JP6840348B2 - Manufacturing method of aluminum alloy wire - Google Patents

Manufacturing method of aluminum alloy wire Download PDF

Info

Publication number
JP6840348B2
JP6840348B2 JP2017050900A JP2017050900A JP6840348B2 JP 6840348 B2 JP6840348 B2 JP 6840348B2 JP 2017050900 A JP2017050900 A JP 2017050900A JP 2017050900 A JP2017050900 A JP 2017050900A JP 6840348 B2 JP6840348 B2 JP 6840348B2
Authority
JP
Japan
Prior art keywords
wire
alloy
less
alloy wire
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017050900A
Other languages
Japanese (ja)
Other versions
JP2018070992A5 (en
JP2018070992A (en
Inventor
美里 草刈
美里 草刈
鉄也 桑原
鉄也 桑原
中井 由弘
由弘 中井
西川 太一郎
太一郎 西川
大塚 保之
保之 大塚
勇人 大井
勇人 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2017050900A priority Critical patent/JP6840348B2/en
Publication of JP2018070992A publication Critical patent/JP2018070992A/en
Publication of JP2018070992A5 publication Critical patent/JP2018070992A5/en
Application granted granted Critical
Publication of JP6840348B2 publication Critical patent/JP6840348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線に関する。 The present invention relates to aluminum alloy wires, aluminum alloy stranded wires, coated electric wires, and electric wires with terminals.

電線用導体に適した線材として、特許文献1は、アルミニウム合金を特定の組成とすると共に軟化することで、高強度で高靭性であり、導電率も高く、端子部との固着性にも優れるアルミニウム合金線を開示する。 As a wire rod suitable for a conductor for electric wires, Patent Document 1 describes that aluminum alloy has a specific composition and is softened to have high strength and high toughness, high conductivity, and excellent adhesion to terminals. Disclose the aluminum alloy wire.

特開2010−067591号公報Japanese Unexamined Patent Publication No. 2010-067591

電線に備える導体などに利用される線材として、耐衝撃性に優れる上に、疲労特性にも優れるアルミニウム合金線が望まれている。 As a wire rod used for a conductor provided in an electric wire, an aluminum alloy wire having excellent impact resistance and fatigue characteristics is desired.

自動車や飛行機などの機器に載置されるワイヤーハーネス、産業用ロボットなどといった各種の電気機器の配線、建築物などの配線といった各種の用途の電線には、機器の使用時や布設時などに衝撃や繰り返しの曲げなどが与えられることがある。具体的には以下の(1)から(3)などが挙げられる。
(1)自動車用ワイヤーハーネスに備える電線では、電線を接続対象に取り付ける際などで端子部近傍に衝撃が与えられること(特許文献1)、その他、自動車の走行状態によって突発的な衝撃が与えられること、自動車の走行時の振動によって繰り返しの曲げが与えられることなどが考えられる。
(2)産業用ロボットに配線される電線では、繰り返しの曲げや捻回などが与えられることなどが考えられる。
(3)建築物に配線される電線では、布設時に作業者が突発的に強く引っ張ったり、誤って落下させたりして衝撃が与えられること、コイル状に巻き取られた線材から巻き癖を除去するために波打つように振ることで繰り返しの曲げが与えられることなどが考えられる。
従って、電線に備える導体などに利用されるアルミニウム合金線には、衝撃だけでなく、繰り返しの曲げが与えられた場合でも、断線し難いことが望まれる。
Wire harnesses mounted on equipment such as automobiles and airplanes, wiring for various electric equipment such as industrial robots, and wiring for various purposes such as wiring for buildings are impacted when the equipment is used or laid. And repeated bending may be given. Specifically, the following (1) to (3) and the like can be mentioned.
(1) In the electric wire provided in the wire harness for automobiles, an impact is given to the vicinity of the terminal portion when the electric wire is attached to the connection target (Patent Document 1), and a sudden impact is given depending on the running state of the automobile. It is conceivable that repeated bending is given by the vibration during running of the automobile.
(2) It is conceivable that the electric wires wired to the industrial robot are repeatedly bent and twisted.
(3) For electric wires that are wired to buildings, the operator suddenly pulls strongly or accidentally drops them during laying to give an impact, and the winding habit is removed from the wire wound in a coil shape. It is conceivable that repeated bending is given by shaking in a wavy manner.
Therefore, it is desired that the aluminum alloy wire used for the conductor provided in the electric wire is not easily broken even when it is repeatedly bent as well as impacted.

そこで、耐衝撃性及び疲労特性に優れるアルミニウム合金線を提供することを目的の一つとする。また、耐衝撃性及び疲労特性に優れるアルミニウム合金撚線、被覆電線、端子付き電線を提供することを別の目的の一つとする。 Therefore, one of the purposes is to provide an aluminum alloy wire having excellent impact resistance and fatigue characteristics. Another object of the present invention is to provide an aluminum alloy stranded wire, a coated electric wire, and an electric wire with terminals having excellent impact resistance and fatigue characteristics.

本開示の一態様に係るアルミニウム合金線は、
アルミニウム合金から構成されるアルミニウム合金線であって、
前記アルミニウム合金は、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不純物からなり、
前記アルミニウム合金線の横断面において、その表面から深さ方向に30μmまでの表層領域から、短辺長さが30μmであり、長辺長さが50μmである長方形の表層気泡測定領域をとり、前記表層気泡測定領域に存在する気泡の合計断面積が2μm以下である。
The aluminum alloy wire according to one aspect of the present disclosure is
An aluminum alloy wire composed of an aluminum alloy.
The aluminum alloy contains Fe of 0.005% by mass or more and 2.2% by mass or less, and the balance is composed of Al and impurities.
In the cross section of the aluminum alloy wire, a rectangular surface bubble measurement region having a short side length of 30 μm and a long side length of 50 μm is taken from a surface layer region up to 30 μm in the depth direction from the surface thereof. The total cross-sectional area of the bubbles existing in the surface bubble measurement region is 2 μm 2 or less.

本開示の一態様に係るアルミニウム合金撚線は、
上記の本開示の一態様に係るアルミニウム合金線を複数撚り合わせてなる。
The aluminum alloy stranded wire according to one aspect of the present disclosure is
A plurality of aluminum alloy wires according to one aspect of the present disclosure are twisted together.

本開示の一態様に係る被覆電線は、
導体と、前記導体の外周を覆う絶縁被覆とを備える被覆電線であって、
前記導体は、上記の本開示の一態様に係るアルミニウム合金撚線を備える。
The covered electric wire according to one aspect of the present disclosure is
A coated electric wire including a conductor and an insulating coating that covers the outer periphery of the conductor.
The conductor comprises an aluminum alloy stranded wire according to one aspect of the present disclosure.

本開示の一態様に係る端子付き電線は、
上記の本開示の一態様に係る被覆電線と、前記被覆電線の端部に装着された端子部とを備える。
The electric wire with a terminal according to one aspect of the present disclosure is
It includes a coated electric wire according to one aspect of the present disclosure and a terminal portion attached to an end portion of the coated electric wire.

上記のアルミニウム合金線、上記のアルミニウム合金撚線、上記の被覆電線、上記の端子付き電線は、耐衝撃性及び疲労特性に優れる。 The above-mentioned aluminum alloy wire, the above-mentioned aluminum alloy stranded wire, the above-mentioned coated electric wire, and the above-mentioned terminald electric wire are excellent in impact resistance and fatigue characteristics.

実施形態のアルミニウム合金線を導体に含む被覆電線を示す概略斜視図である。It is a schematic perspective view which shows the coated electric wire which includes the aluminum alloy wire of an embodiment in a conductor. 実施形態の端子付き電線について、端子部近傍を示す概略側面図である。FIG. 5 is a schematic side view showing the vicinity of the terminal portion of the electric wire with a terminal of the embodiment. 気泡の測定方法を説明する説明図である。It is explanatory drawing explaining the measurement method of a bubble.

本発明者らは、種々の条件でアルミニウム合金線を製造して、耐衝撃性、疲労特性(繰り返しの曲げに対する断線し難さ)に優れるアルミニウム合金線を検討した。Feを特定の範囲で含むという特定の組成のアルミニウム合金から構成され、軟化処理が施された線材は、高強度(例えば、引張強さや0.2%耐力が高い)かつ高靭性であり(例えば、破断伸びが高い)、耐衝撃性にも優れる上に、導電率が高く導電性にも優れる。この線材において、特に表層に気泡が少ないと、耐衝撃性により優れる上に、繰り返しの曲げによっても断線し難いとの知見を得た。表層に気泡が少ないアルミニウム合金線は、例えば鋳造に供するアルミニウム合金の溶湯温度を特定の範囲に制御することで製造できる、との知見を得た。本発明は、これらの知見に基づくものである。最初に本発明の実施形態の内容を列記して説明する。 The present inventors have produced aluminum alloy wires under various conditions, and have studied aluminum alloy wires having excellent impact resistance and fatigue characteristics (difficulty of disconnection due to repeated bending). A wire rod composed of an aluminum alloy having a specific composition containing Fe in a specific range and subjected to a softening treatment has high strength (for example, high tensile strength and 0.2% proof stress) and high toughness (for example). , High breaking elongation), excellent impact resistance, high conductivity and excellent conductivity. It was found that in this wire rod, especially when there are few bubbles in the surface layer, the impact resistance is excellent and the wire is not easily broken even by repeated bending. It was found that an aluminum alloy wire having few bubbles on the surface layer can be produced, for example, by controlling the molten metal temperature of the aluminum alloy used for casting within a specific range. The present invention is based on these findings. First, the contents of the embodiments of the present invention will be listed and described.

[本発明の実施形態の説明]
(1)本発明の一態様に係るアルミニウム合金線は、
アルミニウム合金から構成されるアルミニウム合金線であって、
前記アルミニウム合金は、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不純物からなり、
前記アルミニウム合金線の横断面において、その表面から深さ方向に30μmまでの表層領域から、短辺長さが30μmであり、長辺長さが50μmである長方形の表層気泡測定領域をとり、前記表層気泡測定領域に存在する気泡の合計断面積が2μm以下である。
アルミニウム合金線の横断面とは、アルミニウム合金線の軸方向(長手方向)に直交する面で切断した断面をいう。
[Explanation of Embodiments of the Present Invention]
(1) The aluminum alloy wire according to one aspect of the present invention is
An aluminum alloy wire composed of an aluminum alloy.
The aluminum alloy contains Fe of 0.005% by mass or more and 2.2% by mass or less, and the balance is composed of Al and impurities.
In the cross section of the aluminum alloy wire, a rectangular surface bubble measurement region having a short side length of 30 μm and a long side length of 50 μm is taken from a surface layer region up to 30 μm in the depth direction from the surface thereof. The total cross-sectional area of the bubbles existing in the surface bubble measurement region is 2 μm 2 or less.
The cross section of the aluminum alloy wire means a cross section cut along a plane orthogonal to the axial direction (longitudinal direction) of the aluminum alloy wire.

上記のアルミニウム合金線(以下、Al合金線と呼ぶことがある)は、特定の組成のアルミニウム合金(以下、Al合金と呼ぶことがある)から構成されており、製造過程で軟化処理などが施されることで、高強度、高靭性であり、耐衝撃性にも優れる。高強度、高靭性であるため、曲げなども滑らかに行える上に、繰り返しの曲げが与えられた場合でも断線し難く、疲労特性にも優れる。特に、上記のAl合金線は、表層に存在する気泡が少ない。そのため、衝撃や繰り返しの曲げを受けた場合などでも、気泡が割れの起点になり難く、気泡に起因する割れが生じ難い。表面割れが生じ難いことで、線材の表面から内部に割れが進展したり、破断に至ったりすることも低減できる。従って、上記のAl合金線は、耐衝撃性及び疲労特性に優れる。また、上記のAl合金線は、気泡に起因する割れが生じ難いことから、組成や熱処理条件などにもよるが、引張試験を行った場合に引張強さ、0.2%耐力、及び破断伸びから選択される少なくとも一つがより高い傾向にあり、機械的特性にも優れる。 The above aluminum alloy wire (hereinafter, may be referred to as Al alloy wire) is composed of an aluminum alloy having a specific composition (hereinafter, may be referred to as Al alloy), and is subjected to softening treatment or the like in the manufacturing process. As a result, it has high strength, high toughness, and excellent impact resistance. Since it has high strength and high toughness, it can be bent smoothly, and even if it is repeatedly bent, it is hard to break and has excellent fatigue characteristics. In particular, the above Al alloy wire has few bubbles existing on the surface layer. Therefore, even when subjected to an impact or repeated bending, the bubbles are unlikely to be the starting points of cracks, and cracks due to the bubbles are unlikely to occur. Since surface cracks are unlikely to occur, it is possible to reduce the occurrence of cracks from the surface of the wire rod to the inside and the occurrence of breakage. Therefore, the above Al alloy wire is excellent in impact resistance and fatigue characteristics. Further, since the above Al alloy wire is unlikely to crack due to bubbles, it depends on the composition and heat treatment conditions, but when a tensile test is performed, the tensile strength, 0.2% proof stress, and breaking elongation At least one selected from tends to be higher and has excellent mechanical properties.

(2)上記のAl合金線の一例として、
前記アルミニウム合金線の横断面において、短辺長さが30μmであり、長辺長さが50μmである長方形の内部気泡測定領域をこの長方形の中心が前記アルミニウム合金線の中心に重なるようにとり、前記表層気泡測定領域に存在する気泡の合計断面積に対する前記内部気泡測定領域に存在する気泡の合計断面積の比が1.1以上44以下である形態が挙げられる。
(2) As an example of the above Al alloy wire,
In the cross section of the aluminum alloy wire, a rectangular internal bubble measurement region having a short side length of 30 μm and a long side length of 50 μm is set so that the center of the rectangle overlaps the center of the aluminum alloy wire. Examples thereof include a mode in which the ratio of the total cross-sectional area of the bubbles existing in the internal bubble measurement region to the total cross-sectional area of the bubbles existing in the surface bubble measurement region is 1.1 or more and 44 or less.

上記形態は、上述の合計断面積の比が1.1以上であるため、Al合金線の表層に比較して内部に存在する気泡が多いものの、上述の合計断面積の比が特定の範囲を満たすため、内部も気泡が少ないといえる。従って、上記形態は、衝撃や繰り返しの曲げを受けた場合などでも、気泡を介して線材の表面から内部に割れが進展し難く、より破断し難いため、耐衝撃性及び疲労特性により優れる。 In the above embodiment, since the ratio of the total cross-sectional area described above is 1.1 or more, there are many bubbles existing inside as compared with the surface layer of the Al alloy wire, but the ratio of the total cross-sectional area described above is within a specific range. Since it is filled, it can be said that there are few bubbles inside. Therefore, the above-mentioned form is excellent in impact resistance and fatigue characteristics because cracks are less likely to develop from the surface of the wire rod to the inside through air bubbles and are more difficult to break even when subjected to an impact or repeated bending.

(3)上記のAl合金線の一例として、
水素の含有量が4.0ml/100g以下である形態が挙げられる。
(3) As an example of the above Al alloy wire,
Examples thereof include a form in which the hydrogen content is 4.0 ml / 100 g or less.

本発明者らは、気泡を含有するAl合金線について含有ガス成分を調べたところ、水素を含むとの知見を得た。従って、Al合金線内の気泡の一要因は、水素であると考えられる。上記形態は、水素の含有量が少ないことからも気泡が少ないといえ、気泡に起因する断線が生じ難く、耐衝撃性及び疲労特性に優れる。 When the present inventors investigated the gas content of the Al alloy wire containing bubbles, they found that it contained hydrogen. Therefore, it is considered that one factor of the bubbles in the Al alloy wire is hydrogen. In the above form, it can be said that there are few bubbles because the hydrogen content is low, disconnection due to the bubbles is unlikely to occur, and the impact resistance and fatigue characteristics are excellent.

(4)上記のAl合金線の一例として、
前記アルミニウム合金は、更に、Mg、Si、Cu、Mn、Ni、Zr、Ag、Cr、及びZnから選択される1種以上の元素を合計で0質量%以上1.0質量%以下含有する形態が挙げられる。
(4) As an example of the above Al alloy wire,
The aluminum alloy further contains one or more elements selected from Mg, Si, Cu, Mn, Ni, Zr, Ag, Cr, and Zn in a total amount of 0% by mass or more and 1.0% by mass or less. Can be mentioned.

上記形態は、Feに加えて上述の元素を特定の範囲で含有することで、更なる強度の向上などが期待できる。 In the above form, further improvement in strength can be expected by containing the above-mentioned element in a specific range in addition to Fe.

(5)上記のAl合金線の一例として、
引張強さが110MPa以上200MPa以下であること、0.2%耐力が40MPa以上であること、破断伸びが10%以上であること、導電率が55%IACS以上であることから選択される一つ以上を満たす形態が挙げられる。
(5) As an example of the above Al alloy wire,
One selected from tensile strength of 110 MPa or more and 200 MPa or less, 0.2% proof stress of 40 MPa or more, elongation at break of 10% or more, and conductivity of 55% IACS or more. A form that satisfies the above can be mentioned.

上記形態において、引張強さが上記の範囲であれば高強度であり、疲労特性に優れる。0.2%耐力が40MPa以上であれば、特に端子部を圧着などして取り付けた場合に端子部との固着性により優れる。破断伸びが10%以上であれば可撓性、靭性に優れ、耐衝撃性に優れる。導電率が55%IACS以上であれば導電性に優れて、各種の電線の導体に好適に利用できる。 In the above form, if the tensile strength is in the above range, the strength is high and the fatigue characteristics are excellent. When the 0.2% proof stress is 40 MPa or more, the adhesiveness to the terminal portion is excellent, especially when the terminal portion is attached by crimping or the like. If the elongation at break is 10% or more, the flexibility and toughness are excellent, and the impact resistance is excellent. When the conductivity is 55% IACS or more, the conductivity is excellent, and it can be suitably used for conductors of various electric wires.

(6)上記のAl合金線の一例として、
前記アルミニウム合金の平均結晶粒径が50μm以下である形態が挙げられる。
(6) As an example of the above Al alloy wire,
Examples thereof include a form in which the average crystal grain size of the aluminum alloy is 50 μm or less.

上記形態は、気泡が少ないことに加えて、結晶粒が微細であり柔軟性に優れるため、耐衝撃性及び疲労特性により優れる。 In addition to having few bubbles, the above-mentioned form is excellent in impact resistance and fatigue characteristics because the crystal grains are fine and excellent in flexibility.

(7)上記のAl合金線の一例として、
加工硬化指数が0.05以上である形態が挙げられる。
(7) As an example of the above Al alloy wire,
Examples thereof include a form in which the work hardening index is 0.05 or more.

上記形態は、加工硬化指数が特定の範囲を満たすため、端子部を圧着などして取り付けた場合に加工硬化による端子部の固着力の向上が期待できる。従って、上記形態は、端子付き電線などの端子部が取り付けられる導体に好適に利用できる。 In the above form, since the work hardening index satisfies a specific range, improvement in the fixing force of the terminal part due to work hardening can be expected when the terminal part is attached by crimping or the like. Therefore, the above-described embodiment can be suitably used for a conductor to which a terminal portion is attached, such as an electric wire with a terminal.

(8)上記のAl合金線の一例として、
前記アルミニウム合金線の表面酸化膜の厚さが1nm以上120nm以下である形態が挙げられる。
(8) As an example of the above Al alloy wire,
Examples thereof include a form in which the thickness of the surface oxide film of the aluminum alloy wire is 1 nm or more and 120 nm or less.

上記形態は、表面酸化膜の厚さが特定の範囲を満たすことで、端子部を取り付けた場合に端子部との間に介在する酸化物(表面酸化膜を構成するもの)が少なく、過度の酸化物の介在による接続抵抗の増大を防止できる上に、耐食性にも優れる。従って、上記形態は、端子付き電線などの端子部が取り付けられる導体に好適に利用できる。この場合、耐衝撃性及び疲労特性に優れる上に、低抵抗で耐食性にも優れる接続構造を構築できる。 In the above form, when the thickness of the surface oxide film satisfies a specific range, there is little oxide (which constitutes the surface oxide film) intervening between the terminal portion and the terminal portion when the terminal portion is attached, which is excessive. In addition to being able to prevent an increase in connection resistance due to the presence of oxides, it also has excellent corrosion resistance. Therefore, the above-described embodiment can be suitably used for a conductor to which a terminal portion is attached, such as an electric wire with a terminal. In this case, it is possible to construct a connection structure having excellent impact resistance and fatigue characteristics, as well as low resistance and excellent corrosion resistance.

(9)本発明の一態様に係るアルミニウム合金撚線は、
上記(1)から(8)のいずれか一つに記載のアルミニウム合金線を複数撚り合わせてなる。
(9) The aluminum alloy stranded wire according to one aspect of the present invention is
A plurality of aluminum alloy wires according to any one of (1) to (8) above are twisted together.

上記のアルミニウム合金撚線(以下、Al合金撚線と呼ぶことがある)を構成する各素線は、上述のように特定の組成のAl合金で構成されると共に、表層に存在する気泡が少ないことで、耐衝撃性及び疲労特性に優れる。また、撚線は、一般に、同じ導体断面積を有する単線と比較して可撓性に優れ、衝撃や繰り返しの曲げを受けた場合などでも、各素線が破断し難く、耐衝撃性及び疲労特性に優れる。これらの点から、上記のAl合金撚線は、耐衝撃性及び疲労特性に優れる。各素線が上述のように機械的特性に優れることから、上記のAl合金撚線は、引張強さ、0.2%耐力、及び破断伸びから選択される少なくとも一つがより高い傾向にあり、機械的特性にも優れる。 Each of the strands constituting the above aluminum alloy stranded wire (hereinafter, may be referred to as Al alloy stranded wire) is composed of an Al alloy having a specific composition as described above, and has few bubbles existing on the surface layer. Therefore, it is excellent in impact resistance and fatigue characteristics. Further, the stranded wire is generally superior in flexibility as compared with a single wire having the same conductor cross-sectional area, and each wire is less likely to break even when subjected to impact or repeated bending, and impact resistance and fatigue. Excellent characteristics. From these points, the above-mentioned Al alloy stranded wire is excellent in impact resistance and fatigue characteristics. Since each wire has excellent mechanical properties as described above, the above Al alloy stranded wire tends to have a higher tensile strength, 0.2% proof stress, and at least one selected from elongation at break. It also has excellent mechanical properties.

(10)上記のAl合金撚線の一例として、
撚りピッチが前記アルミニウム合金撚線の層心径の10倍以上40倍以下である形態が挙げられる。
層心径とは、撚線が多層構造である場合、各層に含まれる全ての素線の中心を連ねる円の直径をいう。
(10) As an example of the above Al alloy stranded wire,
Examples thereof include a form in which the twist pitch is 10 times or more and 40 times or less the layer core diameter of the aluminum alloy stranded wire.
The layer core diameter means the diameter of a circle connecting the centers of all the strands contained in each layer when the stranded wire has a multi-layer structure.

上記形態は、撚りピッチが特定の範囲を満たすことで、曲げなどを行った際に素線同士が捻じれ難いため破断し難い上に、端子部を取り付ける場合にはばらけ難いため端子部を取り付け易い。従って、上記形態は、特に疲労特性に優れる上に、端子付き電線などの端子部が取り付けられる導体に好適に利用できる。 In the above form, when the twist pitch satisfies a specific range, the strands are hard to be twisted when bent, so that they are hard to break, and when the terminal is attached, they are hard to come apart. Easy to install. Therefore, the above-described embodiment is particularly excellent in fatigue characteristics, and can be suitably used for a conductor to which a terminal portion such as an electric wire with a terminal is attached.

(11)本発明の一態様に係る被覆電線は、
導体と、前記導体の外周を覆う絶縁被覆とを備える被覆電線であって、
前記導体は、上記(9)又は上記(10)に記載のアルミニウム合金撚線を備える。
(11) The covered electric wire according to one aspect of the present invention is
A coated electric wire including a conductor and an insulating coating that covers the outer periphery of the conductor.
The conductor includes the aluminum alloy stranded wire according to the above (9) or (10).

上記の被覆電線は、上述の耐衝撃性及び疲労特性に優れるAl合金撚線によって構成される導体を備えるため、耐衝撃性及び疲労特性に優れる。 Since the coated electric wire includes a conductor composed of the above-mentioned Al alloy stranded wire having excellent impact resistance and fatigue characteristics, it is excellent in impact resistance and fatigue characteristics.

(12)本発明の一態様に係る端子付き電線は、
上記(11)に記載の被覆電線と、前記被覆電線の端部に装着された端子部とを備える。
(12) The electric wire with a terminal according to one aspect of the present invention is
The coated electric wire according to (11) above and a terminal portion attached to an end portion of the coated electric wire are provided.

上記の端子付き電線は、上述の耐衝撃性及び疲労特性に優れるAl合金線やAl合金撚線によって構成される導体を備える被覆電線を構成要素とするため、耐衝撃性及び疲労特性に優れる。 Since the above-mentioned electric wire with a terminal is composed of a coated electric wire having a conductor composed of the above-mentioned Al alloy wire or Al alloy stranded wire having excellent impact resistance and fatigue characteristics, it is excellent in impact resistance and fatigue characteristics.

[本発明の実施形態の詳細]
以下、適宜、図面を参照して、本発明の実施の形態を詳細に説明する。図中、同一符号は同一名称物を示す。以下の説明において元素の含有量は、質量%を示す。
[Details of Embodiments of the present invention]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In the figure, the same reference numerals indicate the same names. In the following description, the element content indicates mass%.

[アルミニウム合金線]
(概要)
実施形態のアルミニウム合金線(Al合金線)22は、アルミニウム合金(Al合金)から構成される線材であり、代表的には、電線の導体2などに利用される(図1)。この場合、Al合金線22は、単線、又は複数のAl合金線22が撚り合わされてなる撚線(実施形態のAl合金撚線20)、又は撚線が所定の形状に圧縮成形されてなる圧縮撚線(実施形態のAl合金撚線20の別例)の状態で利用される。図1では7本のAl合金線22が撚り合わされたAl合金撚線20を例示する。実施形態のAl合金線22は、Al合金がFeを特定の範囲で含むという特定の組成を有すると共に、Al合金線22の表層に存在する気泡が少ないという特定の組織を有する。詳しくは、実施形態のAl合金線を構成するAl合金は、Feを0.005%以上2.2%以下含有し、残部がAl及び不純物からなるAl−Fe系合金である。また、実施形態のAl合金線22は、その横断面において、その表面から深さ方向に30μmまでの表層領域からとった以下の領域(表層気泡測定領域と呼ぶ)に存在する気泡の合計断面積が2μm以下である。表面気泡測定領域は、短辺長さが30μmであり、長辺長さが50μmである長方形の領域とする。上述の特定の組成を有すると共に特定の組織を有する実施形態のAl合金線22は、製造過程で軟化処理などを受けることで、高強度、高靭性であり、耐衝撃性にも優れる上に、気泡に起因する破断も低減できるため、耐衝撃性により優れ、疲労特性にも優れる。
以下、より詳細に説明する。なお、気泡の大きさなどといった各パラメータの測定方法の詳細、上述の効果の詳細は試験例で説明する。
[Aluminum alloy wire]
(Overview)
The aluminum alloy wire (Al alloy wire) 22 of the embodiment is a wire rod made of an aluminum alloy (Al alloy), and is typically used as a conductor 2 of an electric wire (FIG. 1). In this case, the Al alloy wire 22 is a single wire, a stranded wire obtained by twisting a plurality of Al alloy wires 22 (the Al alloy stranded wire 20 of the embodiment), or a compression formed by compressing the stranded wire into a predetermined shape. It is used in the state of a stranded wire (another example of the Al alloy stranded wire 20 of the embodiment). FIG. 1 illustrates an Al alloy stranded wire 20 in which seven Al alloy wires 22 are twisted together. The Al alloy wire 22 of the embodiment has a specific composition that the Al alloy contains Fe in a specific range, and has a specific structure that there are few bubbles present on the surface layer of the Al alloy wire 22. Specifically, the Al alloy constituting the Al alloy wire of the embodiment is an Al—Fe based alloy containing 0.005% or more and 2.2% or less of Fe, and the balance is Al and impurities. Further, in the cross section of the Al alloy wire 22 of the embodiment, the total cross-sectional area of bubbles existing in the following region (referred to as a surface bubble measurement region) taken from the surface layer region up to 30 μm in the depth direction from the surface thereof. Is 2 μm 2 or less. The surface bubble measurement region is a rectangular region having a short side length of 30 μm and a long side length of 50 μm. The Al alloy wire 22 of the embodiment having the above-mentioned specific composition and having a specific structure is subjected to a softening treatment or the like in the manufacturing process, so that it has high strength, high toughness, and excellent impact resistance. Since breakage caused by air bubbles can be reduced, it has excellent impact resistance and fatigue characteristics.
Hereinafter, a more detailed description will be given. The details of the measurement method of each parameter such as the size of bubbles and the details of the above-mentioned effects will be described in Test Examples.

(組成)
実施形態のAl合金線22は、Feを0.005%以上含有するAl合金から構成されることで、導電率の低下をあまり招くことなく強度を高められる。Feの含有量が高いほど、Al合金の強度を高められる。また、Al合金線22は、Feを2.2%以下の範囲で含むAl合金から構成されることで、Feの含有に起因する導電率や靭性の低下を招き難く、高い導電率や高い靭性などを有したり、伸線加工時に断線し難く、製造性にも優れたりする。強度、靭性、導電率のバランスを考慮して、Feの含有量を0.1%以上2.0%以下、更に0.3%以上2.0%以下、0.9%以上2.0%以下とすることができる。
(composition)
Since the Al alloy wire 22 of the embodiment is composed of an Al alloy containing 0.005% or more of Fe, the strength can be increased without causing a significant decrease in conductivity. The higher the Fe content, the higher the strength of the Al alloy. Further, since the Al alloy wire 22 is composed of an Al alloy containing Fe in a range of 2.2% or less, it is unlikely that the conductivity and toughness will be lowered due to the inclusion of Fe, and the conductivity and toughness will be high. It also has the above, is hard to break during wire drawing, and has excellent manufacturability. Considering the balance of strength, toughness and conductivity, the Fe content is 0.1% or more and 2.0% or less, 0.3% or more and 2.0% or less, 0.9% or more and 2.0%. It can be as follows.

実施形態のAl合金線22を構成するAl合金は、Feに加えて、以下の添加元素を好ましくは後述する特定の範囲で含むと、強度や靭性といった機械的特性の向上が期待でき、耐衝撃性及び疲労特性により優れる。添加元素は、Mg、Si、Cu、Mn、Ni、Zr、Ag、Cr、及びZnから選択される1種以上の元素が挙げられる。Mg,Mn,Ni,Zr,Crは、導電率の低下が大きいものの、強度の向上効果が高い。特にMgとSiとを同時に含有すると、強度をより向上できる。Cuは、導電率の低下が少なく、強度を向上できる。Ag,Znは、導電率の低下が少なく、強度の向上効果をある程度有する。強度の向上により、軟化処理などの熱処理を施した後でも、高い引張強さなどを有しながら、高い破断伸びなどを有することができ、耐衝撃性、疲労特性の向上にも寄与する。列挙した各元素の含有量は0%以上0.5%以下、列挙した元素の合計含有量は0%以上1.0%以下が挙げられる。特に、列挙した元素の合計含有量が0.005%以上1.0%以下であると、上述の強度の向上効果、耐衝撃性、疲労特性の向上効果などを得易い。各元素の含有量は、例えば以下が挙げられる。上記の合計含有量の範囲、及び以下の各元素の含有量の範囲において、多いほど強度を向上し易く、少ないほど導電率を高め易い傾向にある。
(Mg)0%超0.5%以下、更に0.05%以上0.5%未満、0.05%以上0.4%以下、0.1%以上0.4%以下
(Si)0%超0.3%以下、更に0.03%以上0.3%未満、更に0.05%以上0.2%以下
(Cu)0.05%以上0.5%以下、更に0.05%以上0.4%以下
(Mn,Ni,Zr,Ag,Cr,及びZn、以下、まとめて元素αと呼ぶことがある)合計で0.005%以上0.2%以下、更に合計で0.005%以上0.15%以下
When the Al alloy constituting the Al alloy wire 22 of the embodiment contains the following additive elements in addition to Fe, preferably in a specific range described later, improvement in mechanical properties such as strength and toughness can be expected, and impact resistance can be expected. Excellent in sex and fatigue characteristics. Examples of the additive element include one or more elements selected from Mg, Si, Cu, Mn, Ni, Zr, Ag, Cr, and Zn. Although Mg, Mn, Ni, Zr, and Cr have a large decrease in conductivity, they have a high effect of improving strength. In particular, when Mg and Si are contained at the same time, the strength can be further improved. Cu has less decrease in conductivity and can improve strength. Ag and Zn have a small decrease in conductivity and have a certain degree of strength improving effect. By improving the strength, even after heat treatment such as softening treatment, it is possible to have high breaking elongation while having high tensile strength and the like, which also contributes to improvement of impact resistance and fatigue characteristics. The content of each of the listed elements is 0% or more and 0.5% or less, and the total content of the listed elements is 0% or more and 1.0% or less. In particular, when the total content of the listed elements is 0.005% or more and 1.0% or less, the above-mentioned strength improving effect, impact resistance, fatigue characteristic improving effect and the like can be easily obtained. Examples of the content of each element include the following. In the above range of total content and the range of content of each of the following elements, the greater the amount, the easier it is to improve the strength, and the smaller the amount, the easier it is to increase the conductivity.
(Mg) More than 0% and 0.5% or less, further 0.05% or more and less than 0.5%, 0.05% or more and 0.4% or less, 0.1% or more and 0.4% or less (Si) 0% Super 0.3% or less, further 0.03% or more and less than 0.3%, further 0.05% or more and 0.2% or less (Cu) 0.05% or more and 0.5% or less, further 0.05% or more 0.4% or less (Mn, Ni, Zr, Ag, Cr, and Zn, hereinafter may be collectively referred to as element α) 0.005% or more and 0.2% or less in total, and 0.005 in total % Or more and 0.15% or less

なお、原料に用いる純アルミニウムの成分分析を行い、原料に不純物としてFe,上述のMgなどの添加元素などを含む場合、これらの元素の含有量が所望の量となるように各元素の添加量を調整するとよい。即ち、Feなどの各添加元素における含有量は、原料に用いるアルミニウム地金自体に含まれる元素を含む合計量であり、必ずしも、添加量を意味しない。 When the components of pure aluminum used as a raw material are analyzed and the raw material contains additive elements such as Fe and the above-mentioned Mg as impurities, the amount of each element added so that the content of these elements becomes a desired amount. Should be adjusted. That is, the content of each additive element such as Fe is the total amount including the element contained in the aluminum bullion itself used as the raw material, and does not necessarily mean the addition amount.

実施形態のAl合金線22を構成するAl合金は、Feに加えて、Ti及びBの少なくとも一方の元素を含有することができる。TiやBは、鋳造時において、Al合金の結晶を微細にする効果がある。微細な結晶組織を有する鋳造材を素材にすることで、鋳造以降に圧延や伸線などの加工や軟化処理を含む熱処理などを受けても、結晶粒が微細になり易い。微細な結晶組織を有するAl合金線22は、粗大な結晶組織を有する場合に比較して、衝撃や繰り返しの曲げを受けた場合などに破断し難く、耐衝撃性や疲労特性に優れる。B単独の含有、Ti単独の含有、Ti及びBの双方の含有、という順に微細化効果が高い傾向にある。Tiを含む場合、その含有量が0%以上0.05%以下、更に0.005%以上0.05%以下であると、Bを含む場合、その含有量が0%以上0.005%以下、更に0.001%以上0.005%以下であると、結晶微細化効果が得られると共に、TiやBの含有に起因する導電率の低下を低減できる。結晶微細化効果と導電率とのバランスを考慮して、Tiの含有量を0.01%以上0.04%以下、更に0.03%以下、Bの含有量を0.002%以上0.004%以下とすることができる。 The Al alloy constituting the Al alloy wire 22 of the embodiment can contain at least one element of Ti and B in addition to Fe. Ti and B have the effect of making the crystals of the Al alloy finer at the time of casting. By using a cast material having a fine crystal structure as a material, the crystal grains tend to become fine even if they are subjected to processing such as rolling or wire drawing or heat treatment including softening treatment after casting. The Al alloy wire 22 having a fine crystal structure is less likely to break when subjected to impact or repeated bending as compared with the case where it has a coarse crystal structure, and is excellent in impact resistance and fatigue characteristics. The miniaturization effect tends to be higher in the order of the content of B alone, the content of Ti alone, and the content of both Ti and B. When Ti is contained, the content is 0% or more and 0.05% or less, and when it is 0.005% or more and 0.05% or less, when B is contained, the content is 0% or more and 0.005% or less. Further, when it is 0.001% or more and 0.005% or less, a crystal refining effect can be obtained and a decrease in conductivity due to the inclusion of Ti and B can be reduced. Considering the balance between the crystal refinement effect and the conductivity, the Ti content is 0.01% or more and 0.04% or less, further 0.03% or less, and the B content is 0.002% or more and 0. It can be 004% or less.

Feに加えて、上述の元素を含有する組成の具体例を以下に示す。
(1)Feを0.01%以上2.2%以下、Mgを0.05%以上0.5%以下含有し、残部がAl及び不純物。
(2)Feを0.01%以上2.2%以下、Mgを0.05%以上0.5%以下、Siを0.03%以上0.3%以下含有し、残部がAl及び不純物。
(3)Feを0.01%以上2.2%以下、Mgを0.05%以上0.5%以下、Mn,Ni,Zr,Ag,Cr,及びZnから選択される1種以上の元素を合計で0.005%以上0.2%以下含有し、残部がAl及び不純物。
(4)Feを0.1%以上2.2%以下、Cuを0.05%以上0.5%以下含有し、残部がAl及び不純物。
(5)Feを0.1%以上2.2%以下、Cuを0.05%以上0.5%以下、0.05%以上0.5%以下のMg及び0.03%以上0.3%以下のSiの少なくとも一方の元素を含有し、残部がAl及び不純物。
(6)上記(1)から(5)のいずれか一つにおいて、0.005%以上0.05%以下のTi及び0.001%以上0.005%以下のBの少なくとも一方の元素を含有する。
Specific examples of the composition containing the above-mentioned elements in addition to Fe are shown below.
(1) Fe is contained in an amount of 0.01% or more and 2.2% or less, Mg is contained in an amount of 0.05% or more and 0.5% or less, and the balance is Al and impurities.
(2) Fe is contained in an amount of 0.01% or more and 2.2% or less, Mg is contained in an amount of 0.05% or more and 0.5% or less, Si is contained in an amount of 0.03% or more and 0.3% or less, and the balance is Al and impurities.
(3) Fe is 0.01% or more and 2.2% or less, Mg is 0.05% or more and 0.5% or less, and one or more elements selected from Mn, Ni, Zr, Ag, Cr, and Zn. Is contained in a total of 0.005% or more and 0.2% or less, and the balance is Al and impurities.
(4) Fe is contained in an amount of 0.1% or more and 2.2% or less, Cu is contained in an amount of 0.05% or more and 0.5% or less, and the balance is Al and impurities.
(5) Fe is 0.1% or more and 2.2% or less, Cu is 0.05% or more and 0.5% or less, 0.05% or more and 0.5% or less Mg, and 0.03% or more and 0.3. It contains at least one element of Si of% or less, and the balance is Al and impurities.
(6) In any one of (1) to (5) above, at least one element of Ti of 0.005% or more and 0.05% or less and B of 0.001% or more and 0.005% or less is contained. To do.

(組織)
・気泡
実施形態のAl合金線22は、その表層に存在する気泡が少ない。具体的にはAl合金線22の横断面において、図3に示すようにその表面から深さ方向に30μmまでの表層領域220、即ち厚さ30μmの環状の領域をとる。この表層領域220から、短辺長さSが30μmであり、長辺長さLが50μmである長方形の表層気泡測定領域222をとる。短辺長さSは表層領域220の厚さに相当する。詳しくは、Al合金線22の表面の任意の点(接点P)について接線Tをとる。接点PからAl合金線22の内部に向かって、表面の法線方向に長さが30μmである直線Cをとる。Al合金線22が丸線であれば、この円の中心に向かって直線Cをとる。直線Cと平行な直線であって長さが30μmの直線を短辺22Sとする。接点Pを通り、接線Tに沿った直線であって、接点Pが中間点となるように長さが50μmである直線をとり、この直線を長辺22Lとする。表層気泡測定領域222にAl合金線22が存在しない微小な空隙(ハッチング部分)gが生じることを許容する。この表層気泡測定領域222に存在する気泡の合計断面積が2μm以下である。表層に気泡が少ないことで、衝撃や繰り返しの曲げを受けた場合などに気泡を起点とする割れを低減し易く、ひいては表層から内部への割れの進展も低減できて、気泡に起因する破断を低減できる。そのため、実施形態のAl合金線22は、耐衝撃性や疲労特性に優れる。一方、気泡の合計面積が大きければ、粗大な気泡が存在したり、微細な気泡が多数存在したりして、気泡が割れの起点となったり、割れが進展し易くなったりして、耐衝撃性や疲労特性に劣る。他方、気泡の合計断面積は、小さいほど気泡が少なく、気泡に起因する破断を低減して耐衝撃性や疲労特性に優れることから、1.5μm未満、更に1μm以下、0.95μm以下であることが好ましく、0に近いほど好ましい。気泡は、例えば、鋳造過程で湯温を低めにすると少なくなり易い。加えて鋳造時の冷却速度、特に後述する特定の温度域の冷却速度を速めるとより少なく、小さくなり易い。
(Organization)
-Bubble The Al alloy wire 22 of the embodiment has few bubbles existing on its surface layer. Specifically, in the cross section of the Al alloy wire 22, as shown in FIG. 3, a surface layer region 220 up to 30 μm in the depth direction from the surface thereof, that is, an annular region having a thickness of 30 μm is taken. From this surface layer region 220, a rectangular surface layer bubble measurement region 222 having a short side length S of 30 μm and a long side length L of 50 μm is taken. The short side length S corresponds to the thickness of the surface layer region 220. Specifically, a tangent line T is taken at an arbitrary point (contact point P) on the surface of the Al alloy wire 22. A straight line C having a length of 30 μm is taken from the contact point P toward the inside of the Al alloy wire 22 in the normal direction of the surface. If the Al alloy wire 22 is a round wire, a straight line C is taken toward the center of this circle. A straight line parallel to the straight line C and having a length of 30 μm is defined as a short side 22S. A straight line passing through the contact point P and along the tangent line T and having a length of 50 μm so that the contact point P becomes an intermediate point is taken, and this straight line is defined as a long side 22L. It is allowed that a minute void (hatched portion) g in which the Al alloy wire 22 does not exist is generated in the surface bubble measurement region 222. The total cross-sectional area of the bubbles existing in the surface bubble measurement region 222 is 2 μm 2 or less. Since there are few bubbles in the surface layer, it is easy to reduce cracks originating from the bubbles when subjected to impact or repeated bending, and by extension, the growth of cracks from the surface layer to the inside can be reduced, resulting in fractures caused by bubbles. Can be reduced. Therefore, the Al alloy wire 22 of the embodiment is excellent in impact resistance and fatigue characteristics. On the other hand, if the total area of the bubbles is large, coarse bubbles may exist or a large number of fine bubbles may exist, and the bubbles may become the starting point of cracking or the cracking may easily progress, resulting in impact resistance. Inferior in sex and fatigue characteristics. On the other hand, the smaller the total cross-sectional area of the bubbles, the fewer the bubbles, and since the fracture caused by the bubbles is reduced and the impact resistance and fatigue characteristics are excellent, the total cross-sectional area is less than 1.5 μm 2 , further 1 μm 2 or less, 0.95 μm 2. The value is preferably as follows, and the closer to 0, the more preferable. Bubbles tend to decrease, for example, when the hot water temperature is lowered during the casting process. In addition, if the cooling rate at the time of casting, particularly the cooling rate in a specific temperature range described later, is increased, the cooling rate tends to be smaller and smaller.

実施形態のAl合金線22の一例として、表層に加えて内部に存在する気泡も少ないものが挙げられる。具体的にはAl合金線22の横断面において、短辺長さが30μmであり、長辺長さが50μmである長方形の領域(内部気泡測定領域と呼ぶ)をとる。この内部気泡測定領域は、この長方形の中心がAl合金線22の中心に重なるようにとる。Al合金線22が異形線の場合には、内接円の中心をAl合金線22の中心とする(以下同様)。表層気泡測定領域に存在する気泡の合計断面積Sfbに対する内部気泡測定領域に存在する気泡の合計断面積Sibの比(Sib/Sfb)が1.1以上44以下である。ここで、鋳造過程では、一般に、金属の表層から内部に向かって凝固が進む。そのため、溶湯に雰囲気中のガスが溶解すると、金属の表層ではガスが金属外部に逃げ易いものの、金属の内部ではガスが閉じ込められて残存し易い。このような鋳造材を素材に用いて製造された線材では、その表層に比較して内部に存在する気泡が多くなり易いと考えられる。上述のように表層の気泡の合計断面積Sfbが小さいため、上記比Sib/Sfbが小さい形態は、内部に存在する気泡も少ないため、衝撃や繰り返しの曲げを受けた場合などに割れの発生や割れの進展などを低減し易く、気泡に起因する破断を低減して、耐衝撃性や疲労特性に優れる。上記比Sib/Sfbは、小さいほど内部に存在する気泡が少なく、耐衝撃性や疲労特性に優れることから、40以下、更に30以下、20以下、15以下であることがより好ましい。上記比Sib/Sfbが1.1以上であれば、湯温を過度に低くしなくても、気泡が少ないAl合金線22を製造でき、量産に適すると考えられる。上記比Sib/Sfbが1.3から6.0ぐらいであると、量産し易いと考えられる。 As an example of the Al alloy wire 22 of the embodiment, there are few bubbles existing inside in addition to the surface layer. Specifically, in the cross section of the Al alloy wire 22, a rectangular region (referred to as an internal bubble measurement region) having a short side length of 30 μm and a long side length of 50 μm is taken. The internal bubble measurement region is set so that the center of the rectangle overlaps the center of the Al alloy wire 22. When the Al alloy wire 22 is a deformed wire, the center of the inscribed circle is set as the center of the Al alloy wire 22 (the same applies hereinafter). The ratio (Sib / Sfb) of the total cross-sectional area Sib of the bubbles existing in the internal bubble measurement region to the total cross-sectional area Sfb of the bubbles existing in the surface bubble measurement region is 1.1 or more and 44 or less. Here, in the casting process, solidification generally proceeds from the surface layer of the metal toward the inside. Therefore, when the gas in the atmosphere is dissolved in the molten metal, the gas easily escapes to the outside of the metal on the surface layer of the metal, but the gas is easily trapped and remains inside the metal. In a wire rod manufactured by using such a cast material as a material, it is considered that the number of air bubbles existing inside tends to increase as compared with the surface layer thereof. Since the total cross-sectional area Sfb of the air bubbles on the surface layer is small as described above, the form in which the ratio Sib / Sfb is small has few air bubbles existing inside, so that cracks may occur when subjected to impact or repeated bending. It is easy to reduce the growth of cracks, reduce breakage caused by air bubbles, and have excellent impact resistance and fatigue characteristics. The smaller the ratio Sib / Sfb, the smaller the number of bubbles existing inside, and the better the impact resistance and fatigue characteristics. Therefore, the ratio is more preferably 40 or less, more preferably 30 or less, 20 or less, and 15 or less. When the ratio Sib / Sfb is 1.1 or more, it is considered that the Al alloy wire 22 having few bubbles can be manufactured without making the hot water temperature excessively low, which is suitable for mass production. When the ratio Sib / Sfb is about 1.3 to 6.0, it is considered that mass production is easy.

・結晶粒径
実施形態のAl合金線22の一例として、Al合金の平均結晶粒径が50μm以下であるものが挙げられる。微細な結晶組織を有するAl合金線22は曲げなどを行い易く、柔軟性に優れて、衝撃や繰り返しの曲げを受けた場合などで破断し難い。実施形態のAl合金線22は、その表層に気泡が少ないことも相俟って、この形態は耐衝撃性、疲労特性に優れる。上記平均結晶粒径は、小さいほど曲げなどを行い易く、耐衝撃性、疲労特性に優れることから、45μm以下、更に40μm以下、30μm以下であることが好ましい。結晶粒径は、組成や製造条件にもよるが、例えば上述のようにTiやBを含むと、微細になり易い。
-Crystal grain size As an example of the Al alloy wire 22 of the embodiment, an example in which the average crystal grain size of the Al alloy is 50 μm or less can be mentioned. The Al alloy wire 22 having a fine crystal structure is easy to bend, has excellent flexibility, and is hard to break when subjected to impact or repeated bending. The Al alloy wire 22 of the embodiment is excellent in impact resistance and fatigue characteristics in combination with the fact that the surface layer of the Al alloy wire 22 has few bubbles. The smaller the average crystal grain size, the easier it is to bend, and the better the impact resistance and fatigue characteristics. Therefore, the average crystal grain size is preferably 45 μm or less, more preferably 40 μm or less, and 30 μm or less. The crystal grain size depends on the composition and production conditions, but when Ti or B is contained as described above, the crystal grain size tends to be fine.

(水素含有量)
実施形態のAl合金線22の一例として、水素の含有量が4.0ml/100g以下であるものが挙げられる。気泡の一要因は、上述のように水素であると考えられる。Al合金線22について質量100gあたりに対する水素の含有量が4.0ml以下であれば、このAl合金線22は気泡が少なく、上述のように気泡に起因する破断を低減できる。水素の含有量は少ないほど、気泡が少ないと考えられることから、3.8ml/100g以下、更に3.6ml/100g以下、3ml/100g以下であることが好ましく、0に近いほど好ましい。Al合金線22中の水素は、大気雰囲気などの水蒸気を含む雰囲気で鋳造を行うことで雰囲気中の水蒸気が溶湯に溶解し、この溶存水素が残存していると考えられる。そのため、水素の含有量は、例えば、湯温を低めにして雰囲気からのガスの溶解を低減すると少なくなり易い。また、水素の含有量は、Cu及びSiの少なくとも一方を含有すると少なくなる傾向にある。
(Hydrogen content)
As an example of the Al alloy wire 22 of the embodiment, the one having a hydrogen content of 4.0 ml / 100 g or less can be mentioned. One factor of the bubbles is considered to be hydrogen as described above. When the hydrogen content of the Al alloy wire 22 per 100 g of mass is 4.0 ml or less, the Al alloy wire 22 has few bubbles and can reduce the breakage caused by the bubbles as described above. Since it is considered that the smaller the hydrogen content is, the smaller the number of bubbles is, it is preferably 3.8 ml / 100 g or less, more preferably 3.6 ml / 100 g or less, 3 ml / 100 g or less, and closer to 0 is preferable. It is considered that the hydrogen in the Al alloy wire 22 is cast in an atmosphere containing water vapor such as an atmospheric atmosphere, so that the water vapor in the atmosphere is dissolved in the molten metal, and this dissolved hydrogen remains. Therefore, the hydrogen content tends to decrease, for example, when the hot water temperature is lowered to reduce the dissolution of gas from the atmosphere. Further, the hydrogen content tends to decrease when at least one of Cu and Si is contained.

(表面酸化膜)
実施形態のAl合金線22の一例として、Al合金線22の表面酸化膜の厚さが1nm以上120nm以下であるものが挙げられる。軟化処理などの熱処理が施されると、Al合金線22の表面に酸化膜が存在し得る。表面酸化膜の厚さが120nm以下と薄いことで、Al合金線22から構成される導体2の端部に端子部4(図2)を取り付けた場合に導体2と端子部4間に介在される酸化物を少なくできる。導体2と端子部4間に電気絶縁物である酸化物の介在量が少ないことで、導体2と端子部4間の接続抵抗の増大を低減できる。一方、表面酸化膜が1nm以上であれば、Al合金線22の耐食性を高められる。上記範囲で薄いほど上記接続抵抗の増大を低減でき、厚いほど耐食性を高められる。接続抵抗の増大抑制と耐食性とを考慮すると、表面酸化膜は、2nm以上115nm以下、更に5nm以上110nm以下、更に100nm以下とすることができる。表面酸化膜の厚さは、例えば、熱処理条件によって調整できる。例えば、雰囲気中の酸素濃度が高いと(例えば大気雰囲気)表面酸化膜を厚くし易く、酸素濃度が低いと(例えば不活性ガス雰囲気、還元ガス雰囲気など)表面酸化膜を薄くし易い。
(Surface oxide film)
As an example of the Al alloy wire 22 of the embodiment, the thickness of the surface oxide film of the Al alloy wire 22 is 1 nm or more and 120 nm or less. When a heat treatment such as a softening treatment is performed, an oxide film may be present on the surface of the Al alloy wire 22. Since the surface oxide film has a thin thickness of 120 nm or less, it is interposed between the conductor 2 and the terminal portion 4 when the terminal portion 4 (FIG. 2) is attached to the end portion of the conductor 2 composed of the Al alloy wire 22. Oxide can be reduced. Since the amount of oxide, which is an electrical insulator, intervening between the conductor 2 and the terminal portion 4 is small, an increase in connection resistance between the conductor 2 and the terminal portion 4 can be reduced. On the other hand, if the surface oxide film is 1 nm or more, the corrosion resistance of the Al alloy wire 22 can be enhanced. The thinner the range, the less the increase in the connection resistance, and the thicker the resistance, the better the corrosion resistance. Considering the suppression of increase in connection resistance and corrosion resistance, the surface oxide film can be 2 nm or more and 115 nm or less, further 5 nm or more and 110 nm or less, and further 100 nm or less. The thickness of the surface oxide film can be adjusted, for example, by heat treatment conditions. For example, when the oxygen concentration in the atmosphere is high (for example, an atmospheric atmosphere), the surface oxide film is likely to be thickened, and when the oxygen concentration is low (for example, an inert gas atmosphere, a reducing gas atmosphere, etc.), the surface oxide film is likely to be thinned.

(特性)
・加工硬化指数
実施形態のAl合金線22の一例として、加工硬化指数が0.05以上であるものが挙げられる。加工硬化指数が0.05以上と大きいことで、例えば複数のAl合金線22を撚り合わせた撚線を圧縮成形した圧縮撚線としたり、Al合金線22から構成される導体2(単線、撚線、圧縮撚線のいずれでもよい)の端部に端子部4を圧着したりするといった塑性加工を施した場合に、Al合金線22は加工硬化し易い。圧縮成形や圧着などの塑性加工によって断面積が減少した場合でも、加工硬化によって強度を高められ、導体2に端子部4を強固に固着できる。このように加工硬化指数が大きいAl合金線22は、端子部4の固着性に優れる導体2を構成できる。加工硬化指数は大きいほど、加工硬化による強度の向上が期待できることから、0.08以上、更に0.1以上が好ましい。加工硬化指数は、破断伸びが大きいほど大きくなり易い。そのため、加工硬化指数を大きくするには、例えば添加元素の種類や含有量、熱処理条件などを調整して破断伸びを高めることが挙げられる。晶出物が微細であり、平均結晶粒径が上述の特定の範囲を満たすという特定の組織を有するAl合金線22は、加工硬化指数が0.05以上を満たし易い。そのため、Al合金の組織を指標として、添加元素の種類や含有量、熱処理条件などを調整することでも、加工硬化指数を調整できる。
(Characteristic)
-Work hardening index As an example of the Al alloy wire 22 of the embodiment, a work hardening index of 0.05 or more can be mentioned. When the work hardening index is as large as 0.05 or more, for example, a stranded wire obtained by twisting a plurality of Al alloy wires 22 can be made into a compression stranded wire obtained by compression molding, or a conductor 2 (single wire, twisted) composed of the Al alloy wire 22. The Al alloy wire 22 is easily work-hardened when plastic working such as crimping the terminal portion 4 to the end portion of the wire or compression stranded wire). Even when the cross-sectional area is reduced by plastic working such as compression molding or crimping, the strength is increased by work hardening, and the terminal portion 4 can be firmly fixed to the conductor 2. As described above, the Al alloy wire 22 having a large work hardening index can form the conductor 2 having excellent adhesiveness of the terminal portion 4. The larger the work hardening index, the more the strength can be expected to be improved by work hardening. Therefore, 0.08 or more, more preferably 0.1 or more. The work hardening index tends to increase as the elongation at break increases. Therefore, in order to increase the work hardening index, for example, the type and content of additive elements, heat treatment conditions, and the like can be adjusted to increase the elongation at break. The Al alloy wire 22 having a specific structure in which the crystallized product is fine and the average crystal grain size satisfies the above-mentioned specific range tends to satisfy a work hardening index of 0.05 or more. Therefore, the work hardening index can be adjusted by adjusting the type and content of the additive element, the heat treatment conditions, and the like using the structure of the Al alloy as an index.

・機械的特性、電気的特性
実施形態のAl合金線22は、上述した特定の組成のAl合金で構成され、代表的には軟化処理などの熱処理を施されることで、引張強さや0.2%耐力が高く強度に優れ、破断伸びが高く靭性に優れ、更に導電率が高く導電性にも優れる。定量的には、Al合金線22は、引張強さが110MPa以上200MPa以下であること、0.2%耐力が40MPa以上であること、破断伸びが10%以上であること、導電率が55%IACS以上であることから選択される一つ以上を満たすものが挙げられる。列挙する事項のうち二つの事項、更に三つの事項、特に四つ全ての事項を満たすAl合金線22は、機械的特性に優れて、耐衝撃性及び疲労特性により優れたり、耐衝撃性及び疲労特性に優れる上に導電性にも優れたりして好ましい。このようなAl合金線22は、電線の導体として好適に利用できる。
-Mechanical properties and electrical properties The Al alloy wire 22 of the embodiment is composed of the above-mentioned Al alloy having a specific composition, and is typically subjected to a heat treatment such as a softening treatment to increase the tensile strength and 0. 2% proof stress is high and strength is excellent, elongation at break is high and toughness is excellent, and conductivity is also high and conductivity is also excellent. Quantitatively, the Al alloy wire 22 has a tensile strength of 110 MPa or more and 200 MPa or less, a 0.2% proof stress of 40 MPa or more, a breaking elongation of 10% or more, and a conductivity of 55%. Those satisfying one or more selected from being IACS or higher can be mentioned. The Al alloy wire 22 that satisfies two of the listed items, and three more items, in particular, all four items, has excellent mechanical properties, is superior in impact resistance and fatigue characteristics, and has impact resistance and fatigue. It is preferable because it has excellent properties and also has excellent conductivity. Such an Al alloy wire 22 can be suitably used as a conductor of an electric wire.

引張強さが上記範囲で高いほど強度に優れ、上記の範囲で低いほど破断伸びや導電率を高め易い。これらのことから、上記引張強さを110MPa以上180MPa以下、更に115MPa以上150MPa以下とすることができる。 The higher the tensile strength in the above range, the better the strength, and the lower the tensile strength in the above range, the easier it is to increase the elongation at break and the conductivity. From these facts, the tensile strength can be set to 110 MPa or more and 180 MPa or less, and further 115 MPa or more and 150 MPa or less.

破断伸びが上記範囲で高いほど可撓性、靭性に優れて曲げなどを行い易いため、上記破断伸びを13%以上、更に15%以上、20%以上とすることができる。 The higher the elongation at break is in the above range, the more flexible and tough it is, and the easier it is to bend. Therefore, the elongation at break can be 13% or more, further 15% or more, and 20% or more.

Al合金線22は、代表的には導体2に利用されることから導電率が高いほど好ましく、56%IACS以上、更に57%IACS以上、58%IACS以上であることがより好ましい。 Since the Al alloy wire 22 is typically used for the conductor 2, the higher the conductivity is, the more preferable it is, and more preferably 56% IACS or more, 57% IACS or more, and 58% IACS or more.

Al合金線22は、0.2%耐力も高いことが好ましい。引張強さが同じである場合、0.2%耐力が高いほど端子部4との固着性に優れる傾向にあるからである。0.2%耐力を45MPa以上、更に50MPa以上、55MPa以上とすることができる。 The Al alloy wire 22 preferably has a high proof stress of 0.2%. This is because, when the tensile strength is the same, the higher the 0.2% proof stress, the better the adhesiveness with the terminal portion 4. The 0.2% proof stress can be 45 MPa or more, further 50 MPa or more, 55 MPa or more.

Al合金線22は、引張強さに対する0.2%耐力の比が0.4以上であると、0.2%耐力が十分に大きく、高強度で破断し難い上に上述のように端子部4との固着性にも優れる。この比は大きいほど、高強度で、端子部4との固着性にも優れることから、0.42以上、更に0.45以上であることが好ましい。 When the ratio of 0.2% proof stress to tensile strength of the Al alloy wire 22 is 0.4 or more, the 0.2% proof stress is sufficiently large, the strength is high and it is difficult to break, and the terminal portion is as described above. It also has excellent adhesion to 4. The larger the ratio, the higher the strength and the better the adhesiveness with the terminal portion 4, so that the ratio is preferably 0.42 or more, more preferably 0.45 or more.

引張強さ、0.2%耐力、破断伸び、導電率は、例えば、添加元素の種類や含有量、製造条件(伸線条件、熱処理条件など)を調整することで変更できる。例えば、添加元素が多いと引張強さや0.2%耐力が高くなる傾向にあり、添加元素が少ないと導電率が高くなる傾向にあり、熱処理時の加熱温度を高くすると、破断伸びが高くなる傾向にある。 Tensile strength, 0.2% proof stress, elongation at break, and conductivity can be changed by adjusting, for example, the type and content of additive elements and manufacturing conditions (wire drawing conditions, heat treatment conditions, etc.). For example, if there are many additive elements, the tensile strength and 0.2% proof stress tend to increase, if there are few additive elements, the conductivity tends to increase, and if the heating temperature during heat treatment is increased, the elongation at break increases. There is a tendency.

(形状)
実施形態のAl合金線22の横断面形状は、用途などに応じて適宜選択できる。例えば、横断面形状が円形である丸線が挙げられる(図1参照)。その他、横断面形状が長方形などの四角形である角線などが挙げられる。Al合金線22が上述の圧縮撚線の素線を構成する場合には、代表的には円形が押し潰された異形状である。Al合金線22の横断面形状が所望の形状となるように、伸線ダイスの形状、圧縮成形用のダイスの形状などを選択するとよい。
(shape)
The cross-sectional shape of the Al alloy wire 22 of the embodiment can be appropriately selected depending on the application and the like. For example, a round line having a circular cross-sectional shape can be mentioned (see FIG. 1). In addition, a square line having a rectangular cross-sectional shape such as a rectangle can be mentioned. When the Al alloy wire 22 constitutes the above-mentioned strand of the compression stranded wire, it typically has a deformed shape in which a circular shape is crushed. It is preferable to select the shape of the wire drawing die, the shape of the die for compression molding, and the like so that the cross-sectional shape of the Al alloy wire 22 becomes a desired shape.

(大きさ)
実施形態のAl合金線22の大きさ(横断面積、丸線の場合には線径(直径)など)は、用途などに応じて適宜選択できる。例えば、自動車用ワイヤーハーネスなどの各種のワイヤーハーネスに備えられる電線の導体に利用する場合、Al合金線22の線径は0.2mm以上1.5mm以下であることが挙げられる。例えば、建築物などの配線構造を構築する電線の導体に利用する場合、Al合金線22の線径は0.2mm以上3.6mm以下であることが挙げられる。
(size)
The size of the Al alloy wire 22 of the embodiment (cross-sectional area, wire diameter (diameter) in the case of a round wire, etc.) can be appropriately selected depending on the application and the like. For example, when it is used as a conductor of an electric wire provided in various wire harnesses such as an automobile wire harness, the wire diameter of the Al alloy wire 22 is 0.2 mm or more and 1.5 mm or less. For example, when it is used as a conductor of an electric wire for constructing a wiring structure such as a building, the wire diameter of the Al alloy wire 22 is 0.2 mm or more and 3.6 mm or less.

[Al合金撚線]
実施形態のAl合金線22は、図1に示すように撚線の素線に利用できる。実施形態のAl合金撚線20は、複数のAl合金線22を撚り合わせてなる。Al合金撚線20は、同じ導体断面積を有する単線のAl合金線と比較して断面積が小さい複数の素線(Al合金線22)を撚り合わせて構成されるため、可撓性に優れ、曲げなどを行い易い。また、撚り合せられることで、各素線であるAl合金線22が細くても、撚線全体として強度に優れる。更に、実施形態のAl合金撚線20は、気泡が少ないという特定の組織を有するAl合金線22を素線とする。これらのことからAl合金撚線20は、衝撃や繰り返しの曲げを受けた場合などでも、各素線であるAl合金線22が破断し難く、耐衝撃性及び疲労特性に優れる。各素線であるAl合金線22が上述した水素の含有量、結晶粒径の大きさなどの事項が上述の特定の範囲を満たすと、耐衝撃性、疲労特性に更に優れる。
[Al alloy stranded wire]
The Al alloy wire 22 of the embodiment can be used as a strand of stranded wire as shown in FIG. The Al alloy stranded wire 20 of the embodiment is formed by twisting a plurality of Al alloy wires 22 together. Since the Al alloy stranded wire 20 is formed by twisting a plurality of strands (Al alloy wire 22) having a smaller cross-sectional area than a single Al alloy wire having the same conductor cross-sectional area, it is excellent in flexibility. , Easy to bend. Further, by being twisted together, even if the Al alloy wire 22 which is each strand is thin, the strength of the stranded wire as a whole is excellent. Further, the Al alloy stranded wire 20 of the embodiment is made of an Al alloy wire 22 having a specific structure having few bubbles. From these facts, the Al alloy stranded wire 20 is excellent in impact resistance and fatigue characteristics because the Al alloy wire 22 which is each strand is hard to break even when it is subjected to impact or repeated bending. When the above-mentioned items such as the hydrogen content and the size of the crystal particle size of the Al alloy wire 22 which are the strands satisfy the above-mentioned specific ranges, the impact resistance and the fatigue characteristics are further excellent.

Al合金撚線20の撚り合せ本数は適宜選択でき、例えば、7,11,16,19,37本などが挙げられる。Al合金撚線20の撚りピッチは適宜選択できるが、撚りピッチをAl合金撚線20の層心径の10倍以上とすると、Al合金撚線20から構成される導体2の端部に端子部4を取り付ける際にばらけ難く、端子部4の取付作業性に優れる。一方、撚りピッチを上記層心径の40倍以下とすると、曲げなどを行った際に素線同士が捻じれ難いため破断し難く、疲労特性に優れる。ばらけ防止と捻じれ防止とを考慮すると、撚りピッチは上記層心径の15倍以上35倍以下、更に20倍以上30倍以下とすることができる。 The number of twisted Al alloy stranded wires 20 can be appropriately selected, and examples thereof include 7, 11, 16, 19, and 37 wires. The twist pitch of the Al alloy stranded wire 20 can be appropriately selected, but if the twist pitch is 10 times or more the layer core diameter of the Al alloy stranded wire 20, a terminal portion is formed at the end of the conductor 2 composed of the Al alloy stranded wire 20. It is hard to come apart when the 4 is attached, and the attachment workability of the terminal portion 4 is excellent. On the other hand, when the twist pitch is 40 times or less the core diameter of the layer, the strands are less likely to be twisted when bent or the like, so that they are less likely to break and have excellent fatigue characteristics. Considering the prevention of loosening and the prevention of twisting, the twist pitch can be 15 times or more and 35 times or less of the core diameter of the layer, and further 20 times or more and 30 times or less.

Al合金撚線20は、更に圧縮成形が施された圧縮撚線とすることができる。この場合、単に撚り合わせた状態よりも線径を小さくしたり、外形を所望の形状(例えば円形)にしたりなどすることができる。各素線であるAl合金線22の加工硬化指数が上述のように大きい場合には、強度の向上、ひいては耐衝撃性、疲労特性の向上も期待できる。 The Al alloy stranded wire 20 can be a compression stranded wire further subjected to compression molding. In this case, the wire diameter can be made smaller than that in the simply twisted state, or the outer shape can be made into a desired shape (for example, a circular shape). When the work hardening index of the Al alloy wire 22 which is each strand is large as described above, improvement in strength, impact resistance, and fatigue characteristics can be expected.

Al合金撚線20を構成する各Al合金線22の組成、組織、表面酸化膜の厚さ、水素の含有量、機械的特性及び電気的特性などの仕様は、撚り合せ前に用いたAl合金線22の仕様を実質的に維持する。撚り合せ後に熱処理を施すことなどによっては、表面酸化膜の厚さ、機械的特性及び電気的特性が変化する場合がある。Al合金撚線20の仕様が所望の値となるように、撚り合せ条件を調整するとよい。 Specifications such as composition, structure, thickness of surface oxide film, hydrogen content, mechanical properties and electrical properties of each Al alloy wire 22 constituting the Al alloy stranded wire 20 are the specifications of the Al alloy used before twisting. The specifications of the wire 22 are substantially maintained. The thickness, mechanical properties, and electrical properties of the surface oxide film may change depending on the heat treatment after the twisting. The twisting conditions may be adjusted so that the specifications of the Al alloy stranded wire 20 become a desired value.

[被覆電線]
実施形態のAl合金線22や実施形態のAl合金撚線20(圧縮撚線でもよい)は、電線用導体に好適に利用できる。絶縁被覆を備えていない裸導体、絶縁被覆を備える被覆電線の導体のいずれにも利用できる。実施形態の被覆電線1は、導体2と、導体2の外周を覆う絶縁被覆3とを備え、導体2として、実施形態のAl合金線22、又は実施形態のAl合金撚線20を備える。この被覆電線1は、耐衝撃性、疲労特性に優れるAl合金線22やAl合金撚線20から構成される導体2を備えるため、耐衝撃性、疲労特性に優れる。絶縁被覆3を構成する絶縁材料は、適宜選択できる。上記絶縁材料は、例えば、ポリ塩化ビニル(PVC)やノンハロゲン樹脂、難燃性に優れる材料などが挙げられ、公知のものが利用できる。絶縁被覆3の厚さは所定の絶縁強度を有する範囲で適宜選択できる。
[Covered wire]
The Al alloy wire 22 of the embodiment and the Al alloy stranded wire 20 of the embodiment (which may be a compression stranded wire) can be suitably used as a conductor for electric wires. It can be used for both bare conductors without insulation coating and conductors for coated wires with insulation coating. The coated electric wire 1 of the embodiment includes a conductor 2 and an insulating coating 3 that covers the outer periphery of the conductor 2, and the conductor 2 includes the Al alloy wire 22 of the embodiment or the Al alloy stranded wire 20 of the embodiment. Since the coated electric wire 1 includes a conductor 2 composed of an Al alloy wire 22 and an Al alloy stranded wire 20 having excellent impact resistance and fatigue characteristics, the coated electric wire 1 is excellent in impact resistance and fatigue characteristics. The insulating material constituting the insulating coating 3 can be appropriately selected. Examples of the insulating material include polyvinyl chloride (PVC), non-halogen resin, and a material having excellent flame retardancy, and known materials can be used. The thickness of the insulating coating 3 can be appropriately selected within a range having a predetermined dielectric strength.

[端子付き電線]
実施形態の被覆電線1は、自動車や飛行機などの機器に載置されるワイヤーハーネス、産業用ロボットなどといった各種の電気機器の配線、建築物などの配線など、各種の用途の電線に利用できる。ワイヤーハーネスなどに備えられる場合、代表的には、被覆電線1の端部には端子部4が取り付けられる。実施形態の端子付き電線10は、図2に示すように実施形態の被覆電線1と、被覆電線1の端部に装着された端子部4とを備える。この端子付き電線10は、耐衝撃性、疲労特性に優れる被覆電線1を備えるため、耐衝撃性、疲労特性に優れる。図2では、端子部4として、一端に雌型又は雄型の嵌合部42を備え、他端に絶縁被覆3を把持するインシュレーションバレル部44を備え、中間部に導体2を把持するワイヤバレル部40を備える圧着端子を例示する。その他の端子部4として、導体2を溶融して接続する溶融型のものなどが挙げられる。
[Electric wire with terminal]
The covered electric wire 1 of the embodiment can be used for electric wires for various purposes such as wire harnesses mounted on devices such as automobiles and airplanes, wiring of various electric devices such as industrial robots, and wiring of buildings. When provided in a wire harness or the like, a terminal portion 4 is typically attached to the end portion of the covered electric wire 1. As shown in FIG. 2, the terminal-equipped electric wire 10 of the embodiment includes the coated electric wire 1 of the embodiment and the terminal portion 4 attached to the end of the coated electric wire 1. Since the electric wire 10 with terminals includes a coated electric wire 1 having excellent impact resistance and fatigue characteristics, it is excellent in impact resistance and fatigue characteristics. In FIG. 2, as the terminal portion 4, a female or male fitting portion 42 is provided at one end, an insulation barrel portion 44 for gripping the insulating coating 3 is provided at the other end, and a wire for gripping the conductor 2 is provided at the intermediate portion. An example is a crimp terminal provided with a barrel portion 40. Examples of the other terminal portion 4 include a fusion type in which the conductor 2 is melted and connected.

圧着端子は、被覆電線1の端部において絶縁被覆3が除去されて露出された導体2の端部に圧着されて、導体2と電気的及び機械的に接続される。導体2を構成するAl合金線22やAl合金撚線20が、上述のように加工硬化指数が高いものであると、導体2における圧着端子の取付箇所は、その断面積が局所的に小さくなっているものの、加工硬化によって強度に優れる。そのため、例えば端子部4と、被覆電線1の接続対象との接続時などに衝撃を受けても、更に接続後に繰り返しの曲げを受けても、導体2が端子部4近傍で破断することを低減でき、この端子付き電線10は耐衝撃性、疲労特性に優れる。 The crimp terminal is crimped to the exposed end of the conductor 2 from which the insulating coating 3 is removed at the end of the coated electric wire 1 and is electrically and mechanically connected to the conductor 2. When the Al alloy wire 22 and the Al alloy stranded wire 20 constituting the conductor 2 have a high work hardening index as described above, the cross-sectional area of the crimp terminal mounting location on the conductor 2 becomes locally small. However, it has excellent strength due to work hardening. Therefore, for example, even if an impact is received when the terminal portion 4 is connected to the connection target of the covered electric wire 1, or even if the conductor 2 is repeatedly bent after the connection, the conductor 2 is less likely to break in the vicinity of the terminal portion 4. The electric wire 10 with terminals is excellent in impact resistance and fatigue characteristics.

導体2を構成するAl合金線22やAl合金撚線20について、上述のように表面酸化膜を薄くする等すると、導体2と端子部4間に介在される電気絶縁物(表面酸化膜を構成する酸化物など)を低減でき、導体2と端子部4間の接続抵抗を小さくできる。従って、この端子付き電線10は、耐衝撃性、疲労特性に優れる上に、接続抵抗も小さい。 When the surface oxide film of the Al alloy wire 22 and the Al alloy stranded wire 20 constituting the conductor 2 is thinned as described above, an electrical insulator (constituting the surface oxide film) interposed between the conductor 2 and the terminal portion 4 is formed. Oxide, etc.) can be reduced, and the connection resistance between the conductor 2 and the terminal portion 4 can be reduced. Therefore, the electric wire 10 with a terminal is excellent in impact resistance and fatigue characteristics, and also has a small connection resistance.

端子付き電線10は、図2に示すように、被覆電線1ごとに一つの端子部4が取り付けられた形態の他、複数の被覆電線1に対して一つの端子部(図示せず)を備える形態が挙げられる。複数の被覆電線1を結束具などによって束ねると、端子付き電線10を取り扱い易い。 As shown in FIG. 2, the terminal-equipped electric wire 10 includes one terminal portion (not shown) for each of the plurality of coated electric wires 1 in addition to the form in which one terminal portion 4 is attached to each coated electric wire 1. The form is mentioned. When a plurality of covered electric wires 1 are bundled with a binding tool or the like, the electric wire 10 with a terminal can be easily handled.

[Al合金線の製造方法、Al合金撚線の製造方法]
(概要)
実施形態のAl合金線22は、代表的には、鋳造、(熱間)圧延や押出、伸線という基本工程に加えて、適宜な時期に熱処理(軟化処理を含む)を行うことで製造できる。基本工程や軟化処理の条件などは公知の条件などを参照できる。実施形態のAl合金撚線20は、複数のAl合金線22を撚り合わせることで製造できる。撚り合せ条件などは公知の条件を参照できる。
[Manufacturing method of Al alloy wire, Manufacturing method of Al alloy stranded wire]
(Overview)
The Al alloy wire 22 of the embodiment can be typically manufactured by performing heat treatment (including softening treatment) at an appropriate time in addition to the basic steps of casting, (hot) rolling, extrusion, and wire drawing. .. Known conditions and the like can be referred to for the basic process and the conditions of the softening treatment. The Al alloy stranded wire 20 of the embodiment can be manufactured by twisting a plurality of Al alloy wires 22 together. Known conditions can be referred to for the twisting conditions and the like.

(鋳造工程)
特に、表層に気泡が少ない実施形態のAl合金線22は、例えば、鋳造過程において湯温を低めにすると製造し易い。溶湯に雰囲気中のガスが溶解することを低減でき、溶存ガスが少ない溶湯で鋳造材を製造できる。溶存ガスとしては、上述のように水素が挙げられ、この水素は雰囲気中の水蒸気が分解したもの、雰囲気中に含まれていたものと考えられる。溶存水素などの溶存ガスが少ない鋳造材を素材とすることで、圧延や伸線などの塑性加工、軟化処理などの熱処理を施しても、鋳造以降においてAl合金に溶存ガスに起因する気泡が少ない状態を維持し易い。その結果、最終線径のAl合金線22の表層や内部に存在する気泡を上述の特定の範囲にすることができる。また、上述のように水素の含有量が少ないAl合金線22を製造できる。鋳造過程以降の工程、例えば、皮剥ぎ、塑性変形を伴う加工(圧延、押出、伸線など)を行うことで、Al合金の内部に閉じ込められた気泡の位置が変化したり、気泡の大きさがある程度小さくなったりすると考えられる。しかし、鋳造材に存在する気泡の合計含有量が多ければ、位置変動や大きさ変動があっても、最終線径のAl合金線において、表層や内部に存在する気泡の合計含有量や、水素の含有量が多くなり易い(実質的に維持されたままである)と考えられる。そこで、湯温を低くして、鋳造材自体に含まれる気泡を十分に少なくすることを提案する。
(Casting process)
In particular, the Al alloy wire 22 of the embodiment having few bubbles on the surface layer is easy to manufacture, for example, when the hot water temperature is lowered in the casting process. It is possible to reduce the dissolution of gas in the atmosphere in the molten metal, and it is possible to manufacture a casting material with the molten metal having a small amount of dissolved gas. Examples of the dissolved gas include hydrogen as described above, and it is considered that this hydrogen was decomposed by water vapor in the atmosphere and was contained in the atmosphere. By using a casting material with a small amount of dissolved gas such as dissolved hydrogen as a material, there are few bubbles caused by the dissolved gas in the Al alloy after casting even if heat treatment such as plastic working such as rolling and wire drawing and softening is performed. Easy to maintain state. As a result, the bubbles existing on the surface layer or inside of the Al alloy wire 22 having the final wire diameter can be set to the above-mentioned specific range. Further, as described above, the Al alloy wire 22 having a low hydrogen content can be produced. By performing processes after the casting process, such as peeling and processing involving plastic deformation (rolling, extrusion, wire drawing, etc.), the position of bubbles trapped inside the Al alloy can be changed, or the size of the bubbles can be changed. Is thought to be smaller to some extent. However, if the total content of bubbles present in the cast material is large, even if there are position fluctuations and size fluctuations, the total content of bubbles present in the surface layer and inside and hydrogen in the Al alloy wire with the final wire diameter It is considered that the content of is likely to increase (substantially maintained). Therefore, it is proposed to lower the temperature of the hot water to sufficiently reduce the number of bubbles contained in the casting material itself.

具体的な湯温として、例えばAl合金における液相線温度以上750℃未満が挙げられる。湯温が低いほど溶存ガスを低減でき、鋳造材の気泡を低減できることから、748℃以下、更に745℃以下が好ましい。一方、湯温がある程度高いと、添加元素を固溶し易いため、湯温を670℃以上、更に675℃以上とすることができ、強度や靭性などに優れるAl合金線を得易い。このように湯温を低くすることで、大気雰囲気などの水蒸気を含む雰囲気で鋳造を行っても、溶存ガスを少なくでき、ひいては溶存ガスに起因する気泡の合計含有量や、水素の含有量を低減できる。 Specific examples of the hot water temperature include a liquidus temperature of an Al alloy or more and less than 750 ° C. The lower the temperature of the hot water, the more the dissolved gas can be reduced and the bubbles in the cast material can be reduced. Therefore, the temperature is preferably 748 ° C or lower, more preferably 745 ° C or lower. On the other hand, when the hot water temperature is high to some extent, the additive elements are easily dissolved, so that the hot water temperature can be 670 ° C. or higher, further 675 ° C. or higher, and it is easy to obtain an Al alloy wire having excellent strength and toughness. By lowering the hot water temperature in this way, even if casting is performed in an atmosphere containing water vapor such as an atmospheric atmosphere, the dissolved gas can be reduced, and as a result, the total content of bubbles caused by the dissolved gas and the hydrogen content can be reduced. Can be reduced.

湯温を低くすることに加えて、鋳造過程の冷却速度、特に湯温から650℃までという特定の温度域の冷却速度をある程度速くすると、雰囲気中からの溶存ガスの増大を防止し易い。上記の特定の温度域は、主として液相域であり、水素などが溶解し易く、溶存ガスが増大し易いからである。一方、上記の特定の温度域における冷却速度が速過ぎないことで、凝固途中の金属内部の溶存ガスを外部である雰囲気中に排出し易いと考えられる。溶存ガスの増大抑制を考慮すると上記冷却速度は、1℃/秒以上、更に2℃/秒以上、4℃/秒以上が好ましい。上記金属内部の溶存ガスの排出促進を考慮すると、上記冷却速度は、30℃/秒以下、更に25℃/秒未満、20℃/秒以下、20℃/秒未満、15℃/秒以下、10℃/秒以下とすることができる。上記冷却速度が速過ぎないことで、量産にも適する。 In addition to lowering the hot water temperature, if the cooling rate in the casting process, particularly the cooling rate in a specific temperature range from the hot water temperature to 650 ° C. is increased to some extent, it is easy to prevent the dissolved gas from increasing from the atmosphere. This is because the above-mentioned specific temperature range is mainly a liquid phase range, in which hydrogen and the like are easily dissolved and the dissolved gas is likely to increase. On the other hand, if the cooling rate in the above specific temperature range is not too fast, it is considered that the dissolved gas inside the metal during solidification is easily discharged into the atmosphere outside. Considering the suppression of the increase of the dissolved gas, the cooling rate is preferably 1 ° C./sec or more, more preferably 2 ° C./sec or more, and 4 ° C./sec or more. Considering the promotion of dissolved gas inside the metal, the cooling rate is 30 ° C./sec or less, further less than 25 ° C./sec, 20 ° C./sec or less, less than 20 ° C./sec, 15 ° C./sec or less, 10 It can be ° C / sec or less. Since the cooling rate is not too fast, it is suitable for mass production.

上述のように鋳造過程における特定の温度域の冷却速度をある程度速めにすると、微細な晶出物をある程度含むAl合金線22を製造できるとの知見を得た。ここで、上述のように上記の特定の温度域は、主として液相域であり、液相域での冷却速度を速くすれば、凝固時に生成される晶出物を小さくし易い。しかし、上述のように湯温を低くした場合に上記冷却速度が速過ぎると、特に25℃/秒以上であると、晶出物が生成され難くなり、添加元素の固溶量が多くなって導電率の低下を招いたり、晶出物による結晶粒のピン止め効果を得難くなったりすると考えられる。これに対し、上述のように湯温を低めにし、かつ上記温度域の冷却速度をある程度速めにすることで、粗大な晶出物を含み難く、微細で比較的均一的な大きさの晶出物をある程度の量含み易い。最終的に、表層に気泡が少なく、微細な晶出物をある程度含むAl合金線22を製造できる。晶出物の微細化を考慮すると、Feなどの添加元素の含有量などにもよるが、上記冷却速度は1℃/秒超、更に2℃/秒以上が好ましい。 As described above, it has been found that if the cooling rate in a specific temperature range in the casting process is increased to some extent, the Al alloy wire 22 containing a certain amount of fine crystallized material can be produced. Here, as described above, the above-mentioned specific temperature range is mainly a liquid phase region, and if the cooling rate in the liquid phase region is increased, the crystallized product generated during solidification can be easily reduced. However, if the cooling rate is too fast when the hot water temperature is lowered as described above, especially when the temperature is 25 ° C./sec or higher, it becomes difficult to generate crystals and the amount of solid solution of the additive element increases. It is considered that the conductivity is lowered and it becomes difficult to obtain the pinning effect of the crystal grains by the crystallized material. On the other hand, by lowering the hot water temperature and increasing the cooling rate in the above temperature range to some extent as described above, it is difficult to contain coarse crystallization, and crystallization of fine and relatively uniform size occurs. It is easy to contain a certain amount of things. Finally, the Al alloy wire 22 having few bubbles on the surface layer and containing a certain amount of fine crystallized material can be produced. Considering the miniaturization of the crystallized product, the cooling rate is preferably more than 1 ° C./sec and more preferably 2 ° C./sec or more, although it depends on the content of additive elements such as Fe.

以上のことから、湯温を670℃以上750℃未満、かつ湯温から650℃までの冷却速度を20℃/秒未満とすることが好ましい。 From the above, it is preferable that the hot water temperature is 670 ° C. or higher and lower than 750 ° C., and the cooling rate from the hot water temperature to 650 ° C. is less than 20 ° C./sec.

更に、鋳造過程の冷却速度を上述の範囲で速めにすると、微細な結晶組織を有する鋳造材を得易い、添加元素をある程度固溶させ易い、DAS(Dendrite Arm Spacing)を小さくし易い(例えば、50μm以下、更に40μm以下)、といった効果も期待できる。 Further, when the cooling rate in the casting process is increased within the above range, it is easy to obtain a cast material having a fine crystal structure, it is easy to dissolve additive elements to some extent, and it is easy to reduce DAS (Dendrite Arm Spacing) (for example,). Effects such as 50 μm or less and 40 μm or less) can also be expected.

鋳造は、連続鋳造、金型鋳造(ビレット鋳造)のいずれも利用することができる。連続鋳造は、長尺な鋳造材を連続的に製造できる上に冷却速度を速め易く、上述のように気泡の低減、粗大な晶出物の抑制、結晶粒やDASの微細化、添加元素の固溶などの効果が期待できる。 Casting can be either continuous casting or mold casting (billet casting). In continuous casting, long casting materials can be continuously produced and the cooling rate can be easily increased. As described above, reduction of air bubbles, suppression of coarse crystallization, miniaturization of crystal grains and DAS, and addition elements Effects such as solid solution can be expected.

(伸線までの工程)
鋳造材は、代表的には(熱間)圧延や押出などの塑性加工を施してから伸線に供することが挙げられる。連続鋳造に連続して熱間圧延を行って、連続鋳造圧延材を伸線に供することもできる。上記塑性加工の前後に皮剥ぎや熱処理を行うことができる。皮剥ぎを行うことで、気泡や表面キズなどが存在し得る表層を除去できる。ここでの熱処理は、例えばAl合金の均質化などを目的とするものが挙げられる。均質化処理の条件は、加熱温度を450℃以上600℃以下程度、保持時間を0.5時間以上5時間以下程度とすることが挙げられる。この条件で均質化処理を行うと、偏析などによる不均一で粗大な晶出物をある程度微細で、均一的な大きさにし易い。ビレット鋳造材を用いる場合、鋳造後に均質化処理を行うことが好ましい。
(Process until wire drawing)
The cast material is typically subjected to plastic working such as (hot) rolling or extrusion, and then subjected to wire drawing. It is also possible to continuously perform hot rolling in continuous casting to provide the continuously cast rolled material for wire drawing. Peeling and heat treatment can be performed before and after the plastic working. By peeling the skin, it is possible to remove the surface layer in which air bubbles and surface scratches may exist. Examples of the heat treatment here include those aimed at homogenizing the Al alloy. The conditions for the homogenization treatment include a heating temperature of 450 ° C. or higher and 600 ° C. or lower, and a holding time of 0.5 hours or longer and 5 hours or lower. When the homogenization treatment is performed under these conditions, it is easy to make non-uniform and coarse crystals due to segregation or the like fine to some extent and have a uniform size. When a billet casting material is used, it is preferable to perform a homogenization treatment after casting.

(伸線工程)
上述の圧延などの塑性加工を経た素材に、所定の最終線径になるまで(冷間)伸線加工を施し、伸線材を形成する。伸線加工は、代表的には伸線ダイスを用いて行う。伸線加工度は、最終線径に応じて適宜選択するとよい。
(Wire drawing process)
The material that has undergone plastic working such as rolling is subjected to (cold) wire drawing until it reaches a predetermined final wire diameter to form a wire drawing material. The wire drawing process is typically performed using a wire drawing die. The degree of wire drawing may be appropriately selected according to the final wire diameter.

(撚合工程)
Al合金撚線20を製造する場合には、複数の線材(伸線材、又は伸線後に熱処理を施した熱処理材)を用意し、これらを所定の撚りピッチ(例えば、層心径の10倍〜40倍)で撚り合わせる。Al合金撚線20を圧縮撚線とする場合には、撚り合せ後に所定の形状に圧縮成形する。
(Twisting process)
When manufacturing the Al alloy stranded wire 20, a plurality of wire rods (wire-drawn material or heat-treated material that has been heat-treated after wire-drawing) are prepared, and these are used at a predetermined twist pitch (for example, 10 times the layer core diameter). Twist at 40 times). When the Al alloy stranded wire 20 is a compression stranded wire, it is compression-molded into a predetermined shape after being twisted.

(熱処理)
伸線途中及び伸線工程以降の任意の時期の伸線材などに熱処理を行うことができる。特に、破断伸びなどの靭性の向上を目的とする軟化処理を施すと、高強度及び高靭性で、耐衝撃性、疲労特性にも優れるAl合金線22やAl合金撚線20を製造できる。熱処理を行う時期は、伸線途中、伸線後(撚線前)、撚線後(圧縮成形前)、圧縮成形後の少なくとも一つの時期が挙げられる。複数の時期に熱処理を行ってもよい。最終製品であるAl合金線22やAl合金撚線20が所望の特性を満たすように、例えば破断伸びが10%以上を満たすように熱処理条件を調整して、熱処理を行うことが挙げられる。破断伸びが10%以上を満たすように熱処理(軟化処理)を行うことで、加工硬化指数が上述の特定の範囲を満たすAl合金線22を製造することもできる。なお、伸線途中や撚線前に熱処理を行うと、加工性を高められて、伸線加工や撚り合せなどを行い易い。
(Heat treatment)
Heat treatment can be performed on the wire drawing material during wire drawing and at any time after the wire drawing process. In particular, when a softening treatment for the purpose of improving toughness such as elongation at break is performed, an Al alloy wire 22 or an Al alloy stranded wire 20 having high strength and high toughness and excellent impact resistance and fatigue characteristics can be manufactured. The heat treatment may be performed at least one time during wire drawing, after wire drawing (before twisting), after twisting (before compression molding), and after compression molding. The heat treatment may be performed at a plurality of times. Heat treatment may be performed by adjusting the heat treatment conditions so that the final product, the Al alloy wire 22 or the Al alloy stranded wire 20, satisfies the desired characteristics, for example, so that the elongation at break satisfies 10% or more. By performing heat treatment (softening treatment) so that the elongation at break satisfies 10% or more, the Al alloy wire 22 having a work hardening index satisfying the above-mentioned specific range can also be produced. If heat treatment is performed during wire drawing or before twisting, the workability is improved and wire drawing and twisting can be easily performed.

熱処理は、パイプ炉や通電炉などの加熱容器に熱処理対象を連続的に供給して加熱する連続処理でも、雰囲気炉などの加熱容器に熱処理対象を封入した状態で加熱するバッチ処理でもいずれも利用できる。バッチ処理の条件は、例えば加熱温度が250℃以上500℃以下程度、保持時間が0.5時間以上6時間以下程度とすることが挙げられる。連続処理では、熱処理後の線材が所望の特性を満たすように制御パラメータを調整するとよい。熱処理対象の大きさ(線径や断面積など)に応じて、所望の特性を満たすように、特性とパラメータ値との相関データを予め作成しておくと(特許文献1参照)、連続処理の条件を調整し易い。また、熱処理前の潤滑剤量を測定しておき、熱処理後の残存量が所望の値となるように熱処理条件を調整することもできる。加熱温度が高いほど、又は保持時間が長いほど潤滑剤の残存量が少なくなる傾向にある。 The heat treatment can be used in both continuous processing in which the heat treatment target is continuously supplied to a heating container such as a pipe furnace or an energizing furnace to heat it, and batch processing in which the heat treatment target is heated in a heating container such as an atmosphere furnace. it can. The conditions for batch processing include, for example, a heating temperature of 250 ° C. or higher and 500 ° C. or lower, and a holding time of 0.5 hours or longer and 6 hours or lower. In the continuous treatment, the control parameters may be adjusted so that the wire rod after the heat treatment satisfies the desired characteristics. If correlation data between the characteristics and the parameter values is created in advance so as to satisfy the desired characteristics according to the size of the heat treatment target (wire diameter, cross-sectional area, etc.) (see Patent Document 1), continuous processing can be performed. Easy to adjust the conditions. It is also possible to measure the amount of lubricant before the heat treatment and adjust the heat treatment conditions so that the residual amount after the heat treatment becomes a desired value. The higher the heating temperature or the longer the holding time, the smaller the residual amount of the lubricant tends to be.

熱処理中の雰囲気は、例えば、大気雰囲気といった酸素含有量が比較的多い雰囲気、又は酸素含有量が大気よりも少ない低酸素雰囲気が挙げられる。大気雰囲気とすると、雰囲気制御が不要であるものの、表面酸化膜が厚く形成され易い(例えば、50nm以上)。そのため、大気雰囲気とする場合には、保持時間を短くし易い連続処理とすると、表面酸化膜の厚さが上述の特定の範囲を満たすAl合金線22を製造し易い。低酸素雰囲気は、真空雰囲気(減圧雰囲気)、不活性ガス雰囲気、還元ガス雰囲気などが挙げられる。不活性ガスは、窒素やアルゴンなどが挙げられる。還元ガスは、水素ガス、水素と不活性ガスとを含む水素混合ガス、一酸化炭素と二酸化炭素との混合ガスなどが挙げられる。低酸素雰囲気では雰囲気制御が必要であるものの、表面酸化膜を薄くし易い(例えば、50nm未満)。そのため、低酸素雰囲気とする場合には、雰囲気制御を行い易いバッチ処理とすると、表面酸化膜の厚さが上述の特定の範囲を満たすAl合金線22、好ましくは表面酸化膜の厚さがより薄いAl合金線22を製造し易い。 Examples of the atmosphere during the heat treatment include an atmosphere having a relatively high oxygen content such as an atmospheric atmosphere, and a low oxygen atmosphere having a lower oxygen content than the atmosphere. In the case of an atmospheric atmosphere, although atmospheric control is not required, a thick surface oxide film is likely to be formed (for example, 50 nm or more). Therefore, in the case of an atmospheric atmosphere, if the continuous treatment is performed so that the holding time can be easily shortened, it is easy to manufacture the Al alloy wire 22 in which the thickness of the surface oxide film satisfies the above-mentioned specific range. Examples of the low oxygen atmosphere include a vacuum atmosphere (decompression atmosphere), an inert gas atmosphere, and a reducing gas atmosphere. Examples of the inert gas include nitrogen and argon. Examples of the reducing gas include hydrogen gas, a hydrogen mixed gas containing hydrogen and an inert gas, and a mixed gas of carbon monoxide and carbon dioxide. Although it is necessary to control the atmosphere in a low oxygen atmosphere, it is easy to thin the surface oxide film (for example, less than 50 nm). Therefore, in the case of a low oxygen atmosphere, if batch processing is performed so that the atmosphere can be easily controlled, the thickness of the surface oxide film 22 satisfies the above-mentioned specific range, preferably the thickness of the surface oxide film is higher. It is easy to manufacture a thin Al alloy wire 22.

上述のようにAl合金の組成を調整すると共に(好ましくはTi及びBの双方を添加)、連続鋳造材又は連続鋳造圧延材を素材に用いると、結晶粒径が上述の範囲を満たすAl合金線22を製造し易い。特に、連続鋳造材に圧延などの塑性加工を施した素材又は連続鋳造圧延材から最終線径の伸線材となるまでの伸線加工度を80%以上とし、最終線径の伸線材、又は撚線、又は圧縮撚線に破断伸びが10%以上となるように熱処理(軟化処理)を行うと、結晶粒径が50μm以下であるAl合金線22を更に製造し易い。この場合に、伸線途中にも熱処理を行ってもよい。このような結晶組織の制御及び破断伸びの制御を行うことで、加工硬化指数が上述の特定の範囲を満たすAl合金線22を製造することもできる。 When the composition of the Al alloy is adjusted as described above (preferably both Ti and B are added) and a continuously cast material or a continuously cast rolled material is used as the material, the Al alloy wire having a crystal grain size satisfying the above range is satisfied. 22 is easy to manufacture. In particular, the degree of wire drawing from a material obtained by subjecting a continuous cast material to plastic working such as rolling or a continuously cast rolled material to a wire drawing material having a final wire diameter is set to 80% or more, and the wire drawing material or twisting material having a final wire diameter is set to 80% or more. When the wire or the compression stranded wire is heat-treated (softened) so that the elongation at break is 10% or more, the Al alloy wire 22 having a crystal particle size of 50 μm or less can be further easily produced. In this case, the heat treatment may be performed during the wire drawing. By controlling the crystal structure and the elongation at break as described above, it is possible to manufacture the Al alloy wire 22 having a work hardening index satisfying the above-mentioned specific range.

(その他の工程)
その他、表面酸化膜の厚さの調整方法として、最終線径の伸線材を高温高圧の熱水の存在下に曝すこと、最終線径の伸線材に水を塗布すること、大気雰囲気の連続処理で熱処理後に水冷する場合に水冷後に乾燥工程を設けることなどが挙げられる。熱水に曝したり、水を塗布したりすることで表面酸化膜が厚くなる傾向にある。上記の水冷後に乾燥させることで、水冷に起因するベーマイト層の形成を防止して、表面酸化膜が薄くなる傾向にある。
(Other processes)
Other methods for adjusting the thickness of the surface oxide film include exposing the wire drawing material with the final wire diameter in the presence of hot water at high temperature and high pressure, applying water to the wire drawing material with the final wire diameter, and continuously treating the air atmosphere. In the case of water cooling after heat treatment, a drying step is provided after water cooling. The surface oxide film tends to thicken when exposed to hot water or applied with water. By drying after the above water cooling, the formation of a boehmite layer due to water cooling is prevented, and the surface oxide film tends to be thinned.

[被覆電線の製造方法]
実施形態の被覆電線1は、導体2を構成する実施形態のAl合金線22又はAl合金撚線20(圧縮撚線でもよい)を用意し、導体2の外周に絶縁被覆3を押出などによって形成することで製造できる。押出条件などは公知の条件を参照できる。
[Manufacturing method of covered electric wire]
As the covered electric wire 1 of the embodiment, the Al alloy wire 22 or the Al alloy stranded wire 20 (which may be a compression stranded wire) of the embodiment constituting the conductor 2 is prepared, and an insulating coating 3 is formed on the outer periphery of the conductor 2 by extrusion or the like. It can be manufactured by doing. Known conditions can be referred to for extrusion conditions and the like.

[端子付き電線の製造方法]
実施形態の端子付き電線10は、被覆電線1の端部において、絶縁被覆3を除去して導体2を露出させ、端子部4を取り付けることで製造できる。
[Manufacturing method of electric wire with terminal]
The terminal-equipped electric wire 10 of the embodiment can be manufactured by removing the insulating coating 3 at the end of the coated electric wire 1 to expose the conductor 2 and attaching the terminal portion 4.

[試験例1]
Al合金線を種々の条件で作製して特性を調べた。また、このAl合金線を用いてAl合金撚線を作製し、更にこのAl合金撚線を導体とする被覆電線を作製し、その端部に圧着端子を取り付けて得られた端子付き被覆電線の特性を調べた。
[Test Example 1]
Al alloy wire was prepared under various conditions and its characteristics were investigated. Further, an Al alloy stranded wire is produced using this Al alloy wire, a coated electric wire having the Al alloy stranded wire as a conductor is produced, and a crimp terminal is attached to the end of the coated electric wire. The characteristics were investigated.

Al合金線は、以下のようにして作製する。
ベースとして純アルミニウム(99.7質量%以上Al)を用意して溶解し、得られた溶湯(溶融アルミニウム)に表1から表4に示す添加元素の含有量が、表1から表4に示す量(質量%)となるように投入して、Al合金の溶湯を作製する。成分調整を行ったAl合金の溶湯は、水素ガス除去処理や異物除去処理を行うと、水素の含有量を低減したり、異物を低減したりし易い。
The Al alloy wire is produced as follows.
Pure aluminum (99.7% by mass or more Al) was prepared and dissolved as a base, and the contents of the additive elements shown in Tables 1 to 4 in the obtained molten aluminum (molten aluminum) are shown in Tables 1 to 4. A molten Al alloy is prepared by charging in an amount (% by mass). When the molten Al alloy whose components have been adjusted is subjected to hydrogen gas removal treatment or foreign matter removal treatment, it is easy to reduce the hydrogen content and foreign matter.

用意したAl合金の溶湯を用いて、連続鋳造圧延材、又はビレット鋳造材を作製する。連続鋳造圧延材は、ベルト−ホイール式の連続鋳造圧延機と、用意したAl合金の溶湯とを用いて鋳造及び熱間圧延を連続的に行って作製し、φ9.5mmのワイヤーロッドとする。ビレット鋳造材は、所定の固定鋳型にAl合金の溶湯を注湯して冷却して作製する。ビレット鋳造材に均質化処理を施した後、熱間圧延を行って、φ9.5mmのワイヤーロッド(圧延材)を作製する。表5から表8に、鋳造法の種別(連続鋳造圧延材は「連続」、ビレット鋳造材は「ビレット」と示す)、溶湯温度(℃)、鋳造過程の冷却速度(湯温から650℃までの平均冷却速度、℃/秒)を示す。冷却速度は、水冷機構などを用いて、冷却状態を調整することで変化させた。 Using the prepared molten Al alloy, a continuously cast rolled material or a billet cast material is produced. The continuous casting and rolling material is produced by continuously casting and hot rolling using a belt-wheel type continuous casting and rolling machine and a prepared molten Al alloy to obtain a wire rod having a diameter of 9.5 mm. The billet casting material is produced by pouring molten Al alloy into a predetermined fixed mold and cooling it. After homogenizing the billet cast material, hot rolling is performed to produce a wire rod (rolled material) having a diameter of 9.5 mm. Tables 5 to 8 show the type of casting method (continuously cast and rolled material is indicated as "continuous" and billet cast material is indicated as "billet"), molten metal temperature (° C), and cooling rate during the casting process (from hot water temperature to 650 ° C). The average cooling rate of, ° C / sec) is shown. The cooling rate was changed by adjusting the cooling state using a water cooling mechanism or the like.

上記のワイヤーロッドに冷間伸線加工を施して、線径φ0.3mmの伸線材、線径φ0.37mmの伸線材、線径φ0.39mmの伸線材を作製する。 The above wire rod is cold-wired to produce a wire drawing material having a wire diameter of φ0.3 mm, a wire drawing material having a wire diameter of φ0.37 mm, and a wire drawing material having a wire diameter of φ0.39 mm.

得られた線径φ0.3mmの伸線材に、表5から表8に示す方法、温度(℃)、雰囲気で軟化処理を施して軟材(Al合金線)を作製する。表5から表8に示す方法が「光輝軟化」とは、箱型炉を用いたバッチ処理であり、いずれも保持時間は3時間とする。表5から表8に示す方法が「連続軟化」とは、高周波誘導加熱方式又は直接通電方式の連続処理であり、表5から表8に示す温度(非接触式の赤外温度計にて測定)となるように通電条件を制御する。線速は50m/minから3,000m/minの範囲から選択する。試料No.2−202は、軟化処理を施していない。試料No.2−203は他の試料に比較して高温、長時間の熱処理条件:550℃×8時間とする(表8では温度の欄に「*1」を付している)。試料No.2−205は大気雰囲気での軟化処理後にベーマイト処理(100℃×15分)を行う(表8では雰囲気の欄に「*2」を付している)。 A soft material (Al alloy wire) is prepared by subjecting the obtained wire drawn wire having a diameter of φ0.3 mm to a softening treatment in the methods, temperatures (° C.), and atmosphere shown in Tables 5 to 8. The method shown in Tables 5 to 8 is "bright softening", which is a batch process using a box-type furnace, and the holding time is 3 hours in each case. The method shown in Tables 5 to 8 is "continuous softening", which is a continuous process of a high frequency induction heating method or a direct energization method, and the temperature shown in Tables 5 to 8 (measured by a non-contact infrared thermometer). ), And the energization condition is controlled. The linear velocity is selected from the range of 50 m / min to 3,000 m / min. Sample No. 2-202 is not softened. Sample No. In 2-203, the heat treatment conditions are higher and longer than those of other samples: 550 ° C. x 8 hours (in Table 8, "* 1" is added in the temperature column). Sample No. In 2-205, boehmite treatment (100 ° C. × 15 minutes) is performed after the softening treatment in the air atmosphere (“* 2” is added to the atmosphere column in Table 8).

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

(機械的特性、電気的特性)
得られた線径φ0.3mmの軟材及び非熱処理材(試料No.2−202)について、引張強さ(MPa)、0.2%耐力(MPa)、破断伸び(%)、加工硬化指数、導電率(%IACS)を測定した。また、引張強さに対する0.2%耐力の比「耐力/引張」を求めた。これらの結果を表9から表12に示す。
(Mechanical and electrical characteristics)
Tensile strength (MPa), 0.2% proof stress (MPa), elongation at break (%), work hardening index of the obtained soft material and non-heat-treated material (Sample No. 2-202) having a wire diameter of φ0.3 mm. , The proof stress (% IACS) was measured. In addition, the ratio of 0.2% proof stress to tensile strength "proof stress / tensile" was determined. These results are shown in Tables 9-12.

引張強さ(MPa)、0.2%耐力(MPa)、破断伸び(%)は、JIS Z 2241(金属材料引張試験方法、1998年)に準拠して、汎用の引張試験機を用いて測定した。加工硬化指数とは、引張試験の試験力を単軸方向に適用したときの塑性ひずみ域における真応力σと真ひずみεとの式σ=C×εにおいて、真ひずみεの指数nとして定義される。上記式において、Cは強度定数である。上記の指数nは、上記の引張試験機を用いて引張試験を行ってS−S曲線を作成することで求められる(JIS G 2253、2011年も参照)。導電率(%IACS)は、ブリッジ法により測定した。 Tensile strength (MPa), 0.2% proof stress (MPa), and elongation at break (%) are measured using a general-purpose tensile tester in accordance with JIS Z 2241 (Metallic Material Tensile Testing Method, 1998). did. The work hardening index is defined as the index n of the true strain ε in the equation σ = C × ε n of the true stress σ and the true strain ε in the plastic strain region when the test force of the tensile test is applied in the uniaxial direction. Will be done. In the above formula, C is an intensity constant. The above index n is obtained by performing a tensile test using the above tensile tester to prepare an SS curve (see also JIS G 2253, 2011). The conductivity (% IACS) was measured by the bridge method.

(疲労特性)
得られた線径φ0.3mmの軟材及び非熱処理材(試料No.2−202)について、屈曲試験を行い、破断までの回数を測定した。屈曲試験は、市販の繰り返し曲げ試験機を用いて測定した。ここでは、各試料の線材に0.3%の曲げ歪みが加えられる治具を使用して、12.2MPaの負荷を印加した状態で繰り返しの曲げを行う。試料ごとに3本以上の屈曲試験を行い、その平均(回)を表9から表12に示す。破断までの回数が多いほど、繰り返しの曲げによって破断し難く、疲労特性に優れるといえる。
(Fatigue characteristics)
A bending test was performed on the obtained soft material having a wire diameter of φ0.3 mm and a non-heat-treated material (Sample No. 2-202), and the number of times until fracture was measured. The bending test was measured using a commercially available repetitive bending tester. Here, using a jig that applies a bending strain of 0.3% to the wire rod of each sample, repeated bending is performed with a load of 12.2 MPa applied. Three or more bending tests were performed for each sample, and the averages (times) are shown in Tables 9 to 12. It can be said that the greater the number of breaks, the less likely it is to break due to repeated bending, and the better the fatigue characteristics.

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

得られた線径φ0.37mm又は線径φ0.39mmの伸線材(上述の軟化処理を施してないもの)を用いて撚線を作製する。ここでは、線径φ0.37mmの線材を7本用いた撚線を作製する。また、線径φ0.39mmの線材を7本用いた撚線を更に圧縮成形した圧縮撚線を作製する。撚線の断面積、及び圧縮撚線の断面積はいずれも、0.75mm(0.75sq)である。撚りピッチは、25mm(層心径の約33倍)である。 A stranded wire is produced using the obtained wire drawing material having a wire diameter of φ0.37 mm or a wire diameter of φ0.39 mm (the one not subjected to the above-mentioned softening treatment). Here, a stranded wire using seven wires having a wire diameter of φ0.37 mm is produced. Further, a compression stranded wire is produced by further compression molding a stranded wire using seven wires having a wire diameter of φ0.39 mm. The cross-sectional area of the stranded wire and the cross-sectional area of the compressed stranded wire are both 0.75 mm 2 (0.75 sq). The twist pitch is 25 mm (about 33 times the core diameter of the layer).

得られた撚線、圧縮撚線に、表5から表8に示す方法、温度(℃)、雰囲気で軟化処理を施す(試料No.2−203,No.2−205の*1,*2は上述参照)。得られた軟化撚線を導体とし、導体の外周に絶縁材料(ここでは、ハロゲンフリー絶縁材料)によって絶縁被覆(厚さ0.2mm)を形成して、被覆電線を作製する。試料No.2−202は、伸線材及び撚線のいずれにも軟化処理を施していない。 The obtained stranded wire and compressed stranded wire are softened by the methods shown in Tables 5 to 8 at a temperature (° C.) and in an atmosphere (* 1, * 2 of Samples No. 2-203 and No. 2-205). See above). Using the obtained softened stranded wire as a conductor, an insulating coating (thickness 0.2 mm) is formed on the outer periphery of the conductor with an insulating material (here, a halogen-free insulating material) to produce a coated electric wire. Sample No. In 2-202, neither the wire drawing material nor the stranded wire is softened.

(組織観察)
・気泡
得られた各試料の被覆電線について、横断面をとり、導体(Al合金線から構成される撚線又は圧縮撚線、以下同様)を走査型電子顕微鏡(SEM)で観察して、表層及び内部の気泡、結晶粒径を調べた。ここでは、導体を構成する各Al合金線について、その表面から深さ方向に30μmまでの表層領域から、短辺長さ30μm×長辺長さ50μmである長方形の表層気泡測定領域をとる。つまり、一つの試料について、撚線を構成していた7本のAl合金線のそれぞれから、一つの表層気泡測定領域をとり、合計7個の表層気泡測定領域をとる。そして、各表層気泡測定領域に存在する気泡の合計断面積を求める。試料ごとに、合計7個の表層気泡測定領域における気泡の合計断面積を調べる。この合計7個の測定領域における気泡の合計断面積を平均した値を合計面積(μm)として、表13から表16に示す。
なお、気泡の合計断面積の測定は、観察像に二値化処理などの画像処理を施して、処理像から気泡を抽出すると容易に行える。
(Tissue observation)
-Bubble The cross section of the coated wire of each sample obtained is taken, and the conductor (twisted wire or compressed stranded wire composed of Al alloy wire, the same applies hereinafter) is observed with a scanning electron microscope (SEM) to form a surface layer. And the bubbles inside and the crystal grain size were examined. Here, for each Al alloy wire constituting the conductor, a rectangular surface bubble measurement region having a short side length of 30 μm × a long side length of 50 μm is taken from the surface layer region up to 30 μm in the depth direction from the surface thereof. That is, for one sample, one surface bubble measurement region is taken from each of the seven Al alloy wires constituting the stranded wire, and a total of seven surface bubble measurement regions are taken. Then, the total cross-sectional area of the bubbles existing in each surface bubble measurement region is obtained. For each sample, the total cross-sectional area of bubbles in a total of 7 surface bubble measurement regions is examined. Tables 13 to 16 show the average value of the total cross-sectional areas of the bubbles in the seven measurement regions as the total area (μm 2).
The total cross-sectional area of the bubbles can be easily measured by performing image processing such as binarization on the observed image and extracting the bubbles from the processed image.

上記横断面において、導体を構成する各Al合金線について、短辺長さ30μm×長辺長さ50μmである長方形の内部気泡測定領域をとる。内部気泡測定領域は、上記長方形の中心が各Al合金線の中心に重なるようにとる。そして、表層気泡測定領域に存在する気泡の合計断面積に対する内部気泡測定領域に存在する気泡の合計断面積の比「内部/表層」を求める。試料ごとに、合計7個の表層気泡測定領域及び内部気泡測定領域をとって比「内部/表層」を求める。この合計7個の測定領域における比「内部/表層」を平均した値を比「内部/表層」として、表13から表16に示す。 In the above cross section, for each Al alloy wire constituting the conductor, a rectangular internal bubble measurement region having a short side length of 30 μm × a long side length of 50 μm is taken. The internal bubble measurement region is set so that the center of the rectangle overlaps the center of each Al alloy wire. Then, the ratio "inside / surface layer" of the total cross-sectional area of the bubbles existing in the internal bubble measurement region to the total cross-sectional area of the bubbles existing in the surface bubble measurement region is obtained. For each sample, a total of 7 surface bubble measurement regions and internal bubble measurement regions are taken to determine the ratio "inside / surface layer". The values obtained by averaging the ratio "inside / surface layer" in the total of 7 measurement regions are shown in Tables 13 to 16 as the ratio "inside / surface layer".

・結晶粒径
また、上記横断面において、JIS G 0551(鋼−結晶粒度の顕微鏡試験方法、2013年)に準拠して、SEM観察像に試験線を引き、各結晶粒において、試験線を分断する長さを結晶粒径とする(切断法)。試験線の長さは、この試験線によって10個以上の結晶粒が分断される程度とする。一つの横断面に対して、3本の試験線を引いて、各結晶粒径を求め、これらの結晶粒径を平均した値を平均結晶粒径(μm)として、表13から表16に示す。
-Crystal grain size In addition, in the above cross section, a test line is drawn on the SEM observation image in accordance with JIS G 0551 (microscopic test method for steel-crystal grain size, 2013), and the test line is divided at each crystal grain. The crystal grain size is defined as the length to be processed (cutting method). The length of the test line shall be such that 10 or more crystal grains are divided by this test line. Three test lines are drawn for one cross section to obtain each crystal grain size, and the average value of these crystal grain sizes is shown in Tables 13 to 16 as the average crystal grain size (μm). ..

(水素含有量)
得られた各試料の被覆電線について、絶縁被覆を除去して導体のみとし、導体100gあたりの水素の含有量(ml/100g)を測定した。その結果を表13から表16に示す。水素の含有量は、不活性ガス溶融法によって測定する。詳しくは、アルゴン気流中で黒鉛るつぼ中に試料を投入し、加熱溶融して水素を他のガスと共に抽出する。抽出したガスを分離カラムに通して水素を他のガスと分離して熱伝導度検出器で測定して、水素の濃度を定量することで水素の含有量を求める。
(Hydrogen content)
For the coated electric wire of each of the obtained samples, the insulating coating was removed to make only a conductor, and the hydrogen content (ml / 100 g) per 100 g of the conductor was measured. The results are shown in Tables 13 to 16. The hydrogen content is measured by the inert gas melting method. Specifically, the sample is put into a graphite crucible in an argon stream and heated and melted to extract hydrogen together with other gases. The extracted gas is passed through a separation column to separate hydrogen from other gases, measured with a thermal conductivity detector, and the hydrogen concentration is quantified to determine the hydrogen content.

(表面酸化膜)
得られた各試料の被覆電線について、絶縁被覆を除去して導体のみとし、導体を構成する撚線又は圧縮撚線を解いて、各素線の表面酸化膜を以下のようして測定した。ここでは、各素線(Al合金線)の表面酸化膜の厚さを調べる。試料ごとに合計7本の素線における表面酸化膜の厚さを調べ、この合計7本の素線における表面酸化膜の厚さを平均した値を表面酸化膜の厚さ(nm)として、表13から表16に示す。クロスセクションポリッシャー(CP)加工を施して、各素線の断面をとり、断面をSEM観察する。50nm程度を超える比較的厚い酸化膜については、このSEM観察像を用いて厚さを測定する。SEM観察において、50nm程度以下の比較的薄い酸化膜を有する場合には、別途、X線光電子分光分析(ESCA)によって深さ方向の分析(スパッタリングとエネルギー分散型X線分析(EDX)による分析とを繰り返す)を行って測定する。
(Surface oxide film)
With respect to the coated electric wire of each sample obtained, the insulating coating was removed to form only a conductor, the stranded wire or the compression stranded wire constituting the conductor was unwound, and the surface oxide film of each strand was measured as follows. Here, the thickness of the surface oxide film of each strand (Al alloy wire) is examined. The thickness of the surface oxide film on a total of 7 strands was examined for each sample, and the average value of the thickness of the surface oxide film on the total of 7 strands was taken as the surface oxide film thickness (nm) in the table. 13 to 16 are shown. Cross-section polisher (CP) processing is applied, a cross section of each strand is taken, and the cross section is observed by SEM. For a relatively thick oxide film exceeding about 50 nm, the thickness is measured using this SEM observation image. In SEM observation, if a relatively thin oxide film of about 50 nm or less is present, a separate analysis in the depth direction (sputtering and energy dispersive X-ray analysis (EDX)) is performed by X-ray photoelectron spectroscopy (ESCA). Repeat) to measure.

(耐衝撃性)
得られた各試料の被覆電線について、特許文献1を参照して、耐衝撃性(J/m)を評価した。概略を述べると、評点間距離が1mである試料の先端に錘を取り付け、この錘を1m上方に持ち上げた後、自由落下させ、試料が断線しない最大の錘の質量(kg)を測定する。この錘の質量に重力加速度(9.8m/s)と落下距離1mとをかけた積値を落下距離(1m)で除した値を耐衝撃性の評価パラメータ(J/m又は(N・m)/m)とする。求めた耐衝撃性の評価パラメータを導体断面積(ここでは0.75mm)で除した値を単位面積当たりの耐衝撃性の評価パラメータ(J/m・mm)として、表13から表16に示す。
(Impact resistance)
The impact resistance (J / m) of each of the obtained coated electric wires of each sample was evaluated with reference to Patent Document 1. Briefly, a weight is attached to the tip of a sample having a distance between scores of 1 m, the weight is lifted 1 m upward, and then freely dropped, and the mass (kg) of the maximum weight at which the sample is not broken is measured. The value obtained by multiplying the mass of this weight by the gravitational acceleration (9.8 m / s 2 ) and the fall distance of 1 m and dividing by the fall distance (1 m) is the impact resistance evaluation parameter (J / m or (N. m) / m). As the evaluation parameter of the impact resistance per unit area divided by (0.75 mm 2 in this case) conductor cross-sectional area of the evaluation parameter of the impact resistance obtained (J / m · mm 2) , Table 16 Table 13 Shown in.

(端子固着力)
得られた各試料の端子付き電線について、特許文献1を参照して、端子固着力(N)を評価した。概略を述べると、端子付き電線の一端に取り付けられた端子部を端子チャックで挟持し、被覆電線の他端の絶縁被覆を除去して、導体部分を導体チャックで挟持する。両チャックで両端を挟持した各試料の端子付き電線について、汎用の引張試験機を用いて破断時の最大荷重(N)を測定し、この最大荷重(N)を端子固着力(N)として評価する。求めた最大荷重を導体断面積(ここでは0.75mm)で除した値を単位面積当たりの端子固着力(N/mm)として、表13から表16に示す。
(Terminal sticking force)
The terminal fixing force (N) of each of the obtained electric wires with terminals was evaluated with reference to Patent Document 1. Briefly, the terminal portion attached to one end of the electric wire with a terminal is sandwiched by the terminal chuck, the insulating coating on the other end of the coated electric wire is removed, and the conductor portion is sandwiched by the conductor chuck. For the electric wire with terminals of each sample whose both ends are sandwiched between both chucks, the maximum load (N) at break is measured using a general-purpose tensile tester, and this maximum load (N) is evaluated as the terminal fixing force (N). To do. Tables 13 to 16 show the value obtained by dividing the obtained maximum load by the conductor cross-sectional area (0.75 mm 2 in this case) as the terminal fixing force (N / mm 2) per unit area.

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Figure 0006840348
Figure 0006840348

Feを特定の範囲で含み、適宜特定の元素(Mg,Si,Cu,元素α)を特定の範囲で含むという特定の組成のAl−Fe系合金から構成され、軟化処理が施された試料No.1−1からNo.1−23,No.2−1からNo.2−23,No.3−1からNo.3−12(以下、まとめて、軟材試料群と呼ぶことがある)のAl合金線は、特定の組成外である試料No.1−101からNo.1−104、No.2−201、No.3−301(以下、まとめて比較試料群と呼ぶことがある)のAl合金線に比較して、表13から表15に示すように耐衝撃性の評価パラメータ値が高く、10J/m以上である。かつ、軟材試料群のAl合金線は、表9から表11に示すように強度にも優れて、屈曲回数も高い水準にある。このことから、軟材試料群のAl合金線は、比較試料群のAl合金線に比較して、優れた耐衝撃性と優れた疲労特性とをバランスよく有することが分かる。また、軟材試料群のAl合金線は、機械的特性や電気的特性に優れること、即ち引張強さも破断伸びも高く、ここでは0.2%耐力も高い上に、導電率も高い。定量的には、軟材試料群のAl合金線は、引張強さが110MPa以上200MPa以下、0.2%耐力が40MPa以上(ここでは45MPa以上、多くの試料は50MPa以上)、破断伸びが10%以上(ここでは11%以上、多くの試料は15%以上、更に20%以上)、導電率が55%IACS以上(多くの試料は57%IACS以上、更に58%IACS以上)を満たす。その上、軟材試料群のAl合金線は、引張強さと0.2%耐力との比「耐力/引張」も高く、0.4以上である。更に、軟材試料群のAl合金線は、表13から表15に示すように端子部との固着性にも優れることが分かる(40N以上)。この理由の一つとして、軟材試料群のAl合金線は、加工硬化指数が0.05以上と大きいため(多くの試料は0.07以上、更に0.10以上、表9から表11)、圧着端子を圧着した際の加工硬化による強度向上効果を良好に得られたためと考えられる。 Sample No. which is composed of an Al—Fe-based alloy having a specific composition containing Fe in a specific range and appropriately containing a specific element (Mg, Si, Cu, element α) in a specific range and has been softened. .. 1-1 to No. 1-23, No. 2-1 to No. 2-23, No. From 3-1 to No. The Al alloy wire of 3-12 (hereinafter, collectively referred to as a soft material sample group) has a sample No. which is outside the specific composition. 1-101 to No. 1-104, No. 2-201, No. As shown in Tables 13 to 15, the evaluation parameter value of impact resistance is higher than that of the Al alloy wire of 3-301 (hereinafter, may be collectively referred to as a comparative sample group), and at 10 J / m or more. is there. Moreover, as shown in Tables 9 to 11, the Al alloy wire of the soft material sample group has excellent strength and a high level of bending frequency. From this, it can be seen that the Al alloy wire of the soft material sample group has excellent impact resistance and excellent fatigue characteristics in a well-balanced manner as compared with the Al alloy wire of the comparative sample group. Further, the Al alloy wire of the soft material sample group is excellent in mechanical properties and electrical properties, that is, it has high tensile strength and breaking elongation, and here, it has high 0.2% proof stress and high conductivity. Quantitatively, the Al alloy wire of the soft material sample group has a tensile strength of 110 MPa or more and 200 MPa or less, a 0.2% proof stress of 40 MPa or more (here, 45 MPa or more, many samples 50 MPa or more), and a breaking elongation of 10. % Or more (here, 11% or more, many samples are 15% or more, further 20% or more), and the conductivity is 55% IACS or more (many samples are 57% IACS or more, further 58% IACS or more). Moreover, the Al alloy wire of the soft material sample group has a high ratio "proof stress / tensile" between the tensile strength and the 0.2% proof stress, which is 0.4 or more. Further, it can be seen that the Al alloy wire of the soft material sample group is also excellent in adhesiveness to the terminal portion as shown in Tables 13 to 15 (40 N or more). One of the reasons for this is that the Al alloy wire of the soft material sample group has a large work hardening index of 0.05 or more (many samples are 0.07 or more, further 0.10 or more, Tables 9 to 11). It is probable that the effect of improving the strength due to work hardening when the crimp terminal was crimped was obtained satisfactorily.

特に、表13から表15に示すように軟材試料群のAl合金線は、表層に存在する気泡の合計面積が2.0μm以下であり、表16に示す試料No.1−105,No.1−106,No.2−204,No.3−303のAl合金線に比較して少ない。この表層の気泡に着目して、同じ組成である試料同士(No.1−5,No.1−105,No.1−106)、(No.2−5,No.2−204)、(No.3−3,No.3−303)を比較する。気泡が少ない試料No.1−5の方が、耐衝撃性に優れる上に(表13,表16)、屈曲回数が多く疲労特性にも優れることが分かる(表9,表12)。気泡が少ない試料No.2−5、No.3−3についても同様である。この理由の一つとして、表層に気泡が多い試料No.1−105,No.1−106,No.2−204,No.3−303のAl合金線では、衝撃や繰り返しの曲げを受けた場合に気泡が割れの起点となって破断し易くなったと考えられる。このことから、Al合金線の表層において、気泡を低減することで、耐衝撃性及び疲労特性を向上できるといえる。また、表13から表15に示すように軟材試料群のAl合金線は、水素の含有量が表16に示す試料No.1−105,No.1−106,No.2−204,No.3−303のAl合金線に比較して少ない。このことから、気泡の一要因は水素であると考えられる。試料No.1−105,No.1−106,No.2−204,No.3−303では湯温が高く、溶湯中の溶存ガスが多く存在し易いと考えられ、この溶存ガスに由来する水素が多くなったと考えられる。これらのことから、上記表層の気泡を低減するには、鋳造過程で湯温を低めにすること(ここでは750℃未満)が効果的であるといえる。
その他、試料No.1−3と試料No.1−10との比較(表13)、試料No.1−5と試料No.3−3(表15)との比較によって、SiやCuを含有すると、水素を低減し易いことが分かる。
In particular, as shown in Tables 13 to 15, the Al alloy wire of the soft material sample group has a total area of bubbles existing on the surface layer of 2.0 μm 2 or less, and the sample Nos. 1-105, No. 1-106, No. 2-204, No. Less than 3-303 Al alloy wire. Focusing on the bubbles on the surface layer, the samples having the same composition (No. 1-5, No. 1-105, No. 1-106), (No. 2-5, No. 2-204), ( No. 3-3, No. 3-303) are compared. Sample No. with few bubbles. It can be seen that 1-5 is superior in impact resistance (Tables 13 and 16), has a large number of bends, and is also excellent in fatigue characteristics (Tables 9 and 12). Sample No. with few bubbles. 2-5, No. The same applies to 3-3. One of the reasons for this is that the sample No. has many bubbles on the surface layer. 1-105, No. 1-106, No. 2-204, No. It is considered that in the 3-303 Al alloy wire, when it is subjected to an impact or repeated bending, the bubbles become the starting point of cracking and are easily broken. From this, it can be said that the impact resistance and fatigue characteristics can be improved by reducing the number of bubbles in the surface layer of the Al alloy wire. Further, as shown in Tables 13 to 15, the Al alloy wire of the soft material sample group has a hydrogen content of the sample No. 1 shown in Table 16. 1-105, No. 1-106, No. 2-204, No. Less than 3-303 Al alloy wire. From this, it is considered that one factor of the bubbles is hydrogen. Sample No. 1-105, No. 1-106, No. 2-204, No. In 3-303, the hot water temperature is high, and it is considered that a large amount of dissolved gas is likely to be present in the molten metal, and it is considered that the amount of hydrogen derived from this dissolved gas is increased. From these facts, it can be said that it is effective to lower the hot water temperature in the casting process (here, less than 750 ° C.) in order to reduce the air bubbles in the surface layer.
In addition, sample No. 1-3 and sample No. Comparison with 1-10 (Table 13), Sample No. 1-5 and sample No. By comparison with 3-3 (Table 15), it can be seen that hydrogen can be easily reduced when Si or Cu is contained.

更に、この試験から以下のことがいえる。
(1)表13から表15に示すように、軟材試料群のAl合金線は、表層だけでなく内部に存在する気泡も少ない。定量的には、気泡の合計面積の比「内部/表層」が44以下、ここでは20以下、更に15以下であり、多くの試料が10以下であり、試料No.2−204(表16)よりも小さい。同じ組成である試料No.1−5と試料No.1−106とを比較すると、比「内部/表層」が小さい試料No.1−5の方が屈曲回数が多く(表9,表12)、耐衝撃性のパラメータ値が高い(表13,表16)。この理由の一つとして、内部に気泡が多めである試料No.1−106のAl合金線では、衝撃や繰り返しの曲げを受けた場合に気泡を介して、表層から内部に割れが進展して破断し易くなったと考えられる。試料No.2−204の屈曲回数が少なく(表12)、耐衝撃性のパラメータ値が低い(表16)ことからも、比「内部/表層」が大きいと、内部に割れが進展して破断し易いといえる。このことから、Al合金線の表層及び内部において、気泡を低減することで、耐衝撃性及び疲労特性を向上できるといえる。また、この試験から、冷却速度が大きいほど比「内部/表層」が小さくなり易いといえる。従って、上記内部の気泡を低減するには、鋳造過程で湯温を低めにすると共に650℃までの温度域における冷却速度をある程度速めにすること(ここでは0.5℃/秒超、更に1℃/秒以上30℃/秒以下、好ましくは25℃/秒未満、更に20℃/秒未満)が効果的であるといえる。
Furthermore, the following can be said from this test.
(1) As shown in Tables 13 to 15, the Al alloy wire of the soft material sample group has few bubbles existing not only on the surface layer but also inside. Quantitatively, the ratio "inside / surface layer" of the total area of bubbles is 44 or less, here 20 or less, further 15 or less, and most of the samples are 10 or less, and the sample No. It is smaller than 2-204 (Table 16). Sample No. having the same composition. 1-5 and sample No. Compared with 1-106, the sample No. with a smaller ratio "inside / surface layer". 1-5 has a larger number of bends (Tables 9 and 12) and a higher impact resistance parameter value (Tables 13 and 16). One of the reasons for this is that the sample No. has a large number of bubbles inside. It is considered that the 1-106 Al alloy wire was easily broken by cracking from the surface layer to the inside through air bubbles when subjected to impact or repeated bending. Sample No. From the fact that the number of bends of 2-204 is small (Table 12) and the parameter value of impact resistance is low (Table 16), if the ratio "inside / surface layer" is large, cracks will develop inside and it will be easy to break. I can say. From this, it can be said that the impact resistance and fatigue characteristics can be improved by reducing the number of bubbles in the surface layer and the inside of the Al alloy wire. Further, from this test, it can be said that the higher the cooling rate, the smaller the ratio "inside / surface layer" tends to be. Therefore, in order to reduce the bubbles inside, the hot water temperature should be lowered during the casting process and the cooling rate in the temperature range up to 650 ° C should be increased to some extent (here, more than 0.5 ° C / sec, further 1). It can be said that ° C./sec or higher and 30 ° C./sec or lower, preferably less than 25 ° C./sec, and further less than 20 ° C./sec) is effective.

(2)表13から表15に示すように軟材試料群のAl合金線は、結晶粒径が小さい。定量的には、平均結晶粒径が50μm以下であり、多くの試料は35μm以下、更に30μm以下であり、試料No.2−203(表16)よりも小さい。同じ組成である試料No.2−5と試料No.2−203とを比較すると、試料No.2−5の方が耐衝撃性の評価パラメータ値が大きい上に(表14,表16)、屈曲回数も多い(表10,表12)。従って、結晶粒径が小さいことは、耐衝撃性や疲労特性の向上に寄与すると考えられる。その他、この試験から、熱処理温度を低めにしたり、保持時間を短めにしたりすると、結晶粒径を小さくし易いといえる。 (2) As shown in Tables 13 to 15, the Al alloy wire of the soft material sample group has a small crystal grain size. Quantitatively, the average crystal grain size is 50 μm or less, most of the samples are 35 μm or less, and further 30 μm or less. It is smaller than 2-203 (Table 16). Sample No. having the same composition. 2-5 and sample No. Comparing with 2-203, the sample No. 2-5 has a larger evaluation parameter value for impact resistance (Tables 14 and 16) and a larger number of bends (Tables 10 and 12). Therefore, it is considered that a small crystal grain size contributes to the improvement of impact resistance and fatigue characteristics. In addition, from this test, it can be said that the crystal grain size can be easily reduced by lowering the heat treatment temperature or shortening the holding time.

(3)表13から表15に示すように軟材試料群のAl合金線は、表面酸化膜を有するものの薄く(表16の試料No.2−205と比較参照)、120nm以下である。そのため、これらのAl合金線は、端子部との接続抵抗の増大を低減でき、低抵抗な接続構造を構築できると考えられる。また、軟材試料群の端子付き電線について、絶縁被覆を除去して導体のみとし、塩水噴霧試験を行って、腐食の有無を目視確認にて調べたところ、腐食が無かった。塩水噴霧試験の条件は、5質量%濃度のNaCl水溶液を用い、試験時間を96時間とする。このことから、表面酸化膜を適切な厚さで備えることで(ここでは1nm以上)、耐食性の向上に寄与すると考えられる。その他、この試験から、軟化処理などの熱処理を大気雰囲気としたり、ベーマイト層が形成され得る条件としたりすると表面酸化膜が厚くなり易く、低酸素雰囲気とすると薄くなり易いといえる。 (3) As shown in Tables 13 to 15, the Al alloy wire of the soft material sample group has a surface oxide film but is thin (see comparison with Sample No. 2-205 in Table 16) and has a diameter of 120 nm or less. Therefore, it is considered that these Al alloy wires can reduce the increase in connection resistance with the terminal portion and can construct a low resistance connection structure. Further, regarding the electric wire with a terminal of the soft material sample group, the insulating coating was removed to use only the conductor, and a salt spray test was conducted to visually check for corrosion. As a result, there was no corrosion. The conditions for the salt spray test are a 5% by mass concentration of an aqueous NaCl solution, and the test time is 96 hours. From this, it is considered that providing the surface oxide film with an appropriate thickness (here, 1 nm or more) contributes to the improvement of corrosion resistance. In addition, from this test, it can be said that the surface oxide film tends to be thickened when the heat treatment such as softening treatment is used in the air atmosphere or the condition that the boehmite layer can be formed, and it is easy to be thinned in the low oxygen atmosphere.

上述のように特定の組成のAl−Fe系合金からなり、軟化処理を施したAl合金線であって、表層に存在する気泡が少ないものは、高強度、高靭性、高導電率であり、端子部との接続強度にも優れる上に、耐衝撃性及び疲労特性にも優れる。このようなAl合金線は、被覆電線の導体、特に端子部が取り付けられる端子付き電線の導体に好適に利用できると期待される。 As described above, an Al alloy wire made of an Al—Fe based alloy having a specific composition and subjected to a softening treatment and having few bubbles existing on the surface layer has high strength, high toughness, and high conductivity. In addition to being excellent in connection strength with terminals, it is also excellent in impact resistance and fatigue characteristics. It is expected that such an Al alloy wire can be suitably used for a conductor of a coated electric wire, particularly a conductor of an electric wire with a terminal to which a terminal portion is attached.

本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
例えば、試験例1の合金の組成、線材の断面積、撚線の撚り合せ数、製造条件(湯温、鋳造時の冷却速度、熱処理時期、熱処理条件など)を適宜変更できる。
The present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
For example, the composition of the alloy of Test Example 1, the cross-sectional area of the wire rod, the number of twisted wires, and the manufacturing conditions (hot water temperature, cooling rate at the time of casting, heat treatment timing, heat treatment conditions, etc.) can be appropriately changed.

1 被覆電線
10 端子付き電線
2 導体
20 アルミニウム合金撚線
22 アルミニウム合金線(素線)
220 表層領域
222 表層気泡測定領域
22S 短辺
22L 長辺
P 接点
T 接線
C 直線
g 空隙
3 絶縁被覆
4 端子部
40 ワイヤバレル部
42 嵌合部
44 インシュレーションバレル部
1 Coated wire 10 Wire with terminal 2 Conductor 20 Aluminum alloy stranded wire 22 Aluminum alloy wire (wire)
220 Surface area 222 Surface bubble measurement area 22S Short side 22L Long side P Contact point T Tangent C Straight line g Void 3 Insulation coating 4 Terminal part 40 Wire barrel part 42 Fitting part 44 Insulation barrel part

Claims (1)

Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯を鋳造して、鋳造材を製造する工程と、
前記鋳造材に塑性加工を施して塑性加工材を製造する工程と、
前記塑性加工材に伸線加工を施して伸線材を製造する工程と、
前記伸線加工の途中又は前記伸線材を製造する工程以降に熱処理を施す工程とを備え、
前記鋳造材を製造する工程において、前記溶湯の温度を液相線温度以上750℃未満とすると共に、前記溶湯の温度から650℃までの冷却速度を1℃/秒以上25℃/秒未満とする、
アルミニウム合金線の製造方法。
A process of producing a cast material by casting a molten aluminum alloy containing Fe in an amount of 0.005% by mass or more and 2.2% by mass or less and the balance being Al and unavoidable impurities.
The process of manufacturing a plastic working material by subjecting the cast material to plastic working,
The process of manufacturing a wire drawing material by subjecting the plastic working material to a wire drawing process,
It is provided with a step of performing heat treatment during the wire drawing process or after the step of manufacturing the wire drawing material.
In the step of manufacturing the cast material, the temperature of the molten metal is set to the liquidus temperature or more and less than 750 ° C., and the cooling rate from the temperature of the molten metal to 650 ° C. is set to 1 ° C./sec or more and less than 25 ° C./sec. ,
Manufacturing method of aluminum alloy wire.
JP2017050900A 2017-03-16 2017-03-16 Manufacturing method of aluminum alloy wire Active JP6840348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017050900A JP6840348B2 (en) 2017-03-16 2017-03-16 Manufacturing method of aluminum alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017050900A JP6840348B2 (en) 2017-03-16 2017-03-16 Manufacturing method of aluminum alloy wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016213156A Division JP6112438B1 (en) 2016-10-31 2016-10-31 Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021020624A Division JP7054077B2 (en) 2021-02-12 2021-02-12 Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal

Publications (3)

Publication Number Publication Date
JP2018070992A JP2018070992A (en) 2018-05-10
JP2018070992A5 JP2018070992A5 (en) 2019-12-12
JP6840348B2 true JP6840348B2 (en) 2021-03-10

Family

ID=62113893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017050900A Active JP6840348B2 (en) 2017-03-16 2017-03-16 Manufacturing method of aluminum alloy wire

Country Status (1)

Country Link
JP (1) JP6840348B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238248A1 (en) * 2019-06-28 2022-07-28 Sumitomo Electric Industries, Ltd. Copper-coated steel wire, spring, stranded wire, insulated electric wire, and cable

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911530B1 (en) * 1970-12-07 1974-03-18
JPS58217665A (en) * 1982-06-10 1983-12-17 Furukawa Electric Co Ltd:The Preparation of creep resistant aluminum alloy conductor
JPS5964753A (en) * 1982-09-30 1984-04-12 Dainichi Nippon Cables Ltd Manufacture of heat-resistant aluminium alloy wire for conducting electricity
JPS6018256A (en) * 1983-07-12 1985-01-30 Furukawa Electric Co Ltd:The Production of creep-resistant al alloy conductor

Also Published As

Publication number Publication date
JP2018070992A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6112437B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
JP6969568B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
JP7137758B2 (en) Aluminum alloy wires, aluminum alloy stranded wires, coated wires, and wires with terminals
JP7137759B2 (en) Aluminum alloy wires, aluminum alloy stranded wires, coated wires, and wires with terminals
US11594346B2 (en) Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
JP6840348B2 (en) Manufacturing method of aluminum alloy wire
JP6840347B2 (en) Manufacturing method of aluminum alloy wire
JP7054077B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
JP7054076B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
JP6969569B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210131

R150 Certificate of patent or registration of utility model

Ref document number: 6840348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250