JPS6130019B2 - - Google Patents

Info

Publication number
JPS6130019B2
JPS6130019B2 JP57173004A JP17300482A JPS6130019B2 JP S6130019 B2 JPS6130019 B2 JP S6130019B2 JP 57173004 A JP57173004 A JP 57173004A JP 17300482 A JP17300482 A JP 17300482A JP S6130019 B2 JPS6130019 B2 JP S6130019B2
Authority
JP
Japan
Prior art keywords
wire
heat
temperature
alloy
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57173004A
Other languages
Japanese (ja)
Other versions
JPS5964753A (en
Inventor
Masaru Shinohara
Hiroaki Hirasawa
Hideaki Shirai
Makoto Hiraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP17300482A priority Critical patent/JPS5964753A/en
Publication of JPS5964753A publication Critical patent/JPS5964753A/en
Publication of JPS6130019B2 publication Critical patent/JPS6130019B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電用耐熱アルミニウム合金線の製造
方法に関し、詳しくは、61%IACS以上の高導電
率を有すると共に優れた耐熱特性を有する新規な
導電用耐熱アルミニウム合金線の製造方法に関す
るものである 従来、導電用耐熱アルミニウム合金として、
Al―Zr系合金を用いた60%IACS台の導電率を有
する耐熱アルミニウムが公知である。この耐熱ア
ルミニウムはJEC―197(1976)の規格で例えば
線径4.8mmφのもので導電率60%IACS以上、引張
強さ16.9Kg/mm2以上、耐熱性(230℃、1時間加熱
後の引張強さの残存率)90%以上の特性を有する
ので、架空送電線用導体として汎用されている、
所で、架空送電線の分野においては近年の送電容
量の増大に伴い、送電ロス低減の重要性から導電
率の向上、又、同一線径での送電容量の増大に対
処するための耐熱性の向上が向上が強く望まれて
いる。 しかしながら引張強さを確保したうえで、導電
率及び又は耐熱性を向上させることは極めて難し
い。 本発明者等は上記点に鑑み、導用耐熱アルミニ
ウムにおける特性改善を行うべく鋭意研究を重ね
た結果、Zr0.005〜0.05wt%、Fe0.08〜0.28wt
%、Si0.03〜0.10wt%及び残部Alよりなると共
に、ZrとFe及びSiの組成範囲が式:40Zr(wt
%)≦2.9―9Fe(wt%)―5Si(wt%)を満足す
るAl―Zr―Fe―Si系合金を溶解し、鋳造温度
680℃以上で鋳造すると共に、得られた鋳塊を冷
却しつつ材料温度が270℃以下の温度になるま
で、減面率90%以上の熱間加工を加えて荒引線を
形成し、しかる後、該荒引線を減面率70%以上で
冷間伸線し、得られた線材を180〜600℃の温度で
熱処理することにより、良好な耐熱性を維持しつ
つ、特に高い導電性を有する導電用耐熱アルミニ
ウム合金線を得、本願を完成したものである。 本発明において、用いるAl―Zr―Fe―Si系合
金の各添加元素の組成範囲は上記範囲である必要
があり、組成範囲が上記範囲外である場合には所
望の特性が得られない。すなわちZrが0.005wt%
未満の場合は目標とする耐熱特性が得られず、
0.05wt%を越える量では導電率の低下が著しい。
e量が0.08wt%未満では適度な強度が得られ
ず、0.28wt%を越える量では高導電率が望めな
い。又Si量が0.03wt%未満ではFe元素との相乗
効果による良好な強度が得られず、0.10wt%を越
える場合は導電率の低下が著しい。又本発明にお
けるAl―Zr―Fe―Si系合金においてはZrとFe
とSiの添加量が上記の組成範囲であると同時に
次式(A)を満足する必要がある。 40Zr(wt%)≦2.9 −9Fe(wt%)−5Si(wt%) ……(A) Zr、Fe及びSiが上式を満足しない場合は、後
記する製造条件のもとにおいて、61%IACS以上
の高導電率を有する合金が得られない。 本発明においては、上記Al―Zr―Fe―Si系合
金を溶解して680℃以上の温度で鋳造すると共に
得られた鋳塊を冷却しつつ材料温度が270℃以下
の温度になるまで断面率90%以上の熱間加工連続
鋳造圧延を施し、荒引線を形成する。上記造温度
を680℃以上とする理由は、鋳造温度が680℃未満
では粗大な浮遊晶が形成されるため、回溶Zr
びFeの分布が不均一となり、耐熱性及び強度が
低下するためである。かかる意味において鋳造温
度は700℃以上がより好ましい。又、圧延条件は
荒引線強度を例えば荒引線径9.5mmφの場合、13
Kg/mm2以上程度の高強度に極力高め、その後の冷
間伸線及び熱処理工程との関連において所望の優
れた耐熱特性を得るため熱間加工度90%以上での
圧延終了温度を270℃下とする必要がある。 上記条件で製造された荒引線は次いで減面率70
%以上で冷間伸線され、引続き180〜600℃の温度
で熱処理を施こされる。冷間加工度を70%以上と
する理由は、前記荒引線で得た強度を更に向上さ
せ、熱処理後も目標とする強度を得るためであ
る。又上記熱処理は、導電特性、耐熱特性及び強
度の点において、バランスのとれた性能を得るた
めのものであり、上記条件外では、上記の夫々の
特性がアンバランスとなり、所望の特性が得られ
ない。尚、上記熱処理は、低温域、例えば180〜
300℃程度では通常の電気炉、300〜600℃の高温
域では通電加熱が適宜採用される。 次に本発明法により得られた導電用耐熱アルミ
ニウム合金線の特性について実施例に基づいて説
明する。 (実施例) 純度99.8wt%以上の電気用Al地金を溶解し、
Al―5wt%Zr、Al―5wt%Fe及びAl―10wt%Si
の各母合金によつて、第1表に示す各組成範囲の
Al―Zr―Fe―Si合金を溶製した。これらの各々
金を連続鋳造圧延機によつて鋳造、圧延し線径
9.5mmの荒引線を得た。該荒引線を連続伸線機に
より冷間伸線した後、熱処理を施こし、供試々料
とした。各試料の鋳造、圧延条件並びに冷間伸
線、熱処理条件は第1表に示す通り。又、上記各
試料の引張強さ、導電率及び耐熱特性の測定結果
を第1表に示す。尚、耐熱特性は各試料を230℃
で1時間加熱し、加熱前の引張強さに対する加熱
後の引張強さの割合で示した。
The present invention relates to a method for manufacturing a heat-resistant aluminum alloy wire for conductive use, and more particularly, to a method for manufacturing a heat-resistant aluminum alloy wire for conductive use, which has a high conductivity of 61% IACS or higher and excellent heat resistance properties. , as a heat-resistant aluminum alloy for conductive use.
Heat-resistant aluminum having a conductivity on the order of 60% IACS using Al- Zr alloy is known. This heat-resistant aluminum meets JEC-197 (1976) standards, such as wire diameter 4.8 mmφ, electrical conductivity of 60% IACS or higher, tensile strength of 16.9 Kg/mm 2 or higher, and heat resistance (tensile strength after heating at 230°C for 1 hour). It has a characteristic of 90% or more (residual strength), so it is widely used as a conductor for overhead power transmission lines.
By the way, in the field of overhead power transmission lines, with the increase in power transmission capacity in recent years, it is important to reduce power transmission loss, so improvements in conductivity and heat resistance are needed to cope with the increase in power transmission capacity with the same wire diameter. Improvement is strongly desired. However, it is extremely difficult to improve electrical conductivity and/or heat resistance while ensuring tensile strength. In view of the above points, the present inventors have conducted extensive research to improve the characteristics of heat-resistant aluminum for conductive use, and as a result, Z r 0.005-0.05wt%, F e 0.08-0.28wt
%, S i 0.03 to 0.10wt% and the balance is Al, and the composition range of Z r , F e and S i is expressed by the formula: 40Z r (wt
%) ≦ 2.9-9F e (wt%) - 5S i (wt%) is melted and the casting temperature is
While casting at 680℃ or higher, the obtained ingot is cooled and hot worked with an area reduction rate of 90% or higher until the material temperature reaches 270℃ or lower to form a rough draw line. By cold drawing the rough drawn wire with an area reduction rate of 70% or more and heat treating the obtained wire at a temperature of 180 to 600°C, it has particularly high conductivity while maintaining good heat resistance. A conductive heat-resistant aluminum alloy wire was obtained, and the present application was completed. In the present invention, the composition range of each additive element in the Al- Zr - Fe - Si alloy used must be within the above range, and if the composition range is outside the above range, the desired characteristics may not be obtained. do not have. That is, Z r is 0.005wt%
If it is less than that, the target heat resistance properties cannot be obtained.
If the amount exceeds 0.05 wt%, the conductivity will decrease significantly.
If the amount of F e is less than 0.08 wt%, appropriate strength cannot be obtained, and if the amount exceeds 0.28 wt%, high electrical conductivity cannot be expected. Further, if the amount of S i is less than 0.03 wt%, good strength cannot be obtained due to the synergistic effect with the Fe element, and if it exceeds 0.10 wt%, the electrical conductivity decreases significantly. In addition, in the Al-Z r -F e -S i alloy according to the present invention, Z r and F e
It is necessary that the amount of addition of Si and Si is within the above composition range and also satisfies the following formula (A). 40Z r (wt%)≦2.9 −9F e (wt%) −5S i (wt%) ...(A) If Z r , F e and S i do not satisfy the above formula, the manufacturing conditions described below shall be applied. In this case, it is not possible to obtain an alloy with a high electrical conductivity of 61% IACS or higher. In the present invention, the above Al- Zr - Fe - Si alloy is melted and cast at a temperature of 680°C or higher, and the resulting ingot is cooled to bring the material temperature to 270°C or lower. The rough wire is formed by continuous hot working, continuous casting and rolling with a cross-sectional area of 90% or more. The reason why the above casting temperature is set to 680℃ or higher is that if the casting temperature is lower than 680℃, coarse floating crystals will be formed, resulting in uneven distribution of re-melted Zr and Fe , resulting in a decrease in heat resistance and strength. It's for a reason. In this sense, the casting temperature is more preferably 700°C or higher. In addition, the rolling conditions are as follows: For example, when the rough wire diameter is 9.5 mmφ, the rough wire strength is 13
In order to increase the strength as high as possible to Kg/mm 2 or more, and to obtain the desired excellent heat resistance properties in relation to the subsequent cold wire drawing and heat treatment processes, the rolling end temperature with a degree of hot working of 90% or more was set at 270°C. It needs to be below. The rough wire manufactured under the above conditions has an area reduction rate of 70
% or more, followed by heat treatment at a temperature of 180-600℃. The reason why the degree of cold working is set to 70% or more is to further improve the strength obtained in the rough drawing wire and to obtain the target strength even after heat treatment. Furthermore, the above heat treatment is intended to obtain well-balanced performance in terms of conductive properties, heat resistance properties, and strength; outside of the above conditions, each of the above properties will become unbalanced and the desired properties will not be obtained. do not have. The above heat treatment is carried out in a low temperature range, for example 180~
At around 300°C, a normal electric furnace is used, and at high temperatures of 300 to 600°C, electrical heating is used as appropriate. Next, the characteristics of the conductive heat-resistant aluminum alloy wire obtained by the method of the present invention will be explained based on Examples. (Example) Melt electrical Al ingot with a purity of 99.8wt% or more,
Al-5wt%Z r , Al-5wt%F e and Al-10wt%S i
Each composition range shown in Table 1 depends on each mother alloy.
An Al- Zr -Fe -Si alloy was melted. Each of these golds is cast and rolled using a continuous casting and rolling machine, and the wire diameter is
A rough line of 9.5mm was obtained. After the rough drawn wire was cold drawn using a continuous wire drawing machine, it was heat treated to obtain a sample. The casting, rolling conditions, cold wire drawing, and heat treatment conditions for each sample are shown in Table 1. Further, Table 1 shows the measurement results of the tensile strength, electrical conductivity, and heat resistance properties of each of the above samples. In addition, the heat resistance characteristics of each sample are 230℃
The sample was heated for 1 hour and expressed as the ratio of the tensile strength after heating to the tensile strength before heating.

【表】 第1表に示した結果より明らかな通り、本発明
法により製造した実施例1〜14の各試料は引張強
さ17Kg/mm2以上、耐熱性特性90%以上と良好な特
性を有し、かつ、導電率が61%IACS以上と優れ
た性能を有している。これに対し、本発明に係わ
る合金と組成範囲の異なる比較例1〜6の各試料
は、引張強さ、導電率あるいは耐熱特性のいづれ
かにおいて本発明に係わる試料より劣つている。
又、鋳造温度が低い比較例7は本願発明に係わる
実施例5と比べて、引張強さ、耐熱性が低く有効
なZrの固溶が少ないことが判る。圧延終了温度
が本発明法により高い比較例8、及び熱間加工減
面率、冷間伸線減面率の不足する比較例9、10は
合金組成が同一である実施例5に比べ引張強さの
点で劣る。熱処理温度が150℃である比較例11は
引張強さは高いものの、耐熱性及び導電率が低
く、特性がアンバランスである。又、合金組成範
囲が既述のA式を満足しない比較例12は導電性の
点において今一つ満足し得るものでない。 以上詳述の如く、本発明に係わる導電用耐熱ア
ルミニウム合金線の製造方法は、良好な引張強さ
及び耐熱特性を有する共に特に優れた導電性を有
する合金線を得る上で極めて有用である。
[Table] As is clear from the results shown in Table 1, each of the samples of Examples 1 to 14 produced by the method of the present invention had good properties such as a tensile strength of 17 Kg/mm 2 or more and a heat resistance property of 90% or more. It also has excellent performance with a conductivity of 61% IACS or higher. On the other hand, each sample of Comparative Examples 1 to 6 having a different composition range from the alloy according to the present invention is inferior to the sample according to the present invention in any of tensile strength, electrical conductivity, or heat resistance properties.
Furthermore, it can be seen that Comparative Example 7, in which the casting temperature is low, has lower tensile strength and heat resistance, and less effective Zr solid solution than Example 5 according to the present invention. Comparative Example 8, in which the rolling end temperature is high due to the method of the present invention, and Comparative Examples 9 and 10, in which hot working area reduction rate and cold drawing area reduction rate are insufficient, have lower tensile strength than Example 5, which has the same alloy composition. It is inferior in terms of quality. Comparative Example 11, in which the heat treatment temperature was 150° C., had high tensile strength, but had low heat resistance and low conductivity, resulting in unbalanced properties. Moreover, Comparative Example 12, in which the alloy composition range does not satisfy the above-mentioned formula A, is not very satisfactory in terms of conductivity. As described in detail above, the method for producing a conductive heat-resistant aluminum alloy wire according to the present invention is extremely useful in obtaining an alloy wire that has good tensile strength and heat resistance characteristics, and particularly excellent conductivity.

Claims (1)

【特許請求の範囲】[Claims] 1 Zr0.005〜0.05wt%、Fe0.08〜0.28wt%、Si
0.03〜0.10wt%及び残部Alよりなると共に、Zr
とFe及びSiの組成範囲が式:40Zr(wt%)≦2.9
−9Fe(wt%)−5Si(wt%)を満足するAl―Zr
―Fe−Si系合金を溶解し、鋳造温度680℃以上
で鋳造すると共に、得られた鋳塊を冷却しつつ材
料温度が270℃以下の温度になるまで、減面率90
%以上の熱間加工を加えて荒引線を形成し、しか
る後、該荒引線を減面率70%以上で冷間伸線し、
得られた線材を180〜600℃の温度で熱処理するこ
とを特徴とする導電用耐熱アルミニウム合金線の
製造方法。
1 Z r 0.005~0.05wt%, F e 0.08~0.28wt%, S i
Consisting of 0.03~0.10wt% and the balance Al, and Z r
The composition range of F e and S i is expressed by the formula: 40Z r (wt%)≦2.9
Al―Z r that satisfies −9F e (wt%) −5S i (wt%)
-F e -S i alloy is melted and cast at a casting temperature of 680°C or higher, and the area reduction rate is 90 while cooling the obtained ingot until the material temperature reaches 270°C or lower.
% or more hot working to form a rough drawing wire, and then cold drawing the rough drawing wire with an area reduction rate of 70% or more,
A method for producing a heat-resistant aluminum alloy wire for conductive use, which comprises heat-treating the obtained wire at a temperature of 180 to 600°C.
JP17300482A 1982-09-30 1982-09-30 Manufacture of heat-resistant aluminium alloy wire for conducting electricity Granted JPS5964753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17300482A JPS5964753A (en) 1982-09-30 1982-09-30 Manufacture of heat-resistant aluminium alloy wire for conducting electricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17300482A JPS5964753A (en) 1982-09-30 1982-09-30 Manufacture of heat-resistant aluminium alloy wire for conducting electricity

Publications (2)

Publication Number Publication Date
JPS5964753A JPS5964753A (en) 1984-04-12
JPS6130019B2 true JPS6130019B2 (en) 1986-07-10

Family

ID=15952402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17300482A Granted JPS5964753A (en) 1982-09-30 1982-09-30 Manufacture of heat-resistant aluminium alloy wire for conducting electricity

Country Status (1)

Country Link
JP (1) JPS5964753A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044432A1 (en) * 2000-11-30 2002-06-06 Phelps Dodge Industries, Inc. Creep resistant cable wire
JP4728599B2 (en) * 2004-06-17 2011-07-20 古河電気工業株式会社 Aluminum conductive wire for automobile wiring and electric wire for automobile wiring
JP4667799B2 (en) * 2004-09-08 2011-04-13 古河電気工業株式会社 Aluminum conductive wire
CN101962723A (en) * 2010-10-27 2011-02-02 江西南缆集团有限公司 Aluminum alloy material for small-section wire rod and manufacturing method thereof
CN104051076A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Method for preparing low-expansion copper alloy wire used for automotive cables and cords
CN104152728A (en) * 2014-06-05 2014-11-19 锐展(铜陵)科技有限公司 Preparation method of high heat-conducting copper alloy wire for automobile wire harness
CN104561669B (en) * 2014-12-27 2017-04-12 北京工业大学 Heat treatment process of Al-Er-Zr-Si alloy
CN105483424A (en) * 2016-02-01 2016-04-13 东莞品派实业投资有限公司 Anti-corrosion aluminum alloy wire for motormeter and preparation method thereof
KR102546527B1 (en) * 2016-09-30 2023-06-22 스미토모덴키고교가부시키가이샤 Manufacturing method of aluminum alloy wire, overhead power transmission line, and aluminum alloy wire
JP6112438B1 (en) 2016-10-31 2017-04-12 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
JP6840348B2 (en) * 2017-03-16 2021-03-10 住友電気工業株式会社 Manufacturing method of aluminum alloy wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132409A (en) * 1974-09-13 1976-03-19 Hitachi Cable DODENYOARUMINIUMUGOKIN OYOBI DODENYOARUMINIUMUGOKINSENNARABINISONOSEIZOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132409A (en) * 1974-09-13 1976-03-19 Hitachi Cable DODENYOARUMINIUMUGOKIN OYOBI DODENYOARUMINIUMUGOKINSENNARABINISONOSEIZOHOHO

Also Published As

Publication number Publication date
JPS5964753A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
JPS6130019B2 (en)
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
JPS6216269B2 (en)
JPH0242889B2 (en)
JP4144184B2 (en) Manufacturing method of heat-resistant Al alloy wire for electric conduction
JPS6123852B2 (en)
JPH0125822B2 (en)
JPS6128745B2 (en)
JPS6254864B2 (en)
JPS6219501B2 (en)
JPH0568536B2 (en)
JPH0152468B2 (en)
JPS6357495B2 (en)
JPS5983752A (en) Preparation of heat resistant aluminum alloy conductor
JPH0215625B2 (en)
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JPS59162257A (en) Manufacture of heat resistant aluminum alloy for electric conduction
JPH06158246A (en) Manufacture of high heat resistant aluminum alloy wire for electric conduction
JPS6149385B2 (en)
JPH0144781B2 (en)
JPH042664B2 (en)
JPS6254185B2 (en)
JPS6361380B2 (en)
JPS607702B2 (en) Manufacturing method of heat-resistant aluminum alloy for conductive use
JPS6317525B2 (en)