JPS61296262A - Air/fuel ratio sensor - Google Patents

Air/fuel ratio sensor

Info

Publication number
JPS61296262A
JPS61296262A JP60137586A JP13758685A JPS61296262A JP S61296262 A JPS61296262 A JP S61296262A JP 60137586 A JP60137586 A JP 60137586A JP 13758685 A JP13758685 A JP 13758685A JP S61296262 A JPS61296262 A JP S61296262A
Authority
JP
Japan
Prior art keywords
oxygen
air
fuel ratio
electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60137586A
Other languages
Japanese (ja)
Other versions
JPH0668482B2 (en
Inventor
Shigeru Miyata
繁 宮田
Nobuhiro Hayakawa
暢博 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP60137586A priority Critical patent/JPH0668482B2/en
Publication of JPS61296262A publication Critical patent/JPS61296262A/en
Publication of JPH0668482B2 publication Critical patent/JPH0668482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable a sufficient preventing measure by simple preventing treatment, by exposing the terminal surface of a leak resistor part to measuring gas. CONSTITUTION:An internal reference oxygen source R is formed by an electrode a1 constituted by forming an embedded porous electrode to the superposed part of a first element A and a blocking body 7 and a leak resistor part (porous layer) G of which the terminal surface is exposed to measuring gas and, by always flowing a current to the first element A, oxygen is generated in the oxygen source R and used as reference oxygen to enable the measurement of an air/fuel ration with the same measuring accuracy as that when the open air was introduced into the first element A, a second element B and the electrode a1 in the non-opposed side. Therefore, the opening par for introducing the open air becomes unnecessary and a sufficient preventing measure is enabled by simple preventing treatment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関等、各種燃焼機器の排気中の酸素濃度
に基づき空燃比を検出する空燃比センサーに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an air-fuel ratio sensor that detects an air-fuel ratio based on the oxygen concentration in the exhaust gas of various combustion devices such as internal combustion engines.

[従来の技術] 内燃機関等、各種燃焼機器に供給される混合気の空燃比
を排気中の酸素濃度より検出する空燃比検出装置の一つ
として、板状の酸素イオン伝導性固体電解質の両面に多
孔質電極が設(ブられた2枚の素子を、間隙を介して対
向配設し、一方の素子を間隙内の酸素を周囲に汲み出す
酸素ポンプ素子、他方の素子を周囲雰囲気と間隙との酸
素濃度差によって電圧を生ずる酸素濃淡電池素子として
、少なくとも空燃比のリーン域において空燃比に対応し
た信号を検出し得るよう構成されたものがある(特開昭
59−178354)。
[Prior Art] As an air-fuel ratio detection device that detects the air-fuel ratio of a mixture supplied to various combustion devices such as an internal combustion engine based on the oxygen concentration in exhaust gas, a plate-shaped oxygen ion-conducting solid electrolyte is used on both sides. A porous electrode is installed in the area (two cut-out elements are placed facing each other with a gap in between, one element is an oxygen pump element that pumps oxygen in the gap to the surroundings, and the other element is an oxygen pump element that pumps oxygen from the gap to the surrounding atmosphere. There is an oxygen concentration battery element that generates a voltage based on the difference in oxygen concentration between the two oxygen concentration cells, and is constructed so as to be able to detect a signal corresponding to the air-fuel ratio at least in the lean range of the air-fuel ratio (Japanese Patent Laid-Open No. 59-178354).

ところがこの種の空燃比センサーの場合、空燃比のリー
ン域、即ら排気中に残留酸素が存在する −場合だけで
なく、空燃比のリッチ域、即ち排気中に残留酸素が極め
て少量しか存在しない場合にでも、排気中のCo、CO
2、H20等の反応により、リーン域における信号と同
様の信号を発生する特性を有することがわかった。つま
り検出信号に対して2つの空燃比が対応するようになる
ため、この種の空燃比センサーを用いて空燃比制御を実
行する場合、空燃比がリーン域にあるのか、あるいはリ
ッチ域にあるのかをはつきりさせる必要が生じてくるの
でおる。
However, in the case of this type of air-fuel ratio sensor, it is possible to detect not only the lean range of the air-fuel ratio, that is, when there is residual oxygen in the exhaust gas, but also the rich range of the air-fuel ratio, that is, when there is only a very small amount of residual oxygen in the exhaust gas. Even if Co, CO in the exhaust
2. It was found that the reaction of H20 etc. has the characteristic of generating a signal similar to that in the lean region. In other words, two air-fuel ratios correspond to the detection signal, so when performing air-fuel ratio control using this type of air-fuel ratio sensor, it is difficult to determine whether the air-fuel ratio is in the lean region or in the rich region. There will be a need to measure the temperature.

そこで、酸素濃淡電池素子の酸素ポンプ素子に対向しな
い面に大気を導入し、検出信号が理論空燃比近傍で反転
することを防止するようにしたものが提案されている。
Therefore, a method has been proposed in which the atmosphere is introduced into the surface of the oxygen concentration battery element that does not face the oxygen pump element to prevent the detection signal from inverting near the stoichiometric air-fuel ratio.

[発明が解決しようとする問題点] しかしながら、酸素濃淡電池素子の一面に大気を導入す
るため、空燃比センサーを密閉化できず、防水対策が必
要となり、構造が複雑になってしまう。
[Problems to be Solved by the Invention] However, since the atmosphere is introduced to one side of the oxygen concentration cell element, the air-fuel ratio sensor cannot be sealed, waterproofing measures are required, and the structure becomes complicated.

[問題点を解決するための手段] 本発明の空燃比センサーは、大気を酸素濃淡電池素子の
一面に導入することなく、大気を導入した場合と同等の
効果を得るようにしたものであり、その構成は、 酸素イオン伝導性固体電解質板の表裏面に一対の多孔質
電極a、bを有する第1の素子と、酸素イオン伝導性固
体電解質板の表裏面に一対の多孔質電極c、dを有する
第2の素子と、上記第1の素子の電極aと接し、漏出抵
抗部を介して外部に連通する内部WQ酸素源と、上記第
1の素子の電極す及び上記第2の素子の電極Cの両者と
接し、ガス拡散制限部を介して測定ガス雰囲気と連通ず
る測定ガス室と からなることを特徴とする。
[Means for Solving the Problems] The air-fuel ratio sensor of the present invention is designed to obtain the same effect as when atmospheric air is introduced without introducing atmospheric air into one surface of the oxygen concentration cell element, Its configuration includes: a first element having a pair of porous electrodes a, b on the front and back surfaces of an oxygen ion conductive solid electrolyte plate; and a pair of porous electrodes c, d on the front and back surfaces of the oxygen ion conductive solid electrolyte plate. an internal WQ oxygen source that is in contact with electrode a of the first element and communicates with the outside via a leakage resistance part; It is characterized by comprising a measurement gas chamber that is in contact with both electrodes C and communicates with the measurement gas atmosphere via a gas diffusion restriction section.

第1の素子及び第2の素子に使用される酸素イオン伝導
性固体電解質としては、ジルコニアとイツトリアの固溶
体、おるいはジルコニアとカルシアとの固溶体等が代表
的なものであり、その他二酸化セリウム、二酸化トリウ
ム、二酸化ハフニウムの各固溶体、ペロブスカイト型酸
化物固溶体、3価金属酸化物固溶体等も使用可能である
。またその固体電解質両面に設けられる多孔質電極a。
Typical oxygen ion conductive solid electrolytes used in the first element and the second element include a solid solution of zirconia and yttria, or a solid solution of zirconia and calcia, and others such as cerium dioxide, Thorium dioxide, hafnium dioxide solid solutions, perovskite oxide solid solutions, trivalent metal oxide solid solutions, etc. can also be used. Further, porous electrodes a are provided on both sides of the solid electrolyte.

b、c、dとしては、酸化反応の触媒作用を有する白金
やロン1クム等を用いればよく、その形成方法としては
、これらの金属粉末を主成分としてこれに固体電解質と
同じセラミック材料の粉末を混合してペースト化し、厚
膜技術を用いて印刷後、焼結して形成する方法、あるい
はフレーム溶射、化学メッキ、蒸着等の薄膜技術を用い
て形成する。
For b, c, and d, platinum, ronium cum, etc., which have a catalytic effect on oxidation reactions may be used, and the method for forming them is to use these metal powders as the main component and add powder of the same ceramic material as the solid electrolyte. The paste is mixed into a paste, printed using thick film technology, and then sintered, or formed using thin film technology such as flame spraying, chemical plating, or vapor deposition.

ざらに排ガスにざらされる電極す、c、dはその電極層
に更に、アルミナ、スピネル、ジルコニア、ムライト等
の多孔質保護層を厚膜技術を用いて形成することが好ま
しい。
It is preferable that the electrodes S, C, and D, which are exposed to rough exhaust gas, further have a porous protective layer of alumina, spinel, zirconia, mullite, etc. formed on the electrode layer using a thick film technique.

内部基準酸素源は、例えば第1の素子に、該素子の電極
aに対応する凹部を有するAg2O3、スピネル、フォ
ルステライト、ステアタイト、ジルコニア等からなる遮
蔽体を積層し、一端面が上記凹部内に露出し、他の端面
が第1の素子と上記遮蔽体との接合部の端にまで達して
測定ガス側に露出した漏出抵抗部となる多孔質層とから
形成する。またこの漏出抵抗部は多孔質層に代えて例え
ば上記凹部から排ガス側に達する微孔であってもよい。
The internal reference oxygen source is, for example, a first element laminated with a shield made of Ag2O3, spinel, forsterite, steatite, zirconia, etc., which has a recess corresponding to the electrode a of the element, and one end surface is placed inside the recess. and a porous layer whose other end face reaches the end of the joint between the first element and the shield and becomes a leak resistance part exposed to the measurement gas side. Further, instead of the porous layer, the leakage resistance portion may be, for example, fine pores reaching from the recessed portion to the exhaust gas side.

さらに上記凹部を設けずに電極a自体を内部基準酸素源
としてもよい。また漏出抵抗部は大気側に露出させても
よいが測定ガスに対して露出するようにするとこの空燃
比センサーの防水が容易となり好ましい。
Furthermore, the electrode a itself may be used as an internal reference oxygen source without providing the recess. Further, the leak resistance portion may be exposed to the atmosphere, but it is preferable to expose it to the measurement gas because this makes it easier to waterproof the air-fuel ratio sensor.

測定ガス室は、例えば第1の素子と第2の素子との間に
Ag2O3、スピネル、フォルステライト、ステアタイ
ト、ジルコニア等からなる層状中間部材としてのスペー
サを第1の素子の電極すと第2の素子の電極C間に偏平
な閉鎖状の室が形成されるようにして挟むことによって
設けられる。
In the measurement gas chamber, for example, a spacer as a layered intermediate member made of Ag2O3, spinel, forsterite, steatite, zirconia, etc. is placed between the first element and the second element. The device is provided by sandwiching the device so that a flat closed chamber is formed between the electrodes C of the device.

そしてガス拡散制限部としてこのスペーサの一部に測定
ガス雰囲気と測定ガス室とを連通させる孔を設ける。こ
のガス拡散制限部は、上記スペーサの一部あるいは全部
を多孔黄体で置き換えたり、スペーサ(厚膜コートを含
む)に孔を設置ブたり、更には、スペーサを第1の素子
と第2の素子の端子側にのみに設けて第1の素子と第2
の素子との間に空隙を形成し、この空隙を測定ガス室と
一体のガス拡散制限間隙として設けることができる。
A hole is provided in a part of this spacer as a gas diffusion restricting portion to communicate the measurement gas atmosphere with the measurement gas chamber. This gas diffusion restriction section may be achieved by replacing part or all of the spacer with a porous corpus luteum, by installing holes in the spacer (including a thick film coating), or by connecting the spacer to the first element and the second element. The first element and the second element are provided only on the terminal side of the
A gap can be formed between the measuring gas chamber and the measuring gas chamber, and this gap can be provided as a gas diffusion limiting gap integrated with the measuring gas chamber.

また上記空隙の全体に、電気絶縁性であることが望まし
い多孔質材を配してもよい。
Further, a porous material which is preferably electrically insulating may be disposed throughout the void.

[作用] 第1の素子は酸素発生及び酸素濃淡電池素子、第2の素
子は酸素ポンプ素子としての作用をもつ。
[Function] The first element functions as an oxygen generation and oxygen concentration battery element, and the second element functions as an oxygen pump element.

即ら、 第1の索子の−っの作用は酸素発生であって、適当な温
度条件(例えば固体電解質が安定化ジルコニアの場合に
は400’C以上)において固体電解質板の両面間に電
圧をかけることにより固([i解質仮中を酸素イオンが
移動する性質を利用している。この素子は、測定ガス室
に接する電極すと、内部基準酸素源に接する電極aとの
間に酸素イオンが電極すから電極aに向かって流れるよ
うに、即ち、電極すを負、電極a@正とするよう電圧を
かけることにより、測定ガス室中の酸素を電極a近傍に
輸送し、内部基準酸素源に酸素を発生させる。
That is, the action of the first cable is oxygen generation, and under appropriate temperature conditions (for example, 400'C or higher when the solid electrolyte is stabilized zirconia), a voltage is generated between both sides of the solid electrolyte plate. By multiplying the By applying a voltage so that oxygen ions flow from the electrode to the electrode a, that is, by applying a voltage so that the electrode is negative and the electrode a is positive, the oxygen in the measurement gas chamber is transported to the vicinity of the electrode a, and the internal Generate oxygen in a reference oxygen source.

第1の素子は又酸素濃淡電池としての作用を持ち適当な
温度条件において、固体電解質板の両面間にそれぞれの
表面における酸素ガス分圧の比に対応した電圧(起電力
)が生じる性質を利用している。この素子は、前述の内
部基準酸素源の酸素を基準酸素源として測定ガス室内の
酸素ガス分圧を測定する。
The first element also functions as an oxygen concentration battery, and utilizes the property that under appropriate temperature conditions, a voltage (electromotive force) is generated between both surfaces of the solid electrolyte plate corresponding to the ratio of the oxygen gas partial pressure on each surface. are doing. This element measures the oxygen gas partial pressure in the measurement gas chamber using the aforementioned internal reference oxygen source as the reference oxygen source.

第2の素子は酸素ポンプ素子であって第1の素子と同様
、適当な温度条件において固体電解質板の両面間に電圧
をかけることにより固体電解質板中を酸素イオンが移動
する性質を利用している。
The second element is an oxygen pump element, and like the first element, it utilizes the property that oxygen ions move within the solid electrolyte plate by applying a voltage between both sides of the solid electrolyte plate under appropriate temperature conditions. There is.

この酸素ポンプ素子は、2つの電極c、d間に電圧をか
けることによりガス拡散室内の酸素を汲み出したり、又
場合によってはガス拡散室内に酸素を汲み入れる。
This oxygen pump element pumps oxygen out of the gas diffusion chamber by applying a voltage between the two electrodes c and d, or in some cases pumps oxygen into the gas diffusion chamber.

この空燃比センサーの動作は次の通りである。The operation of this air-fuel ratio sensor is as follows.

先ず、第1の素子の電極間に電極aを正、電極すを負と
するよう所定電圧(例えば5V)を抵抗(例えば500
にΩ)を介してかけることにより所定電流を流して測定
ガス室内から内部基?jL酸素源に酸素を輸送する。こ
の時の電流は数〜数十μA(例えば10μA)程度であ
り、この電流による第1の素子の固体電解板における電
圧降下は数〜数十mV(例えば10mV>である。
First, a predetermined voltage (e.g. 5V) is applied to a resistor (e.g. 500V) between the electrodes of the first element so that electrode a is positive and electrode A is negative.
A predetermined current is applied to the internal group from the measurement gas chamber by applying it through Ω). jL transports oxygen to the oxygen source. The current at this time is about several to several tens of μA (for example, 10 μA), and the voltage drop across the solid electrolyte plate of the first element due to this current is several to several tens of mV (for example, 10 mV>).

次いで、内部基準酸素源の酸素ガス分圧が測定ガス室内
の酸素ガス分圧より高くなると、この酸素ガス分圧差に
よって電極a、b間の起電力が生じる。内部基準酸素源
が、漏出抵抗部の作用によってほぼ一定の酸素ガス分圧
となった時の上記起電力は、数百mV(例えば400〜
600mV>であって、又リッヂ域とリーン域での変化
も数百mV小単位ある。
Next, when the oxygen gas partial pressure of the internal reference oxygen source becomes higher than the oxygen gas partial pressure in the measurement gas chamber, an electromotive force is generated between electrodes a and b due to this oxygen gas partial pressure difference. When the internal standard oxygen source has a substantially constant partial pressure of oxygen gas due to the action of the leakage resistor, the electromotive force is several hundred mV (for example, 400 to 400 mV).
600 mV>, and there is also a small change of several hundred mV between the ridge region and the lean region.

従って第1の素子の端子間電圧は、内部基準酸素源に酸
素を輸送するための電圧(数〜数+mv>と、内部基準
酸素源の酸素ガス分圧と測定ガス室内の酸素ガス分圧と
の差による起電力(数百mV)との和となり、測定ガス
がリッチ域の場合とり一ン域の場合とで数百mVの変化
が生じる。
Therefore, the voltage across the terminals of the first element is determined by the voltage (several to several + mv) for transporting oxygen to the internal reference oxygen source, the oxygen gas partial pressure of the internal reference oxygen source, and the oxygen gas partial pressure in the measurement gas chamber. This is the sum of the electromotive force (several hundred mV) due to the difference between the two, and a change of several hundred mV occurs between when the measured gas is in the rich range and when it is in the one-gas range.

第2の素子はこの変化によって、測定カス室内の状態か
理論空燃比となるように測定ガス室内に外部から酸素を
汲み入れたり、汲み出したりする。
Depending on this change, the second element pumps oxygen into or out of the measurement gas chamber from the outside so that the condition in the measurement gas chamber becomes the stoichiometric air-fuel ratio.

前述の通り、内部基準酸素源の酸素は測定ガス室内から
供給されているために、測定ガス室内の酸素ガス分圧は
測定ガスと全く同じではない。しかし測定ガス室内を理
論空燃比となるように、第2の素子に加える電流は通常
数〜数十mAであり、前述の内部基準酸素発生に用いら
れた電流(数〜数十μA)に比べて十分大きいので、こ
の差は実際上、無視できる。このため、従来の空燃比セ
ンサーと同様測定ガス室内を理論空燃比とするための電
流から測定ガスの空燃比を知ることができる。
As mentioned above, since the oxygen of the internal reference oxygen source is supplied from within the measurement gas chamber, the oxygen gas partial pressure within the measurement gas chamber is not exactly the same as that of the measurement gas. However, in order to maintain the stoichiometric air-fuel ratio in the measurement gas chamber, the current applied to the second element is usually several to several tens of mA, compared to the current (several to several tens of μA) used for internal reference oxygen generation described above. is sufficiently large that this difference can be ignored in practice. Therefore, as with conventional air-fuel ratio sensors, the air-fuel ratio of the measurement gas can be determined from the current that is used to bring the inside of the measurement gas chamber to the stoichiometric air-fuel ratio.

即ち、例えば第1の素子の端子間の電圧が所定の一定値
になるよう、第2の素子を用いて拡散室の酸素を汲み出
したり汲み入れたりし、その時第2の素子に流れる電流
(以下、ポンプ電流ともいう。)を検出するとか、おる
いは、その逆に第2の素子のポンプ電流を一定faに制
御して測定ガス室の酸素を所定量だけ汲み出すが汲み入
れ、その時第1の素子の端子間の電圧を検出することに
よって、排ガスの空燃比に応じた信号を検出することが
できる。
That is, for example, the second element is used to pump out or pump oxygen into the diffusion chamber so that the voltage between the terminals of the first element becomes a predetermined constant value, and at that time, the current flowing through the second element (hereinafter referred to as , pump current), or conversely, the pump current of the second element is controlled to a constant fa to pump out a predetermined amount of oxygen from the measurement gas chamber. By detecting the voltage between the terminals of one element, a signal corresponding to the air-fuel ratio of exhaust gas can be detected.

U実施例] 第1図の部分破断図及び第2図の分解説明図によって本
発明の一実施例について説明する。尚、説明上、各図の
部分ごとの縮尺は異なる。
Embodiment] An embodiment of the present invention will be described with reference to a partially cutaway view in FIG. 1 and an exploded explanatory view in FIG. 2. For convenience of explanation, the scale of each part of each figure is different.

本実施例の空燃比センサーは第1図及び第2図に示す如
く、 測定ガス側に延長された部分の一ψt;が露出する電4
4a1と電極b2と固体電解質板3とからなる第1の素
子Aと、 電極C4と電極d5と固体電解質板6とからなる第2の
素子Bと、 第1の素子Aと遮蔽体7との重ね合せ部分に、ここでは
埋設多孔質電極として形成された電極a1と電極a1か
ら延長されて端面を排ガスに露出する漏出抵抗部である
多孔質層Gとからなる内部基準酸素@iRと、 第1の素子Aと第2の素子Bとが層状中間部材としての
スペー+#8を介して積層されてそれらの対向する電極
b2、電極04間に形成される測定ガス室9とからなる
。尚、本実施例ではスペーサ8の3カ所を切り欠いて孔
とじガス拡散制限部Tとした。
As shown in Figs. 1 and 2, the air-fuel ratio sensor of this embodiment has an electric current 4 whose part ψt; which extends toward the measurement gas side is exposed.
4a1, electrode b2, and solid electrolyte plate 3, second element B consisting of electrode C4, electrode d5, and solid electrolyte plate 6, and first element A and shielding body 7. In the overlapping part, there is an internal reference oxygen @iR consisting of an electrode a1 formed here as a buried porous electrode and a porous layer G which is a leak resistance part extending from the electrode a1 and whose end face is exposed to exhaust gas; The first element A and the second element B are laminated with a spacer #8 as a layered intermediate member interposed therebetween, and a measurement gas chamber 9 is formed between the opposing electrodes b2 and electrodes 04. In this embodiment, the spacer 8 is cut out at three locations to form hole-filled gas diffusion restricting portions T.

電極d5は端子10に、電極a1、電極b2、電極C4
は各々スルーホールを介して端子11゜12.13に接
続される。尚、第2図において1点鎖線はスルーホール
の対応を示し、又、2点鎖線は各部の対応を示している
Electrode d5 is connected to terminal 10, electrode a1, electrode b2, electrode C4
are connected to terminals 11, 12, and 13 through through holes, respectively. In FIG. 2, the one-dot chain line indicates the correspondence between through holes, and the two-dot chain line indicates the correspondence between each part.

各部の寸法は、固体電解質板3.6は厚さ0゜5mmx
幅4mmx長さ25mm、電極b2、電極C4、電極d
5は2.4mmx7.2mm、電極a1は2.4mmx
7.8mmであって、一端が固体電解質板3の測定部側
の端と一致している。
The dimensions of each part are: Solid electrolyte plate 3.6 has a thickness of 0°5mm x
Width 4mm x length 25mm, electrode b2, electrode C4, electrode d
5 is 2.4mmx7.2mm, electrode a1 is 2.4mmx
The length is 7.8 mm, and one end coincides with the end of the solid electrolyte plate 3 on the measuring section side.

スペーサ8は厚さ60μmx幅4. m m X長さ2
5mmであって2.4mmx7.7mmの測定ガス室9
を有し、三方向に幅Q、5mmの孔からなるガス拡散制
限部Tを有する。遮蔽体7は厚さ0゜5mmX幅4mm
X長さ25mmである。
Spacer 8 has a thickness of 60 μm and a width of 4. mm x length 2
Measuring gas chamber 9 of 5 mm and 2.4 mm x 7.7 mm
It has a gas diffusion restricting portion T consisting of a hole having a width Q and 5 mm in three directions. The shielding body 7 has a thickness of 0°5mm and a width of 4mm.
X length is 25 mm.

本実施例の各素子の固体電解質板3,6はいずれもY2
03−Zr 02固体電解貿である。各素子の電極1,
2,4.5は白金に10重蛋%のY203−Zr 02
を添加した多孔質体である。遮蔽体7及びスペーサ8は
ジルコニアである。
The solid electrolyte plates 3 and 6 of each element in this example are both Y2
03-Zr 02 solid electrolyte trade. Electrode 1 of each element,
2,4.5 is platinum with 10% heavy protein Y203-Zr 02
It is a porous body with added . The shield 7 and spacer 8 are made of zirconia.

本実施例の使用法の一例について第3図の構成図によっ
て説明する。尚、本図の空燃比センサーSは説明上端子
10.11.12.13を省略し、電極1,2,4.5
に直接回路へのリード線が接続するよう描いである。
An example of how to use this embodiment will be explained with reference to the configuration diagram in FIG. Note that in the air-fuel ratio sensor S in this figure, terminals 10, 11, 12, 13 are omitted for explanation purposes, and electrodes 1, 2, 4, 5
The lead wires are drawn to connect directly to the circuit.

この空燃比センサーSは排気管100に、ネジ部101
.固定部102によって取り付ける。
This air-fuel ratio sensor S is attached to the exhaust pipe 100 at a threaded portion 101.
.. It is attached by the fixing part 102.

第1の索子A及び第2の素子Bの電極1,2゜4.5は
空燃比信号検出回路201に接続される。
Electrodes 1, 2°4.5 of the first cord A and the second element B are connected to an air-fuel ratio signal detection circuit 201.

空燃比信号検出回路201は、第1の素子によって内部
基準酸素源Rに酸素を発生させ、該基準酸素分圧と測定
ガス室9内の酸素ガス分圧比に応じた電極a1、電極b
2間の出力が、所定の一定電圧となるよう、即ちガス拡
散至9内の空燃比が一定となるよう、第2の素子Bに流
れるポンプ電流を双方向に制御し、その電流値を空燃比
信号Vλとして検出する。
The air-fuel ratio signal detection circuit 201 generates oxygen in the internal reference oxygen source R using a first element, and selects electrodes a1 and b according to the reference oxygen partial pressure and the oxygen gas partial pressure ratio in the measurement gas chamber 9.
The pump current flowing through the second element B is bidirectionally controlled so that the output between the elements B becomes a predetermined constant voltage, that is, the air-fuel ratio in the gas diffusion chamber 9 becomes constant. It is detected as a fuel ratio signal Vλ.

この空燃比信号検出回路201は、例えば、第4図に示
す如く、5個の演算増幅器OP1ないしOF2を中心に
構成され、第1の素子Aの出力VSを増幅してから基準
電圧Vcと比較し、その差を電圧によってポンプ電流を
双方向に制御し、このポンプ電流をOF2によって空燃
比信号Vλを出力するものを用いればよい。
For example, as shown in FIG. 4, this air-fuel ratio signal detection circuit 201 is configured around five operational amplifiers OP1 to OF2, and amplifies the output VS of the first element A and then compares it with the reference voltage Vc. However, the pump current may be bidirectionally controlled using the voltage based on the difference, and the pump current may be outputted as the air-fuel ratio signal Vλ by OF2.

又、本実施例の空燃比セン4ノー−は、電極b2と電4
fIC4との電位が同じとなるような回路を用いて、空
燃比を測定することも可能でおり、その場合には仮に電
極す、cが接触しても測定に影響を与えない。そのため
電極す、cを共通の一枚の電極とすることもできる。
In addition, the air-fuel ratio sensor 4 NO in this embodiment is connected to the electrode b2 and the electrode 4.
It is also possible to measure the air-fuel ratio using a circuit that has the same potential as fIC4, and in that case, even if electrodes A and C come into contact, the measurement will not be affected. Therefore, electrodes A and C can be made into a common electrode.

このような空燃比信号検出回路201を使用することに
よって第5図に示す如ぎ、空燃比信号Vλが、λ−1の
点での設定電圧VCを通り、リッチから1ノーンにかけ
て連続的に変化する特性が得られる。尚、この空燃比信
号Vλの特性は第1の素子A及d第2の素子Bと空燃比
信号検出回路201の各接続端子P1ないしP4との接
続方向を変更することによって、破線で示す傾きの特性
とすることができる。
By using such an air-fuel ratio signal detection circuit 201, as shown in FIG. The characteristics that can be obtained are as follows. The characteristics of this air-fuel ratio signal Vλ can be changed to the slope shown by the broken line by changing the connection direction of the first element A and second element B and each connection terminal P1 to P4 of the air-fuel ratio signal detection circuit 201. It can be a characteristic of

[発明の効果] 本発明の空燃比センサーは、第1の素子Aに常に電流を
流すことによって内部基準酸素源に酸素を発生させ、こ
の酸素を基準酸素として用いることにより、第1の素子
の第2の素子と対向しない側の電極aに大気を導入した
時と同じ効果を与えるものである。
[Effects of the Invention] The air-fuel ratio sensor of the present invention generates oxygen in the internal reference oxygen source by constantly passing a current through the first element A, and uses this oxygen as the reference oxygen to increase the temperature of the first element. This provides the same effect as when air is introduced into the electrode a on the side not facing the second element.

本発明の空燃比センサーは大気導入のための開口部が不
用となり、簡単な防水処理で充分な防水対策を行うこと
ができる。
The air-fuel ratio sensor of the present invention does not require an opening for introducing the atmosphere, and can provide sufficient waterproofing with a simple waterproofing treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を説明する部分破断斜視図
、 第2図はその分解斜視図、 第3図はその使用例を説明する構成図、第4図はその使
用例における回路図、 第5図はその使用例の空燃比に対する信号の特性図であ
る。 A・・・第1の素子 B・・・第2の素子 G・・・漏出抵抗部 R・・・内部基準酸素源 T・・・ガス拡散制限部 1.2,4.5−・・電極a、b、c、d3.6・・・
固体電解質板 9・・・測定ガス卒
Fig. 1 is a partially cutaway perspective view illustrating the first embodiment of the present invention, Fig. 2 is an exploded perspective view thereof, Fig. 3 is a configuration diagram illustrating an example of its use, and Fig. 4 is a circuit in the example of its use. FIG. 5 is a characteristic diagram of the signal with respect to the air-fuel ratio in an example of its use. A...First element B...Second element G...Leakage resistance section R...Internal reference oxygen source T...Gas diffusion restriction section 1.2, 4.5-...Electrode a, b, c, d3.6...
Solid electrolyte plate 9...Measurement gas

Claims (1)

【特許請求の範囲】  酸素イオン伝導性固体電解質板の表裏面に一対の多孔
質電極a、bを有する第1の素子と、酸素イオン伝導性
固体電解質板の表裏面に一対の多孔質電極c、dを有す
る第2の素子と、上記第1の素子の電極aと接し、漏出
抵抗部を介して外部に連通する内部基準酸素源と、 上記第1の素子の電極b及び上記第2の素子の電極cの
両者と接し、ガス拡散制限部を介して測定ガス雰囲気と
連通する測定ガス室と からなることを特徴とする空燃比センサー。
[Claims] A first element having a pair of porous electrodes a and b on the front and back surfaces of an oxygen ion conductive solid electrolyte plate, and a pair of porous electrodes c on the front and back surfaces of the oxygen ion conductive solid electrolyte plate. , d; an internal reference oxygen source that is in contact with electrode a of the first element and communicates with the outside via a leakage resistance section; An air-fuel ratio sensor comprising a measurement gas chamber that is in contact with both electrodes c of the element and communicates with a measurement gas atmosphere via a gas diffusion restriction section.
JP60137586A 1985-06-24 1985-06-24 Air-fuel ratio sensor Expired - Lifetime JPH0668482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60137586A JPH0668482B2 (en) 1985-06-24 1985-06-24 Air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60137586A JPH0668482B2 (en) 1985-06-24 1985-06-24 Air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPS61296262A true JPS61296262A (en) 1986-12-27
JPH0668482B2 JPH0668482B2 (en) 1994-08-31

Family

ID=15202175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60137586A Expired - Lifetime JPH0668482B2 (en) 1985-06-24 1985-06-24 Air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JPH0668482B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112918A (en) * 2004-10-14 2006-04-27 Hitachi Ltd Oxygen sensor
JP2010164589A (en) * 2010-04-30 2010-07-29 Hitachi Automotive Systems Ltd Oxygen sensor
JP2011227061A (en) * 2010-03-29 2011-11-10 Ngk Insulators Ltd Gas sensor
JP2014029349A (en) * 2010-03-29 2014-02-13 Ngk Insulators Ltd Gas sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112918A (en) * 2004-10-14 2006-04-27 Hitachi Ltd Oxygen sensor
JP2011227061A (en) * 2010-03-29 2011-11-10 Ngk Insulators Ltd Gas sensor
US8623187B2 (en) 2010-03-29 2014-01-07 Ngk Insulators, Ltd. Gas sensor
JP2014029349A (en) * 2010-03-29 2014-02-13 Ngk Insulators Ltd Gas sensor
JP2014029348A (en) * 2010-03-29 2014-02-13 Ngk Insulators Ltd Gas sensor
JP2014029350A (en) * 2010-03-29 2014-02-13 Ngk Insulators Ltd Gas sensor
US9110012B2 (en) 2010-03-29 2015-08-18 Ngk Insulators, Ltd. Gas sensor
JP2010164589A (en) * 2010-04-30 2010-07-29 Hitachi Automotive Systems Ltd Oxygen sensor

Also Published As

Publication number Publication date
JPH0668482B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
JPS62276453A (en) Air/fuel ratio sensor
US6551497B1 (en) Measuring NOx concentration
US4765880A (en) Air/fuel ratio sensor
US4814059A (en) Electrochemical device having a heater and leak protection electrode
US5236569A (en) Air/fuel ratio sensor having resistor for limiting leak current from pumping cell to sensing cell
JPH07508100A (en) Sensor device for detecting gas components and/or gas concentration of gas mixture
JPH01277751A (en) Measuring device of concentration of nox
EP0869356A2 (en) NOx sensor
US6284112B1 (en) Gas sensor
JP3587290B2 (en) NOx gas sensor
US6312585B1 (en) Method for determining oxidizable constituents in a gaseous mixture
US6346178B1 (en) Simplified wide range air fuel ratio sensor
JP2002139468A (en) Gas sensor
JPS61296262A (en) Air/fuel ratio sensor
JPH11166911A (en) Air-fuel ratio sensor
JPH09297119A (en) Nitrogen oxides detecting device
JPS62148849A (en) Air-fuel ratio sensor
KR20220028947A (en) Mixed potentiometric type nitrogen oxide sensor using bias voltage
JPS62190461A (en) Activation detecting device for air fuel ratio sensor
JP3565520B2 (en) Oxygen concentration sensor
JPS61277049A (en) Air/fuel ratio sensor
US10837940B1 (en) Planar sensor design and pulse discharge technique hardware
US10859526B2 (en) Gas sensor with a pump cell
JP2004093199A (en) Gas sensor element
JPS62179655A (en) Method and apparatus for detecting air/fuel ratio

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term