JPS6129601A - Fluidized-bed combustion apparatus - Google Patents

Fluidized-bed combustion apparatus

Info

Publication number
JPS6129601A
JPS6129601A JP14935084A JP14935084A JPS6129601A JP S6129601 A JPS6129601 A JP S6129601A JP 14935084 A JP14935084 A JP 14935084A JP 14935084 A JP14935084 A JP 14935084A JP S6129601 A JPS6129601 A JP S6129601A
Authority
JP
Japan
Prior art keywords
fluidized bed
fluidized
operating
coal
limestone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14935084A
Other languages
Japanese (ja)
Inventor
武生 野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP14935084A priority Critical patent/JPS6129601A/en
Publication of JPS6129601A publication Critical patent/JPS6129601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は流動層燃焼装置に係り、特に、伝熱管の腐蝕
および摩耗を防止することができる流動層燃焼ボイラに
関するもの(アル。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fluidized bed combustion apparatus, and particularly to a fluidized bed combustion boiler that can prevent corrosion and wear of heat exchanger tubes (Al.

〔発明め背景〕[Background of the invention]

流動層燃焼ボイラは、熱容量が大きいために、石炭鉱山
のぼた山に野積みされている低品位炭を燃焼して、燃料
として有効に利用することができる特徴をもっている。
Fluidized bed combustion boilers have a large heat capacity, so they can burn low-grade coal piled up in the heaps of coal mines and use it effectively as fuel.

流動層燃焼ボイラの流動層内に配設した伝熱管の伝熱量
(熱伝達率)は、従来形のボイラにおける燃料の燃焼カ
ス流のみから伝達される伝熱量に比べて大きく、5〜1
0倍程度程度るので、燃料を有効に利用できる流動層燃
焼ボイラは、省エネルギー化の進む近年脚光を浴びてい
る。
The amount of heat transfer (heat transfer coefficient) of the heat transfer tubes arranged in the fluidized bed of a fluidized bed combustion boiler is larger than the amount of heat transferred only from the combustion residue flow of fuel in a conventional boiler, and is 5 to 1
Fluidized bed combustion boilers, which can effectively utilize fuel, have been in the spotlight in recent years as energy saving progresses.

流動層燃焼ボイラは、流動層内において、1〜10rr
V′′の粒径の石炭を800〜900°Cの比較的低温
度域で燃焼させるものである。そして、流動媒体として
、燃料となる石炭と脱硫作用をする石灰石とメー用いて
いるので、流動層内において石炭の燃焼ガスの脱硫が容
易に行われると七もに、石炭の燃焼が800〜900℃
程度の比較的低温度域での燃焼であるため、窒素酸化物
の発生量が従来の微粉炭燃焼ボイラに比べて少ない。
The fluidized bed combustion boiler has a combustion rate of 1 to 10 rr in the fluidized bed.
Coal having a particle size of V'' is burned at a relatively low temperature range of 800 to 900°C. Since coal as a fuel and limestone as a desulfurizing agent are used as fluidized media, desulfurization of coal combustion gas is easily carried out in the fluidized bed, and the coal combustion rate is 800 to 900%. ℃
Because the combustion occurs in a relatively low temperature range, the amount of nitrogen oxides generated is lower than that of conventional pulverized coal combustion boilers.

第3図は従来の流動層燃焼装置の概略を示す図である。FIG. 3 is a diagram schematically showing a conventional fluidized bed combustion apparatus.

第3図において、流動層燃焼ボイラ1は、空気分散板2
によって流動層3と空気室4とに仕切られ、石炭、石灰
石、燃焼灰等が混合している流動層3内に伝熱管5が配
設されている。石炭および石灰石は、燃料供給管6によ
って搬送用空気とともに、流動層燃焼ボイラ1の底部か
ら流動層3内に供給される。燃焼用空気は、空気供給管
7によって空気室4に供給され、空気分散板2の空気供
給ノズル22を通って流動層3に供給される。
In FIG. 3, a fluidized bed combustion boiler 1 includes an air distribution plate 2
The fluidized bed 3 is partitioned into a fluidized bed 3 and an air chamber 4 by a heat exchanger tube 5, and a heat transfer tube 5 is disposed within the fluidized bed 3 in which coal, limestone, combustion ash, etc. are mixed. Coal and limestone are supplied from the bottom of the fluidized bed combustion boiler 1 into the fluidized bed 3 along with conveying air by a fuel supply pipe 6 . Combustion air is supplied to the air chamber 4 by an air supply pipe 7 and is supplied to the fluidized bed 3 through an air supply nozzle 22 of the air distribution plate 2 .

燃料供給管6によって流動層3に供給される1〜10胴
の粒径の石炭は、流動層3内における燃焼によって粒径
が徐々に小さくなり、ある粒径以下になると流動層3内
に留まることができず、石炭の燃焼排ガスとともに、流
動層3の上方の空間m5すなわちフリーボード部8に排
出される。石炭の燃焼排ガスとともに流動層3からフリ
ーホード部8に排出される粒径の小さな石炭は、揮発分
力(少なく炭素分が多(て燃焼しにくいので、一部の石
炭はフリーボード部8において燃焼するが完全(こは燃
焼せず、通常10係程度の未燃石炭が排ガス出口管9か
ら排出される。
Coal having a grain size of 1 to 10 grains is supplied to the fluidized bed 3 through the fuel supply pipe 6, and its grain size gradually decreases through combustion within the fluidized bed 3, and remains within the fluidized bed 3 when it reaches a certain grain size or less. Therefore, it is discharged into the space m5 above the fluidized bed 3, that is, into the freeboard section 8 together with the coal combustion exhaust gas. Coal with a small particle size discharged from the fluidized bed 3 to the freehold section 8 together with coal combustion exhaust gas is difficult to burn due to its low volatile content (low volatile content) and high carbon content. Although it burns completely, it does not burn completely, and usually about 10 units of unburned coal is discharged from the exhaust gas outlet pipe 9.

排ガス出口管9から排出される石灰石および未燃石炭な
どは、灰捕集装置10によって捕集さ第1、捕集灰出口
管11を経て混合ホ・ンノク12に供給される。
Limestone, unburned coal, etc. discharged from the exhaust gas outlet pipe 9 are collected by an ash collector 10 and supplied to a mixing hole 12 via a first collected ash outlet pipe 11.

混合ホッパ12には、石炭が石炭貯蔵ホッパ13から石
炭供給管14を経て、また、石灰石が石灰石貯蔵ホッパ
15から石灰石供給管16を経て、夫々供給されている
。そして、灰捕集装置10によって捕集された石灰石や
未燃石炭は、上記の石炭および石灰石と共に燃料供給管
6を経て流動層燃焼ボイラ1内に戻される。灰捕集装置
10によって石灰石および未燃石炭等が捕集されて清浄
になった燃焼排ガスは、排ガス出口管17から大気に放
出される。
Coal is supplied to the mixing hopper 12 from a coal storage hopper 13 through a coal supply pipe 14, and limestone is supplied from a limestone storage hopper 15 through a limestone supply pipe 16, respectively. The limestone and unburned coal collected by the ash collecting device 10 are returned to the fluidized bed combustion boiler 1 through the fuel supply pipe 6 together with the above-mentioned coal and limestone. The combustion exhaust gas, which is purified by collecting limestone, unburned coal, etc., by the ash collector 10, is discharged into the atmosphere from the exhaust gas outlet pipe 17.

第4図は、モデル試験装置の流動層内における各種材質
の伝熱管の摩耗試験後の外径減少量と、空気分散板から
の高さとの関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of reduction in the outer diameter of heat transfer tubes made of various materials after an abrasion test in the fluidized bed of the model test device and the height from the air distribution plate.

既に説明した第3図における燃料供給管6から搬送用空
気によって石炭および石灰石が供給されず、そして、空
気供給管7から燃焼用空気が供給されないときの流動層
すなわち静止流動層の上面18は、空気分散板2から高
さH2の位置にある。また、燃料供給管6から搬送用空
気によって石炭および宕灰石が供給されており、そして
、空気供給管7から燃焼用空気が供給されているときの
流動層すなわち運転流動層は体積が増加するので、運転
流動層の上面19は静止流動層の上面18よりも高さH
The upper surface 18 of the fluidized bed, that is, the stationary fluidized bed when coal and limestone are not supplied by conveying air from the fuel supply pipe 6 in FIG. 3 already explained, and when combustion air is not supplied from the air supply pipe 7, It is located at a height H2 from the air distribution plate 2. Further, when coal and mauvestone are supplied by conveying air from the fuel supply pipe 6 and combustion air is supplied from the air supply pipe 7, the volume of the fluidized bed, that is, the operating fluidized bed increases. Therefore, the top surface 19 of the operating fluidized bed is higher than the top surface 18 of the stationary fluidized bed by a height H.
.

だけ高い位置にある。運転流動層の上面19と静止流動
層の上面18との間の厚さH,の層はスプラッシュゾー
ン20と、また、空気分散板2と静止流動層の上面18
との間の厚さH2の層はバブルゾーン21と、夫々呼ば
れている。STB、 SUS等の各種材質の伝熱管の外
径減少量の説明は、後述の第5図および第6図の説明と
ともに行う。
only in a high position. A layer of thickness H, between the top surface 19 of the operating fluidized bed and the top surface 18 of the static fluidized bed forms a splash zone 20 and also the air distribution plate 2 and the top surface 18 of the static fluidized bed.
A layer having a thickness of H2 between the two is called a bubble zone 21, respectively. The amount of reduction in the outer diameter of heat transfer tubes made of various materials such as STB and SUS will be explained together with the explanation of FIGS. 5 and 6, which will be described later.

第5図は流動層内の石炭、石灰石、空気等の状況を示す
図、第6図は流動層内の流動媒体すなわち石炭および石
灰石のかさ密度および流動速度と空気分散板からの高訴
との関係を示す図である。
Figure 5 is a diagram showing the conditions of coal, limestone, air, etc. in the fluidized bed, and Figure 6 is a diagram showing the bulk density and flow velocity of the fluidized medium, that is, coal and limestone, in the fluidized bed and the high complaints from the air dispersion plate. It is a figure showing a relationship.

第5図および第6図において、空気分散板2の空気供給
ノズル22から供給される燃焼用空気と、図示しない燃
料供給管6によって供給される石炭および石灰石を搬送
する搬送用空気とは、石炭に燃焼用酸素を供給しつつ、
石炭、石灰石、燃焼灰等を押し上げながら気泡23とな
って、バブルゾーン21内を上昇する。気泡23は、バ
ブルゾーン21内を上昇しながら合体、成長し、スプラ
ッシュゾーン20内において瞬時に爆発的に膨張する。
In FIG. 5 and FIG. 6, the combustion air supplied from the air supply nozzle 22 of the air distribution plate 2 and the conveying air for conveying coal and limestone supplied by the fuel supply pipe 6 (not shown) are while supplying combustion oxygen to
It becomes bubbles 23 while pushing up coal, limestone, combustion ash, etc., and rises in the bubble zone 21. The bubbles 23 coalesce and grow while rising within the bubble zone 21, and instantly expand explosively within the splash zone 20.

したがって、バブルゾーン21内の流動媒体すなわち石
炭および石灰石のかさ密度は、点線25′で示すように
一定であるが、スプラッシュゾーン20内の流動媒体す
なわち石炭および石灰石のかさ密度は、点線25で示す
ように静止流動層の上面18から運転流動層の上面19
に向って低下する。また、バブルゾーン21内の流動媒
体すなわち石炭および石灰石の流動速度は、実線24′
で示すように低くて一定であるが、スプラッシュゾーン
20内の流動媒体すなわち石炭および石灰石の流動速度
は、実線24で示すように静止流動層の上面18から運
転流動層の上面19に向って急激に上昇する。
Therefore, the bulk density of the flowing medium, i.e. coal and limestone, in the bubble zone 21 is constant, as indicated by the dotted line 25', whereas the bulk density of the flowing medium, i.e. coal and limestone, in the splash zone 20, is indicated by the dotted line 25'. from the top surface 18 of the stationary fluidized bed to the top surface 19 of the operating fluidized bed.
decreases towards Further, the flow velocity of the fluid medium, that is, coal and limestone in the bubble zone 21 is represented by the solid line 24'
Although the flow rate of the fluidized media, namely coal and limestone, in the splash zone 20 is low and constant as shown by , the flow velocity of the fluidized media, namely coal and limestone, in the splash zone 20 suddenly increases from the top surface 18 of the stationary fluidized bed to the top surface 19 of the operating fluidized bed, as shown by the solid line 24. rise to

バブルゾーン21内の流動媒体すなわち石炭および石灰
石の実線24′で示す流動速度と、スプラッシュゾーン
20内の流動媒体すなわち石炭および石灰石の実線24
で示す流動速度との相違によって、バブルゾーン21内
の図示しない伝熱管の摩耗による外径減少量と、スプラ
ッシュゾーン20内の図示−しない伝熱管の摩耗による
外径減少量とが相違して(る。すなわち、第4図におい
て、スプラッシュゾーン20内では、流動媒体すなわち
石炭お崖び石灰石の流動速度は第6図の実線24で示す
ように急激に上昇するので、STB、SUS等の耐蝕性
を有する材質の伝熱管であっても摩耗による外径減少量
は多いが、バブルゾーン21内では、流動媒体すなわち
石炭および石灰石の流動速度は第6図の実線24′で示
すように低いので、STB、SUS等の耐蝕性を有する
伝熱管の摩耗による外径減少量は少ない。
The flow velocity shown by the solid line 24' for the fluidized media, coal and limestone, in the bubble zone 21 and the solid line 24 for the fluidized media, coal and limestone in the splash zone 20.
Due to the difference from the flow velocity shown in ( In other words, in the splash zone 20 in FIG. 4, the flow rate of the fluid medium, that is, coal, limestone, etc., increases rapidly as shown by the solid line 24 in FIG. Even if the heat exchanger tube is made of a material with The amount of decrease in outer diameter due to wear of corrosion-resistant heat transfer tubes such as STB and SUS is small.

また、空気分散板2の空気供給ノズル22から供給され
る燃焼用空気中の酸素は、流動層3内での石炭の燃焼に
よって徐々に消費されるため、流動層3内の高さ方向の
酸素濃度は、流動層3の底部ちなわち空気分散板2の近
傍では高く、流動層3の頂部すなわちスプラッシュゾー
ン20では低い。
In addition, since the oxygen in the combustion air supplied from the air supply nozzle 22 of the air distribution plate 2 is gradually consumed by the combustion of coal within the fluidized bed 3, the oxygen in the height direction within the fluidized bed 3 is The concentration is high at the bottom of the fluidized bed 3, ie near the air distribution plate 2, and low at the top of the fluidized bed 3, ie the splash zone 20.

したがって、スプラッシュゾーン20内に伝熱管を配設
した場合、伝熱管は、流動速度の速い高温の流動媒体す
なわち石炭および石灰石と接触するととによって摩耗す
るとともに、流動層3内全体が石炭中の硫黄分によって
還元雰囲気であることと、特に、スプラッシュゾーン2
0内は酸素濃度が低いことによって還元雰囲気であるこ
ととか加わって、摩耗が加速されるので従来から問題と
なっていた。
Therefore, when a heat exchanger tube is disposed in the splash zone 20, the heat exchanger tube is worn out when it comes into contact with a high-temperature fluid medium having a high flow rate, that is, coal and limestone, and the entire inside of the fluidized bed 3 is covered with sulfur contained in the coal. Particularly in the splash zone 2, which is a reducing atmosphere by the minute.
This has been a problem in the past since wear is accelerated in the 0 zone due to the low oxygen concentration, which creates a reducing atmosphere.

〔発明の目的〕[Purpose of the invention]

この発明は、上記の問題を解決するためになされたもの
で、流動層燃焼ボイラの流動層のスプラッシュゾーンに
おける伝熱管の摩耗を無くすことのできる流動層燃焼装
置を提供することを目的とするものである。
This invention was made in order to solve the above-mentioned problem, and an object thereof is to provide a fluidized bed combustion apparatus that can eliminate wear of heat transfer tubes in the splash zone of the fluidized bed of a fluidized bed combustion boiler. It is.

〔発明の概要〕[Summary of the invention]

この発明は、流動層燃焼ボイラの流動層のスプラソンユ
ゾーン内以外の部分、すなわち、バブルゾーン内および
流動層の上部のフリーボード部内に伝熱管を配設する。
According to the present invention, heat transfer tubes are disposed in a portion of the fluidized bed of a fluidized bed combustion boiler other than the spratly zone, that is, in the bubble zone and in the freeboard portion above the fluidized bed.

そして、流動層底部とフリーボード部とに圧力計を設け
て、これら2個の圧力計の圧力の差圧に曖よってスプラ
ッンユゾーンの位置を検出し、流動層底部から流動媒体
!なわち石炭および石灰石を抽出したり、あるいは、流
動一層上部から流動媒体すなわち石炭および石灰石を補
給したりして、スプラッシュゾーンの位置を制御するこ
とにより、スプラッシュゾーンが上昇あるいは下降′し
てバブルゾーン内およびフリーホード部内に配設した伝
熱管に到達しないようにすることを特徴とするものであ
る。
Then, pressure gauges are installed at the bottom of the fluidized bed and the freeboard section, and the position of the spatter zone is detected based on the difference in pressure between these two pressure gauges, and the fluidized medium is removed from the bottom of the fluidized bed. By controlling the position of the splash zone by extracting coal and limestone or by replenishing the fluidized medium, i.e. coal and limestone, from the top of the fluidized layer, the splash zone can be raised or lowered to create a bubble zone. It is characterized by preventing the heat transfer tubes from reaching the heat exchanger tubes disposed inside the inner and freehold parts.

〔発明の実施例〕[Embodiments of the invention]

この発明に係る実施例を図に基づいて説明する。 Embodiments of the invention will be described based on the drawings.

第1図はこの発明の流動層燃焼ボイラの概略構造を示す
図、第2図はこの発明の流動層燃焼ボイラの流動層の底
部とフリーボード部との差圧と、流動層の上面の高さと
の関係を示す図である。
Figure 1 shows the schematic structure of the fluidized bed combustion boiler of the present invention, and Figure 2 shows the differential pressure between the bottom of the fluidized bed and the freeboard section of the fluidized bed combustion boiler of the present invention, and the height of the top surface of the fluidized bed. FIG.

第1図番こおいて、伝熱管群29aが流動層燃焼ボイラ
1のフリーボード部8内に、また、伝熱管群29bが流
動層燃焼ボイラ1の流動層3のバブルゾーン21内に、
夫々配設されており、スプラッシュ流動層3内において
スプラッシュゾーンioが空気分散板2の上方のどの位
置にくるかによって決定される。スプラッシュゾーン2
0の位置は、流動層燃焼ボイラ1を設計する際、燃料供
給管6によって石炭と石灰石とを搬送する搬送用空気お
よび空気供給管7から供給される燃焼用空気等の供給空
気量から決定することができる。(Ref ; S、 
P。
In Figure 1, the heat transfer tube group 29a is placed in the freeboard section 8 of the fluidized bed combustion boiler 1, and the heat transfer tube group 29b is placed in the bubble zone 21 of the fluidized bed 3 of the fluidized bed combustion boiler 1.
The splash zone io is determined by the position above the air distribution plate 2 in the splash fluidized bed 3. splash zone 2
The position of 0 is determined when designing the fluidized bed combustion boiler 1 based on the amount of air to be supplied such as the conveying air for conveying coal and limestone through the fuel supply pipe 6 and the combustion air supplied from the air supply pipe 7. be able to. (Ref; S,
P.

Babu他2. AIChE’SYMPO3IUM 5
ERIESNo、 176、’74.176〜186.
1978 )スプラッシュゾーン20の厚さH,は、通
常、バブルゾーン21の厚さH2の0.2倍以上の厚さ
であるので、伝熱管群29aと伝熱管群29bとの間隔
Hもバブルゾーン21の厚さH2の02倍以上の間隔ニ
しである。既に説明した第4図において、スプラッシュ
ゾーン20の厚さHlはバブルゾーン21の厚すH2の
0.3倍の厚さであり、スプラッシュゾーン20の頂部
すなわち運転流動層の上面19の近傍では、伝熱管の外
径減少量が急激に減少している。
Babu et al. 2. AIChE'SYMPO3IUM 5
ERIES No. 176, '74.176-186.
1978) Since the thickness H of the splash zone 20 is usually 0.2 times or more the thickness H2 of the bubble zone 21, the distance H between the heat exchanger tube group 29a and the heat exchanger tube group 29b is also equal to the bubble zone. The distance is 02 times or more the thickness H2 of 21. In FIG. 4 already explained, the thickness Hl of the splash zone 20 is 0.3 times the thickness H2 of the bubble zone 21, and at the top of the splash zone 20, that is, near the upper surface 19 of the operating fluidized bed, The amount of reduction in the outer diameter of the heat exchanger tube is rapidly decreasing.

空気分散板2の近傍には、流動層燃焼ボイラlの運転中
にスプラッシュゾーン20の位置を下降させるために、
流動媒体すなわち石炭および石灰石を抽出する流動媒体
抽出管26が配設されている。
In the vicinity of the air distribution plate 2, in order to lower the position of the splash zone 20 during operation of the fluidized bed combustion boiler l,
A fluidized media extraction tube 26 is provided for extracting fluidized media, namely coal and limestone.

また、流動層燃焼ボイラ1の運転中にスプラッシュゾー
ン20の位置を上イ昇させるために、フリーボード部8
から流動媒体すなわち石炭および石灰石を補給する流動
媒体貯蔵ホ・ツバ28が配設されている。
In addition, in order to raise the position of the splash zone 20 during operation of the fluidized bed combustion boiler 1, the freeboard section 8
A fluidized media storage tank 28 is provided for replenishing fluidized media, namely coal and limestone.

スプラッシュマ゛−ン20の位置すなわち運転流動層の
上面19の高さを検出するために、圧力計302がフリ
ーボード部8に、また、圧力計30bが空気分散板2の
直上部に、夫々設けられており、圧力計30aの指示圧
力と圧力計30bの指示圧力との差圧ΔP1〜ΔP3を
用いて、第2図に示す関係によって、運転流動層の上面
19の高さり、−h3を算出する流動層上面高演算装置
31が設けられている。
In order to detect the position of the splash man 20, that is, the height of the upper surface 19 of the operating fluidized bed, a pressure gauge 302 is installed in the freeboard section 8, and a pressure gauge 30b is installed directly above the air distribution plate 2, respectively. The height of the upper surface 19 of the operating fluidized bed, -h3, is determined by the relationship shown in FIG. A fluidized bed top surface height calculation device 31 is provided to calculate the fluidized bed top surface height.

流動層上面高演算装置31によって算出される運転流動
層の上面19の高さは、予め定められた高さになるよう
に流動層上面高制御装置32によって制御される。すな
わち、流動層上面高演算装置31によって算出される運
転流動層の上面19の高さが予め定められた高さより低
い場合、流動層上面高制御装置32によって、燃料供給
管6あるいは流動媒体貯蔵ホッパ28から流動媒体すな
わち石炭および石灰石が供給され、運転流動層の上面1
9の高さは予め定められた高さまで上昇する。逆に、運
転流動層の上面19の高さが予め定められた高さより高
い場合、流動層上面高制御装置32によって、流動媒体
抽出管26から流動媒体すなわち石炭および石灰石が抽
出され、あるいは、燃料供給管6によっ゛   て供給
される石炭および石灰石の供給量が減少させられ、また
は、空気供給管7によって供給される燃焼用空気の供給
量が減少させられて、運転流動層の上面19の高さは予
め定められた高さまで下降する。
The height of the top surface 19 of the operating fluidized bed calculated by the fluidized bed top surface height calculation device 31 is controlled by the fluidized bed top surface height control device 32 so that it becomes a predetermined height. That is, when the height of the top surface 19 of the operating fluidized bed calculated by the fluidized bed top surface height calculation device 31 is lower than a predetermined height, the fluidized bed top surface height control device 32 controls the fuel supply pipe 6 or the fluidized medium storage hopper. From 28 fluidized media, i.e. coal and limestone, are supplied from the upper surface 1 of the working fluidized bed.
The height of 9 rises to a predetermined height. Conversely, when the height of the top surface 19 of the operating fluidized bed is higher than the predetermined height, the fluidized bed top height control device 32 extracts the fluidized medium, ie, coal and limestone, from the fluidized medium extraction pipe 26, or extracts the fuel The supply of coal and limestone supplied by the supply pipe 6 is reduced, or the supply of combustion air supplied by the air supply pipe 7 is reduced, so that the upper surface 19 of the operating fluidized bed is reduced. The height is lowered to a predetermined height.

流動層上面高制御装置32によって運転流動層の上面1
9の高さを予め定められた高さに制御する場合、流動層
上面高制御装置32と流動媒体抽出弁27a、流動媒体
補給弁27b、燃料供給弁27C1燃焼用空気供給弁2
7dとを連結して自動的に制御することができるが、流
動層上面高制御装置32から警報を出して流動媒体抽出
弁27a、流動媒体補給弁27b、燃料供給弁27C1
燃焼用空気供給弁27dを手−動で制御することもでき
る。
The upper surface 1 of the fluidized bed is operated by the fluidized bed upper surface height controller 32.
9 to a predetermined height, the fluidized bed top surface height control device 32, the fluidized medium extraction valve 27a, the fluidized medium replenishment valve 27b, the fuel supply valve 27C1, the combustion air supply valve 2
7d and can be automatically controlled by issuing an alarm from the fluidized bed top surface height control device 32 to control the fluidic medium extraction valve 27a, fluidic medium replenishment valve 27b, and fuel supply valve 27C1.
The combustion air supply valve 27d can also be controlled manually.

なお、伝熱管群29aが流動層燃焼ボイラ1のフリーボ
ード部8(ζ、また、伝熱管群29bが流動層燃焼ボイ
ラlの流動層3のバブルゾーン21内に、夫々設けられ
ていると説明したが、流動層燃焼ボイラlの負荷の容量
によっては、伝熱管群29aをフリーボード部8に設け
るだけにするか、または、伝熱管群29bをバブルゾー
ン21内に設けるだけにするか、何れでもよい。
Note that the heat transfer tube group 29a is provided in the freeboard section 8 (ζ) of the fluidized bed combustion boiler 1, and the heat transfer tube group 29b is provided in the bubble zone 21 of the fluidized bed 3 of the fluidized bed combustion boiler l. However, depending on the load capacity of the fluidized bed combustion boiler l, the heat transfer tube group 29a may be provided only in the freeboard section 8, or the heat transfer tube group 29b may be provided only within the bubble zone 21. But that's fine.

さらに、伝熱管群29aおよび伝熱管29bの伝熱管の
配列は、縦型、横型、傾斜型の何れであっても、流動層
3内の流動媒体すなわち石炭および石灰石による摩耗は
同等である。
Further, regardless of whether the heat exchanger tubes of the heat exchanger tube group 29a and the heat exchanger tubes 29b are arranged vertically, horizontally, or inclined, wear caused by the fluidized medium in the fluidized bed 3, that is, coal and limestone, is the same.

また、運転流動層の上面19の高さを検出するために、
フリーホード部8と空気分散板2の直上部との2個所に
圧力計を設けると説明したが、圧力計を3個所以上に設
ければ、運転流動層の上面19の高さの検出精度はさら
に向上する。
Moreover, in order to detect the height of the upper surface 19 of the operating fluidized bed,
Although it has been explained that pressure gauges are provided at two locations, the freehold section 8 and directly above the air distribution plate 2, if pressure gauges are provided at three or more locations, the detection accuracy of the height of the upper surface 19 of the operating fluidized bed will be improved. Further improvement.

5発明の効果〕 この発明は、以上説明したように、スプラッンュゾーン
内以外の部分、すなわち、バブルゾーン内およびフリー
ボード部内に伝熱管を配設している。そして、スプラッ
ンユゾーンが上昇または下降して伝熱管に到達しないよ
うにスプラッシュゾーンの位置を制御している。したが
って、伝熱管が、スプラッシュゾーン内の流動速度の速
い高温の流動媒体すなわち石炭および石灰石と接触しな
いので、摩耗しない効果がある。また、スプラッンユゾ
ーンの還元雰囲気によって摩耗が加速されない効果があ
る。
5. Effects of the Invention] As explained above, in the present invention, heat transfer tubes are disposed in a portion other than the splatter zone, that is, the bubble zone and the freeboard portion. The position of the splash zone is controlled so that the splash zone does not rise or fall and reach the heat transfer tubes. Therefore, the heat exchanger tubes do not come into contact with the high-temperature fluidized medium with a high flow rate in the splash zone, ie, coal and limestone, so there is an effect of preventing wear. In addition, there is an effect that wear is not accelerated by the reducing atmosphere in the splash zone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の流動層燃焼ボイラの概略構造を示す
図、第2図はこの発明の流動層燃焼ボイラの流動層の底
部とフリーボード部との差圧と、流動層の上面の高さと
の関係を示す図、第3図は従来の流動層燃焼装置の概略
を示す図、第4図は、モデル試験装置の流動層内におけ
る各種材質の伝熱管の摩耗試験後の外径減少量と、空気
分散板がらの高さとの関係を示す図、第5図は流動層内
の石炭、石灰石、空気等の状況を示す図、第6図は流動
層内の流動媒体すなわち石炭および石灰石のかさ密度お
よび流動速度と空気分散板からの高さとの関係を示す図
である。 1・・流動層燃焼ボイラ 2・・・空気分散板3・・・
流動層      4・・・空気室5・・・伝熱管  
   6・・燃料供給管7・・・空気供給管   8・
・・フリーボード部9・・・排ガス出口管  10・・
・灰捕集装置11・・捕集灰出口管  12・・・混合
ホッパ13・・石炭貯蔵ホッパ 14・・・石炭供給管
15・・・石灰石貯蔵ホッパ16・・・石灰石供給管1
7・・排カス出口管  ]8・・静止流動層上面19・
・運転流動層上面 20・・・スプラッンユゾーン 21・・バブルゾーン  22・・・空気供給ノズル2
3・・気泡      24・・・流動速度25・・・
かさ密度    26・・・抽出管27a 〜27d 
−・弁 28・・流動媒体貯蔵ホッパ
Figure 1 shows the schematic structure of the fluidized bed combustion boiler of the present invention, and Figure 2 shows the differential pressure between the bottom of the fluidized bed and the freeboard section of the fluidized bed combustion boiler of the present invention, and the height of the top surface of the fluidized bed. Figure 3 is a diagram showing the outline of a conventional fluidized bed combustion apparatus, Figure 4 is a diagram showing the amount of outer diameter reduction after wear tests of heat transfer tubes made of various materials in the fluidized bed of a model test equipment. Figure 5 is a diagram showing the relationship between the height of the air distribution plate and the height of the air distribution plate, Figure 5 is a diagram showing the situation of coal, limestone, air, etc. in the fluidized bed, and Figure 6 is a diagram showing the relationship between the fluidized medium in the fluidized bed, that is, coal and limestone. FIG. 3 is a diagram showing the relationship between the density and flow velocity and the height from the air distribution plate. 1...Fluidized bed combustion boiler 2...Air distribution plate 3...
Fluidized bed 4...Air chamber 5...Heat transfer tube
6.Fuel supply pipe 7.Air supply pipe 8.
...Freeboard part 9...Exhaust gas outlet pipe 10...
-Ash collection device 11...Collected ash outlet pipe 12...Mixing hopper 13...Coal storage hopper 14...Coal supply pipe 15...Limestone storage hopper 16...Limestone supply pipe 1
7. Exhaust waste outlet pipe] 8. Stationary fluidized bed top surface 19.
・Operating fluidized bed upper surface 20... Splash zone 21... Bubble zone 22... Air supply nozzle 2
3... Air bubbles 24... Flow rate 25...
Bulk density 26...Extraction tubes 27a to 27d
-・Valve 28・・Fluid medium storage hopper

Claims (4)

【特許請求の範囲】[Claims] (1)流動層内に配設した伝熱管内の流体に、前記流動
層内の燃料の燃焼熱量を伝達する流動層燃焼装置におい
て、前記流動層内の燃料を燃焼していないときの静止流
動層内と、前記流動層内の燃料を燃焼しているときの運
転流動層の上部の空間部分とに、夫々前記伝熱管を配設
することを特徴とする流動層燃焼装置。
(1) In a fluidized bed combustion apparatus that transfers the amount of combustion heat of fuel in the fluidized bed to a fluid in a heat transfer tube arranged in the fluidized bed, static flow occurs when the fuel in the fluidized bed is not being combusted. A fluidized bed combustion apparatus characterized in that the heat transfer tubes are disposed within the bed and in a space above the operating fluidized bed when fuel in the fluidized bed is being combusted.
(2)前記静止流動層内に配設する前記伝熱管と、前記
運転流動層の上部の空間部分に配設する前記伝熱管との
間の距離は、前記静止流動層の鉛直方向の厚さの0.2
倍以上の距離であることを特徴とする特許請求の範囲第
1項記載の流動層燃焼装置。
(2) The distance between the heat transfer tubes disposed in the stationary fluidized bed and the heat transfer tubes disposed in the upper space of the operating fluidized bed is equal to the vertical thickness of the stationary fluidized bed. 0.2 of
The fluidized bed combustion apparatus according to claim 1, wherein the distance is at least twice as long.
(3)少くとも前記運転流動層の底部と前記運転流動層
の上部の前記空間部分との2個所に圧力計を設け、前記
2個所に設けた前記圧力計の指示圧力の差圧によって、
前記運転流動層の上面の高さを検出することを特徴とす
る特許請求の範囲第1項記載の流動層燃焼装置。
(3) Pressure gauges are provided at least at two locations, the bottom of the operating fluidized bed and the space above the operating fluidized bed, and the pressure difference between the indicated pressures of the pressure gauges provided at the two locations is used to
The fluidized bed combustion apparatus according to claim 1, wherein the height of the upper surface of the operating fluidized bed is detected.
(4)前記運転流動層の前記底部から前記運転流動層内
の流動媒体を抽出する流動媒体抽出管と、前記運転流動
層の上部の前記空間部分から前記運転流動層の流動媒体
を補給する流動媒体貯蔵ホッパとを設け、前記運転流動
層の上面の高さが予め定められた高さになるように、前
記運転流動層の上面の上昇および下降を制御することを
特徴とする特許請求の範囲第1項記載の流動層燃焼装置
(4) A fluidized medium extraction pipe that extracts the fluidized medium in the operating fluidized bed from the bottom of the operating fluidized bed, and a fluidized medium that replenishes the fluidized medium of the operating fluidized bed from the space above the operating fluidized bed. A medium storage hopper is provided, and the raising and lowering of the upper surface of the operating fluidized bed is controlled so that the height of the upper surface of the operating fluidized bed becomes a predetermined height. The fluidized bed combustion apparatus according to item 1.
JP14935084A 1984-07-20 1984-07-20 Fluidized-bed combustion apparatus Pending JPS6129601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14935084A JPS6129601A (en) 1984-07-20 1984-07-20 Fluidized-bed combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14935084A JPS6129601A (en) 1984-07-20 1984-07-20 Fluidized-bed combustion apparatus

Publications (1)

Publication Number Publication Date
JPS6129601A true JPS6129601A (en) 1986-02-10

Family

ID=15473199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14935084A Pending JPS6129601A (en) 1984-07-20 1984-07-20 Fluidized-bed combustion apparatus

Country Status (1)

Country Link
JP (1) JPS6129601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173011A (en) * 1985-01-28 1986-08-04 Babcock Hitachi Kk Fluidized bed combustion equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512336A (en) * 1978-07-10 1980-01-28 Mitsubishi Heavy Ind Ltd Fluid bed boiler
JPS57192713A (en) * 1981-04-09 1982-11-26 Foster Wheeler Corp Fluid bed type heat exchanger with controller for responding change of quantity required
JPS5824710A (en) * 1981-08-05 1983-02-14 Kawasaki Heavy Ind Ltd Height control of static bed of fluidized medium in boiler of fluidized-bed combustion type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512336A (en) * 1978-07-10 1980-01-28 Mitsubishi Heavy Ind Ltd Fluid bed boiler
JPS57192713A (en) * 1981-04-09 1982-11-26 Foster Wheeler Corp Fluid bed type heat exchanger with controller for responding change of quantity required
JPS5824710A (en) * 1981-08-05 1983-02-14 Kawasaki Heavy Ind Ltd Height control of static bed of fluidized medium in boiler of fluidized-bed combustion type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173011A (en) * 1985-01-28 1986-08-04 Babcock Hitachi Kk Fluidized bed combustion equipment
JPH0522806B2 (en) * 1985-01-28 1993-03-30 Babcock Hitachi Kk

Similar Documents

Publication Publication Date Title
CN1040329A (en) Fast fluidized bed reactor
US4934282A (en) Circulating type fluidized bed combustion apparatus
JPS6129601A (en) Fluidized-bed combustion apparatus
EP0028458A2 (en) Fluidised-bed boilers
JP2001263634A (en) Method for operating circulation fluidized incinerator, and separate particle size control device for fluid medium used for the same
JPS60133206A (en) Operating method of fluidized bed furnace
CN1009305B (en) Method of controlling fluidized bed boiler
JPH0518501A (en) Pressurized fluidized bed burning apparatus and operation thereof
JP2901752B2 (en) Fluidized bed combustion device
JPH0419293Y2 (en)
JP3085836B2 (en) Air injector for fluidization
CN215765056U (en) Inclined air distribution plate device of circulating fluidized bed
JPS62252808A (en) Fluidized bed combustion device
JPH029203Y2 (en)
JPH0743095B2 (en) Fluidized bed boiler
JPS59225209A (en) Control method for height of fluidized bed and device thereof
JPH04124505A (en) Method of controlling layer height of pressurized fluidized bed combustion furnace
JPS60143822A (en) Conveyor for solid grain
JPS61173011A (en) Fluidized bed combustion equipment
JP3085839B2 (en) Fluidized bed combustion apparatus and control method thereof
JPS60101414A (en) Operation of fluidized-bed combustion furnace
JP2909298B2 (en) Fluidized bed height control device for combustion furnace
JP2513231B2 (en) Fluidized bed boiler control method
JP2957259B2 (en) Fluidized bed boiler
JPS6053703A (en) Fluidized bed combustion apparatus