JPS6128969B2 - - Google Patents

Info

Publication number
JPS6128969B2
JPS6128969B2 JP4934881A JP4934881A JPS6128969B2 JP S6128969 B2 JPS6128969 B2 JP S6128969B2 JP 4934881 A JP4934881 A JP 4934881A JP 4934881 A JP4934881 A JP 4934881A JP S6128969 B2 JPS6128969 B2 JP S6128969B2
Authority
JP
Japan
Prior art keywords
lens
group
positive meniscus
curvature
biconcave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4934881A
Other languages
Japanese (ja)
Other versions
JPS57164708A (en
Inventor
Hisao Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP4934881A priority Critical patent/JPS57164708A/en
Publication of JPS57164708A publication Critical patent/JPS57164708A/en
Publication of JPS6128969B2 publication Critical patent/JPS6128969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高解像力レンズ、特に一定の空間周
波数以下の低周波成分の解像力が良いレンズに関
する。 最近、民生用情報機器にはCCDのように電気
的素子が感光体として使用される例が増加してい
る。このような電気的感光体用のレンズ系には、
従来の銀塩感光体用のレンズとは異なつた特性が
要求される。 その理由は、第一には、これらの電気的感光体
は、それを形成する画素が一定の大きさを持つた
め、その画素の大きさに対応する以上の空間周波
数に対する解像力は意味がなくなる一方、原理的
に画素により解像可能な範囲の空間周波数に対し
ては解像力が非常に高いことが不可欠とされる。
例えば、現用のCCDの画素は一辺が12μm〜14
μmの程度であり、これによつて解像しうる限界
はおよそ40本/mmである。そしてこの40本/mm以
下の空間周波数のMTF値は全画面で50〜70%以
上という高い値を要求されるのが一般的である。 第2には全画面について等しい開口効率を持つ
ことが要求される。従来の銀塩感光体用の写真レ
ンズでは、軸外像高に対しては、レンズの有効径
によつて生ずるいわゆる光束のけられを利用し、
結像性能に害をおよぼす周辺光線をカツトして結
像を良好に保つことが通常行われている。しか
し、このような手法は軸外での周辺光量比の減少
を引きおこすことは明らかであり、電気的な感光
素子に対しては全画角で出来る限り光量比が一定
であることが要請される。このため、軸外像高に
対しても軸上像高と同様に周辺光束が絞りによつ
てカツトされるようにレンズ系を構成しなければ
ならない。 この発明のレンズ系は4群構成のいわゆる逆エ
ルノスター型のレンズタイプを採用した。このタ
イプのレンズ系は既に特開昭49−53036号公報、
同昭55−96915号公報等により公知である。 しかし、前者は使用画角が16.5゜と狭く、この
発明が目指す23.5゜の画角では使用に耐えない。
また、前置絞りを用いているが、開口効率100%
のレンズにおいて前置絞りを用いると、第2レン
ズである両凹レンズを光線が切る位置の光軸から
の高さが高くなり、コマ収差の発生が著しくな
る。4群構成のような簡単な構成で負のパワーを
もつレンズ群は1つだけであり、かつ開口効率が
100%を要求されるこの発明のようなレンズ系に
おいては、不可避的に収差発生が大となる負レン
ズに起因する高次収差をさけるためには、この負
レンズの直前か直後に絞りをおくことが収差補正
上有利である。 また後者は110フイルム使用のカメラレンズと
して発生されたものであり、軸外像高に対する開
口効率100%を目指したものではない。Fナンバ
ーは2.0と明るいがコマ収差の補正が不充分で電
気的感光素子用のレンズとしては解像力が不足す
る。 この発明のレンズ系は、具体的には第1群は物
体側に凸の正メニスカスレンズ、第2群は両凹レ
ンズ、第3群は像側に強い凸面を向けた正レン
ズ、第4群は物体側に凸の正メニスカスレンズ、
または両凸レンズと両凹レンズの貼合せからなる
正メニスカスレンズからなる4群4枚あるいは4
群5枚からなるレンズ系であり、場合により、感
光体の保護のために像側に薄いカバーガラスが用
いられることもある。このレンズ系はまた、以下
の条件を満す必要がある。 0.8<f1/f<1.1 (1) 0.55<f3/f<0.85 (2) 1.0<r2/f<2.0 (3) 1.73<n1、n3 (4) 0.50<|r3|/f<0.85 r3<0 (5) 0.57<r4/f<0.70 (6) 1.68<n2<1.83 (7) 0.18<D4/f<0.34 (8) 0.6<rL/f<1.0 (9) 但し f:レンズ全系の合成焦点距離 fi:第i群レンズの焦点距離 ni:第i群レンズの硝材の屈折率 ri:第i屈折面の曲率半径 rL:第4群レンズの像側面の曲率半径 Di:第i群レンズの厚み を示す。 条件(1)ないし(4)はこの発明のレンズ系中で主と
して正のパワーが配分される第1群レンズと第3
群レンズに関するもので、像面湾曲と球面収差の
補正のためのものである。 条件(1)(2)の上限をこえると球面収差が補正過剰
となる。逆に下限をこえると球面収差が補正不足
となると同時にペツバール和が大となり、又、高
次コマ収差発生の原因となる。 条件(3)はコマ収差の補正のためのものである。
下限をこえると軸外像高に対する外側光束の外向
性コマが過大となる。逆に上限をこえると軸外像
高に対する内側光束の内向性コマが過大となる。 条件(4)はペツバール和を小さく保つためと軸外
コマ収差の発生を抑えるための条件である。 条件(5)ないし(7)は第2群レンズに関するもので
ある。 条件(5)(6)は第2群レンズが両凹レンズであるこ
とを示す。これは主として正のパワーを持つ第1
群レンズと第3群レンズによる球面収差と像面の
補正不足傾向に対する補償効果を得ようとするも
のである。両条件の上限をこえると上記の目的が
達せられず、逆に下限をこえると高次コマ収差の
発生が大となり、解面湾曲も補正過剰となる。
又、この両凹レンズの負のパワーが強くなるの
で、他の正レンズ群のパワーも強くなければなら
ず、コマ収差の発生が著しくなる。 条件(7)は、両凹レンズで発生する大きなコマを
出来る限り抑えるための条件であり、下限をこえ
るとこの目的が達成出来ず、上限はペツパール和
を大きくしないために設けられている。 また、この両凹レンズの厚みも、 0.03<D2/f<0.09 の範囲にあることがのぞましい。これは像面湾曲
の補正のためとコマ収差補正のための条件で、上
限をこえると像面湾曲が補正過剰となり、第2レ
ンズ後面を光線が切る位置の光軸からの高さが高
くなるため、高次コマ収差が発生する。下限は、
この発明のレンズは実際の使用においては全系の
焦点距離が11mm前後と短いレンズ系として実施さ
れるため、製作上必要な厚みを確保するためであ
る。 条件(8)(9)は第4レンズ群に関するものである。
条件(8)は軸外像高における内側光束で主として第
2レンズ前面で発生した内向性コマを打ち消すこ
とを目的とする。これはD4.を厚くすることで第
4レンズ群の像側面への光線の入射角を大きくす
ることが出来、この面で外向性コマを発生させ
る。下限はこの効果を得るために必要な条件であ
る。上限は像面湾曲の補正過剰を防ぐためのもの
である。 条件(9)は条件(8)と同じ目的を持ち、上限はこの
目的を達するための限界であり、下限は必要以上
の外向性コマ収差の発生を防ぐためと像面湾曲の
補正過剰を引き起さないためのものである。 以下この発明の実施例を示し、物体距離は有限
である。
The present invention relates to a high-resolution lens, particularly a lens that has good resolution of low frequency components below a certain spatial frequency. Recently, electric devices such as CCDs are increasingly being used as photoreceptors in consumer information equipment. Lens systems for such electrical photoreceptors include:
Different characteristics are required from lenses for conventional silver salt photoreceptors. The reason for this is, firstly, that the pixels that form these electric photoreceptors have a fixed size, so the resolving power for spatial frequencies that exceed the size of the pixel becomes meaningless. In principle, it is essential that the resolving power be extremely high for the range of spatial frequencies that can be resolved by pixels.
For example, the pixels of current CCDs are 12 μm to 14 μm on a side.
The resolution limit is approximately 40 lines/mm. The MTF value for this spatial frequency of 40 lines/mm or less is generally required to be as high as 50 to 70% or more for the entire screen. Secondly, it is required that the entire screen has an equal aperture efficiency. Conventional photographic lenses for silver halide photoreceptors use the so-called vignetting of the light flux caused by the effective diameter of the lens to adjust the off-axis image height.
It is common practice to maintain good imaging by cutting out peripheral rays that harm imaging performance. However, it is clear that such a method causes a decrease in the peripheral illuminance ratio off-axis, and for electrical photosensitive elements, it is required that the illuminance ratio be as constant as possible over the entire field of view. . For this reason, the lens system must be constructed so that the peripheral light flux is cut by the diaphragm at the off-axis image height as well as at the on-axis image height. The lens system of this invention employs a so-called inverted Ernostar lens type having a four-group configuration. This type of lens system has already been published in Japanese Patent Application Laid-Open No. 49-53036,
It is publicly known from Publication No. 55-96915 and the like. However, the angle of view used in the former is as narrow as 16.5 degrees, and the angle of view of 23.5 degrees that this invention aims for cannot be used.
Also, although a front diaphragm is used, the aperture efficiency is 100%.
If a front diaphragm is used in the lens, the height from the optical axis of the position where the light beam cuts through the biconcave lens, which is the second lens, becomes high, and the occurrence of comatic aberration becomes significant. In a simple configuration such as a 4-group configuration, there is only one lens group with negative power, and the aperture efficiency is low.
In a lens system like this invention that requires 100%, in order to avoid high-order aberrations caused by the negative lens, which inevitably causes large aberrations, it is necessary to place an aperture just before or after the negative lens. This is advantageous for correcting aberrations. Furthermore, the latter was developed as a camera lens using 110 film, and did not aim for 100% aperture efficiency with respect to off-axis image height. Although it has a bright F number of 2.0, the correction of coma aberration is insufficient and the resolving power is insufficient as a lens for electrical photosensitive elements. Specifically, in the lens system of this invention, the first group is a positive meniscus lens convex toward the object side, the second group is a biconcave lens, the third group is a positive lens with a strongly convex surface facing the image side, and the fourth group is a positive meniscus lens with a convex surface facing the image side. Positive meniscus lens convex to the object side,
Or 4 elements in 4 groups or 4 positive meniscus lenses made of a combination of a biconvex lens and a biconcave lens.
It is a lens system consisting of a group of five lenses, and in some cases, a thin cover glass may be used on the image side to protect the photoreceptor. This lens system must also satisfy the following conditions: 0.8<f 1 /f<1.1 (1) 0.55<f 3 /f<0.85 (2) 1.0<r 2 /f<2.0 (3) 1.73<n 1 , n 3 (4) 0.50<|r 3 |/ f<0.85 r 3 <0 (5) 0.57<r 4 /f<0.70 (6) 1.68<n 2 <1.83 (7) 0.18<D 4 /f<0.34 (8) 0.6<r L /f<1.0 ( 9) where f: composite focal length of the entire lens system fi: focal length of the i-th group lens ni: refractive index of the glass material of the i-th group lens ri: radius of curvature of the i-th refractive surface r L : image of the fourth group lens Radius of curvature Di of side surface: Indicates the thickness of the i-th group lens. Conditions (1) to (4) apply to the first group lens and the third group lens to which mainly positive power is distributed in the lens system of the present invention.
It relates to a group lens and is used to correct field curvature and spherical aberration. When the upper limits of conditions (1) and (2) are exceeded, spherical aberration becomes overcorrected. On the other hand, if the lower limit is exceeded, spherical aberration will be insufficiently corrected, the Petzval sum will become large, and high-order comatic aberration will occur. Condition (3) is for correcting coma aberration.
When the lower limit is exceeded, the extroverted coma of the outer light beam relative to the off-axis image height becomes excessive. On the other hand, if the upper limit is exceeded, the inward coma of the inner light beam relative to the off-axis image height becomes excessive. Condition (4) is a condition for keeping the Petzval sum small and suppressing the occurrence of off-axis coma aberration. Conditions (5) to (7) relate to the second lens group. Conditions (5) and (6) indicate that the second group lens is a biconcave lens. This is mainly due to the positive power of the first
This is intended to obtain a compensating effect for the spherical aberration and the tendency for the image plane to be undercorrected by the group lens and the third group lens. If the upper limits of both conditions are exceeded, the above objectives cannot be achieved, and conversely, if the lower limits are exceeded, higher-order comatic aberrations will occur and the curvature of solution will be overcorrected.
Furthermore, since the negative power of this biconcave lens becomes strong, the power of the other positive lens group must also be strong, and the occurrence of coma becomes significant. Condition (7) is a condition for suppressing large coma generated in a biconcave lens as much as possible; if the lower limit is exceeded, this objective cannot be achieved, and the upper limit is provided to prevent the Petz Pearl sum from increasing. Further, the thickness of this biconcave lens is also preferably in the range of 0.03<D 2 /f<0.09. This is a condition for correcting field curvature and coma aberration. If the upper limit is exceeded, the field curvature will be overcorrected, and the height from the optical axis of the position where the light ray cuts the rear surface of the second lens will increase. Therefore, higher-order coma aberration occurs. The lower limit is
In actual use, the lens of this invention is implemented as a short lens system with the focal length of the entire system being around 11 mm, so this is to ensure the necessary thickness for manufacturing. Conditions (8) and (9) relate to the fourth lens group.
The purpose of condition (8) is to cancel the inward coma generated mainly at the front surface of the second lens with the inner light beam at the off-axis image height. This is because by increasing the thickness of D 4 , it is possible to increase the angle of incidence of the light ray on the image side surface of the fourth lens group, and an extroverted coma is generated on this surface. The lower limit is a necessary condition to obtain this effect. The upper limit is set to prevent overcorrection of field curvature. Condition (9) has the same purpose as condition (8), the upper limit is the limit to achieve this purpose, and the lower limit is to prevent excessive outward coma aberration and to prevent overcorrection of field curvature. This is to prevent it from happening. An embodiment of the present invention will be shown below, in which the object distance is finite.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はそれぞれ第1実施例ない
し第4実施例の断面図、第5図ないし第9図は第
1実施例ないし第5実施例の収差図である。
1 to 4 are sectional views of the first to fourth embodiments, respectively, and FIGS. 5 to 9 are aberration diagrams of the first to fifth embodiments.

Claims (1)

【特許請求の範囲】 1 第1群は物体側に凸の正メニスカスレンズ、
第2群は両凹レンズ、第3群は像側に強い凸面を
向けた正レンズ、第4群は物体側に凸の正メニス
カスレンズ、または両凸レンズと両凹レンズの貼
合せからなる正メニスカスレンズの4群から構成
され、 f:レンズ全系の合成焦点距離 fi:第i群レンズの焦点距離 ni:第i群レンズの硝材の屈折率 ri:第i屈折面の曲率半径 rL:第4群レンズの像側面の曲率半径 D4:第4群レンズの厚み とするとき 0.8<f1/f<1.1 0.55<f3/f<0.85 1.0<r2/f<2.0 1.73<n1 1.73<n3 0.50<|r3|/f<0.85 r3<0 0.57<r4/f<0.70 1.68<n2<1.83 0.18<D4/f<0.34 0.6<rL/f<1.0 の条件を満足することを特徴とする高解像力レン
ズ。
[Claims] 1. The first group is a positive meniscus lens convex to the object side;
The second group is a biconcave lens, the third group is a positive lens with a strongly convex surface facing the image side, and the fourth group is a positive meniscus lens with a convex surface facing the object side, or a positive meniscus lens made of a combination of a biconvex lens and a biconcave lens. Consists of four groups, f: composite focal length of the entire lens system fi: focal length of the i-th group lens ni: refractive index of the glass material of the i-th group lens ri: radius of curvature of the i-th refractive surface r L : fourth group Radius of curvature of the image side of the lens D 4 : Thickness of the fourth group lens 0.8<f 1 /f<1.1 0.55<f 3 /f<0.85 1.0<r 2 /f<2.0 1.73<n 1 1.73<n 3 0.50<|r 3 |/f<0.85 r 3 <0 0.57<r 4 /f<0.70 1.68< n 2 < 1.83 0.18<D 4 /f<0.34 0.6<r L /f<1.0 are satisfied. A high-resolution lens characterized by:
JP4934881A 1981-04-03 1981-04-03 High resolving power lens Granted JPS57164708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4934881A JPS57164708A (en) 1981-04-03 1981-04-03 High resolving power lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4934881A JPS57164708A (en) 1981-04-03 1981-04-03 High resolving power lens

Publications (2)

Publication Number Publication Date
JPS57164708A JPS57164708A (en) 1982-10-09
JPS6128969B2 true JPS6128969B2 (en) 1986-07-03

Family

ID=12828502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4934881A Granted JPS57164708A (en) 1981-04-03 1981-04-03 High resolving power lens

Country Status (1)

Country Link
JP (1) JPS57164708A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140616A (en) * 1984-07-31 1986-02-26 Fanuc Ltd Position control system
JP2004341013A (en) * 2003-05-13 2004-12-02 Olympus Corp Imaging optical system and imaging device using the same
JP4566614B2 (en) * 2004-04-28 2010-10-20 キヤノン株式会社 Imaging lens and imaging apparatus having the same
CN201508432U (en) * 2009-04-07 2010-06-16 富士能株式会社 Camera lens and camera device
CN103827722B (en) 2011-09-14 2016-03-16 柯尼卡美能达株式会社 Pick-up lens, camera head and portable terminal device and digital device
WO2014119283A1 (en) * 2013-02-04 2014-08-07 コニカミノルタ株式会社 Image pickup optical system and image pickup device, as well as digital equipment

Also Published As

Publication number Publication date
JPS57164708A (en) 1982-10-09

Similar Documents

Publication Publication Date Title
US20060001985A1 (en) Fisheye lens system
JP2011107313A (en) Optical system and optical equipment using the same
JPH05224119A (en) Large-diameter intermediate telephoto lens
US4566764A (en) Wide-angle lens
JP4007468B2 (en) Wide-angle lens with long back focus
JPH0412448B2 (en)
JP3295027B2 (en) Retrofocus type large aperture ratio wide-angle lens
JPH1184234A (en) Photographing lens
US11221459B2 (en) Imaging optical system and imaging apparatus
JPH0414763B2 (en)
JPS6128969B2 (en)
JPS6148685B2 (en)
JP2018045184A (en) Image capturing optical system and image capturing device
JP2984956B2 (en) Shooting lens
JPS6396616A (en) Image pickup device
JP2001174701A (en) Wide angle photographic lens system
JP3032909B2 (en) Bright single focus lens
JPH0211883B2 (en)
JP2005043788A (en) Rear conversion lens
JPH0510645B2 (en)
JPH0225488B2 (en)
JPH0358490B2 (en)
JPH1048515A (en) Wide angle lens
JP7479826B2 (en) Imaging lens and imaging device
JPH023968B2 (en)