著しく配向しているため異方性を生じ
る。それ故、真空成形や圧空成形の予熱時に張力がかか
つて破れたり、長期に保存した場合に成形物の形状かも
との成形前の形にもどろうとする効果(いわゆるスプリ
ングバック現象ンがあったりするため成形性や成形物の
形態安定性が劣るという欠点を生ずる。
On the other hand, in the latter method, although the effect of improving impact resistance is slightly better than that of the former method, the effect is still not sufficient. is significantly oriented, resulting in anisotropy. Therefore, the tension during preheating for vacuum forming or pressure forming may cause the product to break, and when stored for a long period of time, the shape of the molded product tends to return to its original shape before molding (so-called springback phenomenon). This results in disadvantages such as poor moldability and morphological stability of molded products.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはこれらの欠点を改良すべく鋭意研究した結
果、結晶性ポリオレフィン系樹脂を素材とし、これを特
定の条件下によシ圧延してシートを製造すると耐衝撃性
に関して格段に優れたシートが他の物性を低下させずに
むしろ向上して得られることを認めて本発明に至った。
The inventors of the present invention have conducted extensive research to improve these drawbacks, and have found that sheets made from crystalline polyolefin resin are rolled under specific conditions to produce sheets with significantly superior impact resistance. The present invention was developed based on the recognition that a sheet can be obtained with improved rather than decreased other physical properties.

即ち本発明は結晶性ポリオレフィン系樹脂を下記(a)
式を満足する温度条件下で50秒間以上保持することに
よシ2軸圧−することを特徴とする耐衝撃性にすぐれた
ポリオレフィン系シートの製造方法である。
That is, the present invention uses crystalline polyolefin resin as shown below (a).
This is a method for producing a polyolefin sheet with excellent impact resistance, which is characterized by applying biaxial pressure by holding the sheet for 50 seconds or more under temperature conditions that satisfy the following formula.

(a)  Tms −5’に≦T<Tms+5°K本発
明における結晶性ポリオレフィン系樹脂とはエチレン、
プロピレン、4−メチル−1−ペンテン、4−メチル−
2−ペンテン、3−メチル−1−ペンテン、1−ブテン
、2−ブテン、インブチレン、3−メチル−1−ブテン
等のオレフィン系単量体の単独重合体又はブロック若し
くはランダム共重合体或はこれらのオレフィン系単量体
を主体とし少割合(20モルチ以下)の他の単量体、例
えばアクリル酸、メタアクリル酸、無水マレイン酸およ
びそれらのエステル、酢酸ビニル等の脂肪酸ビニルエス
テル類、スチレン、α−メチルスチレン、ビニルエーテ
ル類、アクリロニトリル、アクリルアミド、N−ビニル
カルバゾール、ビニルピリジン、イミダゾール等との共
重合体のうち、圧延成形が可能な結晶化度20%以上の
樹脂である。
(a) Tms -5'≦T<Tms+5°K The crystalline polyolefin resin in the present invention is ethylene,
Propylene, 4-methyl-1-pentene, 4-methyl-
Homopolymers, block or random copolymers of olefinic monomers such as 2-pentene, 3-methyl-1-pentene, 1-butene, 2-butene, imbutylene, 3-methyl-1-butene, or Mainly composed of these olefinic monomers, with a small proportion (less than 20 moles) of other monomers, such as acrylic acid, methacrylic acid, maleic anhydride and their esters, fatty acid vinyl esters such as vinyl acetate, and styrene. Among copolymers with α-methylstyrene, vinyl ethers, acrylonitrile, acrylamide, N-vinylcarbazole, vinylpyridine, imidazole, etc., it is a resin with a crystallinity of 20% or more that can be rolled and formed.

用いられる樹脂の分子量は比較的高分子量であることが
よく、その尺度としてメルトインデックス(又はメルト
フロレート)は適切である。好ましいメルトインデック
スは109710分以下0.05g/10分以上、特に
は59/10分以下0.05 f/10分以上である。
The molecular weight of the resin used is often relatively high, and melt index (or melt fluorate) is appropriate as a measure thereof. The preferred melt index is 109710 minutes or less and 0.05 g/10 minutes or more, particularly 59/10 minutes or less and 0.05 f/10 minutes or more.

ここでメルトインデックスの測定条件はポリマーによシ
異なるが、ポリエチレンについてはJIS K 6y6
o、ポリプロピレンについてはJIS K 675B、
その他の樹脂についてはJIS  K  721oに記
載された条件のうち、融点+60Xに最も近い測定条件
を選択し、荷重は2160 gとする。
The measurement conditions for melt index differ depending on the polymer, but for polyethylene, JIS K 6y6
o, JIS K 675B for polypropylene,
For other resins, among the conditions described in JIS K 721o, the measurement conditions closest to the melting point +60X are selected, and the load is 2160 g.

メルトインデックスがこの範囲を越えて大きい樹脂を使
用した場合は十分な耐衝撃性を有するシートを得ること
はできない。
If a resin with a melt index exceeding this range is used, a sheet with sufficient impact resistance cannot be obtained.

本発明は該特定された樹脂を好ましくはシート状物また
はブロック状物とした後に圧延される。
In the present invention, the specified resin is preferably formed into a sheet-like product or a block-like product and then rolled.

本発明の実施に当って、圧延の温度は重要である。圧延
温度TはTm5−5″に:S;T≦Tms + 5 ’
に好ましくはTms −3″に≦T≦Tms + 5 
’にの範囲にある必要が有る。圧延温度Tがこの範囲外
に有るときは、高すぎても低すぎても圧延されたシート
の耐衝撃性が低下する。特に本発明の範囲以下の温度で
圧延した後、室温で長期間放置されまたは高温に短時間
さらされた場合、圧延前の厚さにもどる傾向がつよくシ
ートまたはその成形物の形態安定性が非常に悪いという
欠点を有する。このいわゆるスプリングバック現象は厚
さ変化率により定量的に把握される。
In practicing the present invention, the temperature of rolling is important. The rolling temperature T is Tm5-5'': S; T≦Tms + 5'
preferably Tms −3″≦T≦Tms + 5
' must be in the range. When the rolling temperature T is outside this range, whether it is too high or too low, the impact resistance of the rolled sheet decreases. In particular, if the sheet is rolled at a temperature below the range of the present invention and then left at room temperature for a long period of time or exposed to high temperatures for a short period of time, it tends to return to its pre-rolling thickness and the morphological stability of the sheet or its formed product is extremely low. It has the disadvantage of being bad. This so-called springback phenomenon can be quantitatively understood by the rate of change in thickness.

シートの厚さ変化率は次の如くして測定する。The rate of change in sheet thickness is measured as follows.

サンプルをほぼ均等に区分した地点よりえらん熱後、室
温まで放冷し少なくとも24時間放置後同じ点の厚さを
測定する。シートの厚さの変化率は次式によりsで示す
After heating the sample at approximately evenly divided points, the sample is allowed to cool to room temperature, and after being left for at least 24 hours, the thickness at the same point is measured. The rate of change in the thickness of the sheet is expressed as s according to the following equation.

本発明においては上記の温度範囲において30秒以上を
かけて圧延することが必要である。圧延時間が短゛かい
とスプリングバックが大きく、また耐衝撃性の向上も期
待できない。圧延に要する時間は長時間であればある程
よいが、経済上またはシートの劣化を考慮すれば、一般
にある範囲が選択されるべきで、この点好ましい圧延時
間は2〜60分、特には5〜30分の間である。
In the present invention, it is necessary to roll for 30 seconds or more in the above temperature range. If the rolling time is too short, springback will be large, and no improvement in impact resistance can be expected. The longer the time required for rolling, the better; however, from economical and sheet deterioration considerations, a certain range should generally be selected. In this respect, the preferred rolling time is 2 to 60 minutes, particularly 5 to 60 minutes. It is for 30 minutes.

更に圧延前のシート状物またはブロック状物の厚さと、
圧延後のシート状物の厚さの比で示される圧延比の好ま
しい範囲は2〜15好ましくは3〜10である。圧延比
が少ない場合、十分な圧延効果が得られず衝撃強度の増
大が望めない。一方、圧延比を増大しすぎると十分な衝
撃強度の増大が期待できないばかシか、寸法安定性や成
形性が低下することがある。
Furthermore, the thickness of the sheet or block before rolling,
The preferable range of the rolling ratio, which is the ratio of the thickness of the sheet material after rolling, is 2 to 15, preferably 3 to 10. When the rolling ratio is low, sufficient rolling effect cannot be obtained and no increase in impact strength can be expected. On the other hand, if the rolling ratio is increased too much, a sufficient increase in impact strength may not be expected, or dimensional stability and formability may deteriorate.

本発明において圧延は2軸方向に行なうことが必要であ
る。1軸圧延によシ得られたシートは、その物性に著し
い異方性が有るために、圧延方向にサンプリングした試
料のアイゾツト強度は強くでるが、それと直交方向に測
定したアイゾツト衝撃値は著しく低くなる。また他の耐
衝−性測定法例えばJ工5T8131に定められた耐貫
通性試験により耐衝撃性を測定すると、1軸圧延シート
の性能は著しく低い。一般に1軸圧延シートは、その性
質に異方性があるため真空成形、圧空成形により各糧製
品を製造するとき、シートが破れるとか金型に対する沿
いが悪いとかの欠点を有する。
In the present invention, it is necessary to perform rolling in two axial directions. Sheets obtained by uniaxial rolling have significant anisotropy in their physical properties, so samples sampled in the rolling direction have a strong Izot strength, but the Izot impact value measured in the orthogonal direction is extremely low. Become. When the impact resistance is measured by other impact resistance measuring methods, such as the penetration resistance test specified in J.K. 5T8131, the performance of the uniaxially rolled sheet is extremely low. In general, uniaxially rolled sheets have anisotropic properties and therefore have drawbacks such as tearing of the sheets and poor conformability to molds when producing various food products by vacuum forming or pressure forming.

これに対し本発明によるシートは、この様な型沿いが悪
いという欠点もなく、通常のポリオレフィンシートにお
いて、真空成形、圧空成形等によシ大形成形品を製造す
る場合重大な障害になる「たれ」も見られない。
On the other hand, the sheet according to the present invention does not have the drawback of poor mold conformability, which is a serious hindrance when producing large molded products by vacuum forming, pressure forming, etc. in ordinary polyolefin sheets. I can't even see the sauce.

異方性を定量的に示す方法としては、シート平面内にお
いて各方向にノツチ付アイゾツト強度を測定し、その内
で最も高い値をIzmax、それとシート平面内で直交
する方向におけるノツチ付アイゾツト衝撃強度をIzm
inとしその比CRIz)であられすのがよい。
The method of quantitatively indicating anisotropy is to measure the notched Izot strength in each direction within the sheet plane, and calculate the highest value as Izmax, and the notched Izot impact strength in the direction orthogonal to it in the sheet plane. Izm
It is better to use the ratio CRIz).

本発明において、より異方性の少ないシートを得だい場
合、原料シートまたは素材ブロックとして異方性の少な
い素材から出発することがよい。
In the present invention, in order to obtain a sheet with less anisotropy, it is preferable to start from a material with less anisotropy as the raw material sheet or material block.

該異方性の少ない素材としては、溶融押出法によシ原料
シートを製造する際にダイスのリップ間隔と得られる原
料シートの厚さの比(一般にドロー比と呼ばれる〕を選
定することにより容易に得られる。一般にこのドロー比
の範囲は1.2〜2.5であシ、特に好ましくは1.5
〜2.0の間である。より配向性の少ない原料シートを
得るためには、該原料シートを数枚〜数拾枚積層し融点
以上の温度で融解させ平板状の原料ブロックとしておく
のがよい。該原料シート(又は原料ブロック)は単に押
出加工されたシートであるので、ノツチ付アイゾツト衝
撃強度が低いのは当然である。本発明により製造せられ
たシートは該定義された衝撃強度比(RIz)が通常5
以下と極めて小さい異方性のないシートである。
The material with low anisotropy can be easily obtained by selecting the ratio between the lip interval of the die and the thickness of the obtained raw material sheet (generally called the draw ratio) when manufacturing the raw material sheet by the melt extrusion method. Generally, the range of this draw ratio is 1.2 to 2.5, particularly preferably 1.5.
~2.0. In order to obtain a raw material sheet with less orientation, it is preferable to stack several to several dozen raw material sheets and melt them at a temperature above the melting point to form a flat raw material block. Since the raw material sheet (or raw material block) is simply an extruded sheet, it is natural that the notched isot impact strength is low. Sheets produced according to the invention typically have a defined impact strength ratio (RIz) of 5.
This is a sheet with no anisotropy, which is extremely small.

一般にシート、成形物の強度、弾性率を改良するために
重合体の結晶化度を低下せしめて、耐衝撃性を向上させ
るのが通常であるが、本発明のシートにおいては結晶化
度が通常より高いにもかかわらず耐衝撃性は極めて高い
。したがって本発明のシートにおいては耐衝撃性が向上
すると同時に強度、弾性率も改良される特徴を有する。
Generally, in order to improve the strength and elastic modulus of sheets and molded products, the crystallinity of the polymer is usually lowered to improve impact resistance, but in the sheet of the present invention, the crystallinity is Even though it is higher, its impact resistance is extremely high. Therefore, the sheet of the present invention is characterized by improved impact resistance, as well as improved strength and elastic modulus.

本発明において圧延シートは圧延前のシートに比較して
3−以上、多くは5チ以上結晶化度が上昇している。
In the present invention, the crystallinity of the rolled sheet is increased by 3 or more, often by 5 or more, compared to the sheet before rolling.

本発明では耐衝撃性を増大させるために特別の添加剤や
配合剤全必要とせず、またポリオレフィンの分子構造に
おいても変性することを要しないのでポリオレフィンの
本来保有する機械的強度、電気特性、耐水性、耐薬品性
などの性質はそのまま保持されるという特徴を有する。
The present invention does not require any special additives or compounding agents to increase impact resistance, and it does not require modification of the molecular structure of polyolefin, so polyolefin's inherent mechanical strength, electrical properties, and water resistance can be improved. It has the characteristic that properties such as durability and chemical resistance are maintained as they are.

本発明におけるシートとは通常の意味で使われルシート
であシ、厚さ100μm〜100j117)シートをい
うが、本発明においては200μm〜3ofl特に20
0μm〜10闘の範囲のシートが前記特定の物性値を取
シ易くよい。
The term "sheet" in the present invention is used in the usual sense and refers to a sheet with a thickness of 100 μm to 100 μm, but in the present invention, it refers to a sheet with a thickness of 100 μm to 3 of
A sheet having a thickness in the range of 0 μm to 10 μm is preferable because it can easily obtain the above-mentioned specific physical property values.

以上のようなシートを製造する装置としては油圧式プレ
ス、機械式プレス等の平板式プレスがよく、ロール圧延
は温度制御上及び充分な圧延時間がとれない等の理由か
ら好まれない。
A flat press such as a hydraulic press or a mechanical press is preferred as an apparatus for manufacturing the sheet as described above, and roll rolling is not preferred for reasons such as temperature control and insufficient rolling time.

本発明のシートは圧延中又は圧延後に該シートが融点よ
シ高い温度に長時間さらされるとそのシートの微細構造
が破壊されてしまうため耐衝撃性等の物性の低下を余義
なくされてしまう。
If the sheet of the present invention is exposed to a temperature higher than its melting point for a long time during or after rolling, the fine structure of the sheet will be destroyed, and physical properties such as impact resistance will inevitably deteriorate. .

本発明のシートは本発明の物性を損なわない範囲で従来
公知の方法で改良されることが可能である。例えば他の
樹脂とブレンドする仁とにより、また少量の、具体的に
は東約20重量%以下の増量剤、着色剤、顔料、難燃剤
、熱安定剤、劣化防止剤、透明化剤、帯電防止剤、滑剤
、螢光剤、殺菌剤等を本発明の効果を損しない範囲で配
合することもできる。
The sheet of the present invention can be improved by conventionally known methods as long as the physical properties of the present invention are not impaired. For example, blending with other resins may also include small amounts, specifically up to about 20% by weight, of fillers, colorants, pigments, flame retardants, heat stabilizers, anti-aging agents, clarifying agents, and electrostatic charges. Preventive agents, lubricants, fluorescent agents, bactericidal agents, etc. may also be added within the range that does not impair the effects of the present invention.

本発明のシートは公知のシートの成形加工法によシ必要
に応じて加工されることによ)従来のポリオレフィンシ
ートの用途にそのまt使用できる°が、特にその耐衝撃
性という性質を利用した分野に用いるのがよく、例えば
ヘルメット、コンテナー、容器、パレットや自動車部品
をはじめとする輸送機器部品、電気部品、建材等がある
The sheet of the present invention can be used as is for conventional polyolefin sheet applications (by being processed as necessary by known sheet forming methods), but it can be used as is, particularly by taking advantage of its impact resistance properties. Examples of suitable applications include helmets, containers, vessels, pallets, transportation equipment parts including automobile parts, electrical parts, and building materials.

〔実施例〕〔Example〕

以下に実施例及び比較例をもって本発明をさらに具体的
に説明するが、例中において使用される試験法又は物性
値は前記定義された測定法による他は以下のとおりであ
る。
The present invention will be explained in more detail below with reference to Examples and Comparative Examples, and the test methods and physical property values used in the Examples are as follows, except for the measurement methods defined above.

引張り強度:ASTM D  638に準拠。Tensile strength: Based on ASTM D 638.

曲げ強度:ASTM ]) 790に準拠。Bending strength: Based on ASTM 790.

曲げ弾性率:ASTM D  7510に準拠。Flexural modulus: Based on ASTM D 7510.

耐貫通性:JIS T 8131に準拠。Penetration resistance: Compliant with JIS T 8131.

不合格のうちおもりが完全に貫通 したものを破壊として表示した。The weight completely penetrated while failing. Items that were damaged were marked as destroyed.

成 形 性:圧空成形を行い加熱時のシートの「たれ」
金型への型沿い、成形物 の厚さむらの三項目により成形性 を評価した。
Formability: “sagging” of the sheet when heated by air forming.
The moldability was evaluated based on three items: conformity to the mold and uneven thickness of the molded product.

融   点:示差走査型熱量計(DSC)によシ試料5
〜20岬を用い窒素雰囲気 下で10°C/分の昇温速度にて昇 温し測定した樹脂の結晶の融解に もとすく吸熱ピークの頂点に対応 する温度により示し、ピークが複 数ある場合には最大吸熱量を示す ピークの頂点に対応する温度で示 した。
Melting point: Sample 5 measured by differential scanning calorimeter (DSC)
It is indicated by the temperature corresponding to the top of the endothermic peak that is easy to melt the resin crystal measured by raising the temperature at a heating rate of 10 ° C / min in a nitrogen atmosphere using a ~20 Misaki, and if there are multiple peaks. is shown as the temperature corresponding to the top of the peak showing the maximum endothermic amount.

実施例1〜9及び比較例1〜6 メルトインデツクス1g/10分のポリプロピレンホモ
ポリマーを直径4(1mφのスクリューをもつ単軸押出
機及びリップ間隔を5.7mf調節したT型ダイス及び
約80°Cに調節した冷却ロールをもつシート引取機よ
りなるシート成形機により厚さ2 wg (ドロー比=
 1.85 ) 、幅jQQsawの素材シートを得た
。該素材シートを長さ180謂に切シ2枚〜10枚積層
し、油圧プレスを用いて厚さ3N〜300の原料ブロッ
クを得た。プレス時の圧力は25に9/cdであシ積層
物の実温度は185°Cであった。この原料ブロックの
融点は164°Cであった。
Examples 1 to 9 and Comparative Examples 1 to 6 A polypropylene homopolymer with a melt index of 1 g/10 minutes was prepared using a single screw extruder with a screw of diameter 4 (1 mφ), a T-type die with a lip interval adjusted to 5.7 m, and a die of approx. A sheet forming machine consisting of a sheet take-up machine with cooling rolls adjusted to
1.85) and a material sheet with a width of jQQsaw was obtained. The material sheets were cut to a length of 180 mm and 2 to 10 sheets were laminated to obtain a raw material block with a thickness of 3N to 300 mm using a hydraulic press. The pressure during pressing was 25.9/cd, and the actual temperature of the laminate was 185°C. The melting point of this raw material block was 164°C.

該原料ブロックを第1表に示す条件で油圧プレスを用い
圧延した後、水冷した冷却プレスで加圧しつつ5分間冷
却してシートを得た。結果は第1表に示した如く、平均
ノツチ付アイゾツト衝撃強度はもとより、特に低温にお
ける耐衝撃性が著しく改善されたシートが得られている
。そして該シートは他の強度、弾性率の低下もなく、む
しろ向上して、特に通常のポリプロピレンシートの欠点
とされる圧空成形性も良好なシートであった。
The raw material block was rolled using a hydraulic press under the conditions shown in Table 1, and then cooled for 5 minutes while being pressurized using a water-cooled cooling press to obtain a sheet. The results are shown in Table 1, showing that sheets were obtained which had significantly improved not only the average notched isot impact strength but also the impact resistance particularly at low temperatures. The strength and elastic modulus of the sheet did not decrease, but rather improved, and the sheet also had particularly good air-pressure formability, which is a drawback of ordinary polypropylene sheets.

圧延前の素材シート(比較例1に示されるシートであ夛
、通常の押出成形シートと同じ)や圧延温度が極端に高
い場合(比較例2)、耐衝撃性、耐貫通性が低く成形に
際してはだれが生じた。
When the material sheet before rolling (the sheet shown in Comparative Example 1 is the same as a normal extrusion sheet) or the rolling temperature is extremely high (Comparative Example 2), the impact resistance and penetration resistance are low, making it difficult to form. A sore appeared.

圧延温度が170°Cである比較例3のシートは比較例
2に比し衝撃強度はやや増大するもその値は十分ではな
く成形性も悪い。
Although the sheet of Comparative Example 3, in which the rolling temperature was 170°C, had a slightly higher impact strength than Comparative Example 2, the value was not sufficient and the moldability was poor.

圧延温度が158°Cである比較例4では衝撃強度は改
良されるもののその程度が小さくかつ厚さ変化率が高く
なっているため、成形性に劣る。
In Comparative Example 4 where the rolling temperature was 158°C, although the impact strength was improved, the degree of improvement was small and the rate of change in thickness was high, resulting in poor formability.

圧延時間の短かい比較例5や120°Cのいわゆる冷間
圧延シートの例を示す比較例6では厚さ変莢 化率が譬に高く、成形性が劣る。また耐衝撃性も低い。
Comparative Example 5, in which the rolling time was short, and Comparative Example 6, which was a so-called cold-rolled sheet at 120° C., had extremely high thickness change rates and poor formability. It also has low impact resistance.

比較例7〜8 実施例1と同じ素材ブロックを使用し、平板プレス機に
換えて大東製作所mDBn−s o型小型ロール圧延機
を用い、圧延温度を変えてロール通過回数10回(実圧
延時間10秒以内)で圧延した後、冷却プレスで冷却し
て厚さ2nのシートを得た。得られたシートの物性値を
第1表に示す。比較例8で得られたシートは異方性が大
きく衝撃強度、成形性の悪いシートであった。
Comparative Examples 7 to 8 Using the same material block as in Example 1, using a Daito Seisakusho mDBn-S O type small roll rolling machine instead of the flat plate press machine, changing the rolling temperature and changing the number of roll passes 10 times (actual rolling time After rolling (within 10 seconds), the sheet was cooled with a cooling press to obtain a sheet with a thickness of 2n. Table 1 shows the physical properties of the obtained sheet. The sheet obtained in Comparative Example 8 had large anisotropy and poor impact strength and formability.

実施例10及び比較例10 メルトインデックスが19/10分のポリプロピレンに
換えて種々のメルトインデックス値を示すプロピレン系
重合体を用いて実施例1に準じてシートを作製した。シ
ート作製条件及び結果を第2表に示した。
Example 10 and Comparative Example 10 Sheets were produced according to Example 1 using propylene polymers having various melt index values instead of polypropylene having a melt index of 19/10. The sheet manufacturing conditions and results are shown in Table 2.

実施例11〜12 実施例1と同じ素材シートを加熱溶融し素材ブロックを
造ることなく単に積層したものを直接圧延する以外は実
施例1に準じてシートを作製した。
Examples 11 to 12 Sheets were produced in accordance with Example 1, except that the same material sheets as in Example 1 were heated and melted, and the sheets were simply laminated and directly rolled without creating a material block.

結果を第2表に示した。The results are shown in Table 2.

実施例13〜14及び比較例11〜12工チレン含有率
15重量%、プロピレン含有率85重量%より成るメル
トインデックス0.8 g/l 0分のブロックコポリ
マーを用い、第3表に示す条件で圧延を行ない、その物
性を測定した。なお圧延前のポリマーの融点は163°
Cであった。その結果を第5表に示す。未圧延シートの
物性、圧延時間が極度に短い場合をそれぞれ比較例とし
て併せて記載する。実施例i3,14においては耐貫通
性、成形性ともに良好であった。
Examples 13-14 and Comparative Examples 11-12 A block copolymer with a melt index of 0.8 g/l and 0 minutes consisting of a polyethylene content of 15% by weight and a propylene content of 85% was used under the conditions shown in Table 3. It was rolled and its physical properties were measured. The melting point of the polymer before rolling is 163°.
It was C. The results are shown in Table 5. The physical properties of the unrolled sheet and the case where the rolling time is extremely short are also described as comparative examples. In Examples i3 and 14, both the penetration resistance and moldability were good.

実施例15〜19及び比較例13〜17M I = 0
.59710分の高密度ポリエチレン(比重0.960
)を直径4Qsm(6Qスクーリユーをもつ単軸押出機
及びリップ間−を3.5Hに調節したT型ダイス及び約
80°Cに調節した冷却ロールをもつシート引取機よシ
なるシート成形機によシ厚さ2m(ドロー比=1.75
)、幅180Hの素材シートを得た。該素材シートを長
さ180Hに切り2枚〜1@枚積層し、油圧プレスを用
いて厚さ3顛〜30flの原料ブロックを得た。この原
料ブロックの融点は132℃であった。
Examples 15-19 and Comparative Examples 13-17M I = 0
.. 59,710 minute high-density polyethylene (specific gravity 0.960
) with a diameter of 4Qsm (6Q) using a sheet forming machine consisting of a single screw extruder with a 6Q schoolie, a T-shaped die with a lip gap adjusted to 3.5H, and a sheet take-up machine with a cooling roll adjusted to about 80°C. Thickness 2m (draw ratio = 1.75
), a material sheet with a width of 180H was obtained. The raw material sheets were cut into lengths of 180H and 2 to 1 sheets were laminated to obtain a raw material block with a thickness of 3 to 30 fl using a hydraulic press. The melting point of this raw material block was 132°C.

該原料ブロックを第4表に示す条件で油圧プレスを用い
圧延した後、水冷した冷却プレスで加圧しつつ5分間冷
却してシートを得た。結果は第4表に示した如く平均ノ
ツチ付アイゾツト衝撃強度はもとよシ、特に低温におけ
る耐衝撃性が著しく改善されたシートが得られている。
The raw material block was rolled using a hydraulic press under the conditions shown in Table 4, and then cooled for 5 minutes while being pressurized using a water-cooled cooling press to obtain a sheet. The results are shown in Table 4, showing that a sheet was obtained which not only had an average notched isot impact strength but also had markedly improved impact resistance, especially at low temperatures.

そして該シートは他の強度、曲は弾性率の低下もなく、
熱成形時の「たれ」もなく成形性も良好なシートであっ
た。
And the sheet has other strength, bending has no decrease in elastic modulus,
The sheet had good moldability with no "sagging" during thermoforming.

圧延前の素材シート(比較例13に示されるシートであ
シ、通常の押出成形シートと同じ)や圧延温度が極端に
高い場合(比較例14)、耐衝撃性、耐貫通性が低く成
形に際しては%れ、が生じる。
When the material sheet before rolling (the sheet shown in Comparative Example 13 is the same as a normal extrusion molded sheet) or when the rolling temperature is extremely high (Comparative Example 14), the impact resistance and penetration resistance are low, making it difficult to form. % will occur.

圧延温度が138℃である比較例15のシートは比較例
14に比し衝撃強度はやや増大するもその値は十分では
々く成形性も悪い。
The sheet of Comparative Example 15, in which the rolling temperature was 138° C., had slightly higher impact strength than Comparative Example 14, but the value was still sufficient and the formability was poor.

圧延温度が110 ’Cである比較例16では衝撃強度
は改良されるもののその程度が小さくかつ厚さ変化率が
高く々つているため、成形性に劣る。
In Comparative Example 16 where the rolling temperature was 110'C, although the impact strength was improved, the degree of improvement was small and the rate of change in thickness was high, resulting in poor formability.

比較例17〜18 実施例15と同じ素材ブロックを使用し、平板プレス機
に換えて大東製作新製DBR−50型小型ロ一ル圧延機
を用い、ロール通過回数10回(実圧延時間10秒以内
)で圧延した後、冷却プレスで冷却して厚さ2Hのシー
トを得た。得られたシートの物性値を第4表に示す。比
較例17で得られたシートは異方性が大きく衝撃強度、
成形性の悪いシートであった。また圧延温度を135°
Cとした比較例18においては圧延ロールにシートが付
着して良好なシートが得られなかった。
Comparative Examples 17 to 18 Using the same material block as in Example 15, using a new Daito Seisaku DBR-50 small roll rolling mill instead of the flat plate press machine, the number of roll passes was 10 times (actual rolling time was 10 seconds). (within 100 mm) and then cooled with a cooling press to obtain a sheet with a thickness of 2H. Table 4 shows the physical properties of the obtained sheet. The sheet obtained in Comparative Example 17 had high anisotropy, high impact strength,
The sheet had poor moldability. Also, the rolling temperature was set to 135°.
In Comparative Example 18 designated as C, the sheet adhered to the rolling roll and a good sheet could not be obtained.

実施例20〜21及び比較例19 種々のMI値を示すポリエチレンを用いて実施例1に1
準じて厚さ2HIIのシートを4作製した。シートの物
性を第5表に示した。
Examples 20 to 21 and Comparative Example 19 Example 1 to 1 using polyethylene showing various MI values
Four sheets each having a thickness of 2HII were produced in the same manner. The physical properties of the sheet are shown in Table 5.

実施例22 M I = 2.09710分の1−ブチy −x チ
レ7共重合体(エチレン含有量95重量%)を用いた以
外は実施例15と同様にしてシートを作製した。
Example 22 A sheet was produced in the same manner as in Example 15 except that M I =2.09710 1-buty-x Chile 7 copolymer (ethylene content: 95% by weight) was used.

なお原料ブロックの融点は131°Cであった。結果を
第5表に示した。
The melting point of the raw material block was 131°C. The results are shown in Table 5.

手続補正書(方式) 昭和59年11月 5日Procedural amendment (formality) November 5, 1980

Claims (1)

【特許請求の範囲】 結晶性ポリオレフィン系樹脂を下記(a)式を満足する
温度条件下で30秒間以上保持することにより2軸圧延
することを特徴とする耐衝撃性にすぐれたポリオレフィ
ン系シートの製造方法。 (a)Tms−5°K≦T≦Tms+5°K (ここでTは圧延温度であり、Tmsは圧延前のシート
状物又はブロック状の物の融点である。)
[Claims] A polyolefin sheet with excellent impact resistance, characterized in that a crystalline polyolefin resin is biaxially rolled by holding it under temperature conditions satisfying the following formula (a) for 30 seconds or more. Production method. (a) Tms-5°K≦T≦Tms+5°K (Here, T is the rolling temperature, and Tms is the melting point of the sheet-like material or block-like material before rolling.)
JP15446084A 1984-07-24 1984-07-24 Manufacture of polyolefin family sheet excellent in impact resistance Granted JPS6131229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15446084A JPS6131229A (en) 1984-07-24 1984-07-24 Manufacture of polyolefin family sheet excellent in impact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15446084A JPS6131229A (en) 1984-07-24 1984-07-24 Manufacture of polyolefin family sheet excellent in impact resistance

Publications (2)

Publication Number Publication Date
JPS6131229A true JPS6131229A (en) 1986-02-13
JPH0414611B2 JPH0414611B2 (en) 1992-03-13

Family

ID=15584719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15446084A Granted JPS6131229A (en) 1984-07-24 1984-07-24 Manufacture of polyolefin family sheet excellent in impact resistance

Country Status (1)

Country Link
JP (1) JPS6131229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039471A (en) * 1989-01-26 1991-08-13 Chisso Corporation Process for producing a rolled film or sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039471A (en) * 1989-01-26 1991-08-13 Chisso Corporation Process for producing a rolled film or sheet

Also Published As

Publication number Publication date
JPH0414611B2 (en) 1992-03-13

Similar Documents

Publication Publication Date Title
JPS60226538A (en) Reformed polypropylene
JP2002523544A (en) Polypropylene composition useful for producing stretched solid film
JPS60133039A (en) Thermoplastic resin composition
US4567089A (en) Thermoforming propylene polymer laminated sheet
JPH0925345A (en) Polylactic acid molding
US4555439A (en) Tough thermoplastic resin sheet-like material
JP2005504864A (en) Unstretched polypropylene film
JP4583699B2 (en) Polyester film, polyester film for molding, and molded member using the same
KR100585541B1 (en) Polypropylene composition provided by the calendering process for transparent film and sheet, and method for preparing polypropylene transparent film and sheet using the same
JPS6131229A (en) Manufacture of polyolefin family sheet excellent in impact resistance
JPH0320331B2 (en)
JPH0368810B2 (en)
EP0172277B1 (en) Thermoformable propylene polymer laminated sheet
JPH08258129A (en) Polypropylene sheet and vessel
JPH0414612B2 (en)
JP4238480B2 (en) Polypropylene molded products
JP4475699B2 (en) High strength high molecular weight polyolefin film excellent in transparency and method for producing the same
US7015287B2 (en) Compositions based on random propylene copolymers, process for their manufacture, and heat-sealable multilayer sheets comprising them
JPH061894A (en) Polypropylene film improved in slipperiness
JP4345901B2 (en) High molecular weight polyolefin transparent film having high elongation and method for producing the same
JPH0139903B2 (en)
EP0278695A1 (en) Shrinkable film
JPS6131403A (en) Plastic container
JP2000063533A (en) Polypropylene-based molding
JPS61274939A (en) Manufacture of laminated sheet