JPS61288343A - Flat display device - Google Patents

Flat display device

Info

Publication number
JPS61288343A
JPS61288343A JP60128125A JP12812585A JPS61288343A JP S61288343 A JPS61288343 A JP S61288343A JP 60128125 A JP60128125 A JP 60128125A JP 12812585 A JP12812585 A JP 12812585A JP S61288343 A JPS61288343 A JP S61288343A
Authority
JP
Japan
Prior art keywords
cathode
display device
electron
board
cathodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60128125A
Other languages
Japanese (ja)
Inventor
Yukio Okamoto
幸雄 岡本
Toshiyuki Aida
会田 敏之
Akihiko Konoe
鴻上 明彦
Shinichi Shinada
品田 真一
Tokumi Fukazawa
深沢 徳海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60128125A priority Critical patent/JPS61288343A/en
Publication of JPS61288343A publication Critical patent/JPS61288343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Abstract

PURPOSE:To manufacture a firm cathode layer through efficient work, by using an art of electron beam evaporation coating to make a thin film of lanthanum hexaboride on an electrically-insulating board or on a thermal expansion coefficient adjusting auxiliary layer on the board to provide a cathode. CONSTITUTION:An art of electron beam evaporation coating is used so that a plurality of thin films 110 of lanthanum hexaboride, which functions as an electron-emitting substance, are made in parallel with each other on a board 10 of soda-lime glass or on an auxiliary layer 11 which is provided on the board and made of Au or the like to absorb a distortion based on a thermal expansion coefficient diference. Sharp edges 112 are provided in the portions of the thin films 110, which correspond to surface image elements. Cathodes are thus manufactured. The cathodes are combined with anodes 130 on a faceplate 70, barriers 120 and a rare gas such as Xe gas sealed in spaces 140, so that a flat surface display device is constructed. Thus, the efficiency of work for manufacturing the cathodes is enhanced, and numerous thick and firm cathode layers are easily provided at a high density.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は仕事関数の小さな材料を陰極として文字や図形
などを表示する平面表示デバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a flat display device that displays characters, figures, etc. using a material with a small work function as a cathode.

〔発明の背景〕[Background of the invention]

従来の代表的な平面表示デバイスを第1図を用いて説明
する(特開昭55−62647参照)。
A typical conventional flat display device will be explained using FIG. 1 (see Japanese Patent Laid-Open No. 55-62647).

第1図−(イ)に示す如く、表示デバイスを構成する1
つの表示画素は、陰極基板40を中心として両側に設け
られた補助陽極30と陽極100とで形成している。前
記各電極は鉄−ニッケル合金から成り、陰極基板40の
表面には仕事関数の小さな希土類金属六硼化物、アルカ
リ土類金属六硼化物またはトリウム六硼化物から成る電
子放射物質60が、例えば第1図−(イ)、(ロ)のよ
うに陰極基板40の表面に直接設けである。一方、補助
陽極30と陰極基板4oの間の補助放電空間20と、陽
極100と陰極基板40の間の主放電空間80とにはH
e、NeおよびArのうちの少なくとも1種類の希ガス
が封入されている。
As shown in Figure 1-(a), 1 that constitutes the display device
Each display pixel is formed by an auxiliary anode 30 and an anode 100 provided on both sides of the cathode substrate 40. Each of the electrodes is made of an iron-nickel alloy, and on the surface of the cathode substrate 40, an electron emitting material 60 made of a rare earth metal hexaboride, an alkaline earth metal hexaboride, or thorium hexaboride, which has a small work function, is disposed, for example, on the surface of the cathode substrate 40. As shown in Figure 1-(a) and (b), it is provided directly on the surface of the cathode substrate 40. On the other hand, H
At least one kind of rare gas among e, Ne, and Ar is sealed.

ところで、 (1)前記電子放射物質60は仕事関数が小さく、2次
電子放射係数が大きいことから、補助放電空間20に生
成する補助放電および主放電空間80に生成する表示の
ための主放電の動作電圧を低減でき、駆動回路のIC化
等に有利なこと。
By the way, (1) Since the electron emitting material 60 has a small work function and a large secondary electron emission coefficient, the auxiliary discharge generated in the auxiliary discharge space 20 and the main discharge for display generated in the main discharge space 80 are The operating voltage can be reduced, which is advantageous for implementing IC drive circuits.

(2)  低電圧化により発光効率も増大すること、(
3)  さらに、前記電子放射物質60は物理的に安定
であることから、イオン衝撃によるスパッタ率が小さい
こと。
(2) Luminous efficiency increases due to lower voltage; (
3) Furthermore, since the electron emitting material 60 is physically stable, the sputtering rate due to ion bombardment is low.

(4)  また、前記電子放射物質60は化学的にも安
定であることから、酸化バリウムのような活性化のため
の熱処理が不要になること、 などの大きな利点がある。
(4) Furthermore, since the electron emitting material 60 is chemically stable, it has great advantages such as eliminating the need for heat treatment for activation, such as with barium oxide.

しかしながら、このような優れた特徴は前記電子放射物
質60がバルクのときだけで5表示デバイスの分野では
、いかにしてバルクの特性を有する電子放射物質層を形
成するかが大きな課題となっていた。従来、上記電子放
射物質層を形成する方法として、 (1)バルクの電子放射物質を粉末にし、ガラス粉末な
どと混合して厚膜状に塗布する方法(厚膜法)、 (2)  バルクを薄く加工して固形を被着する方法、
(3)  プラズマ溶射技術を用いる方法、(4)抵抗
加熱蒸着技術を用いる方法(蒸着法)、(5)溶融メッ
キ技術を用いる方法、 が提案されていた。
However, such excellent characteristics are obtained only when the electron emitting material 60 is in the form of a bulk.5 In the field of display devices, how to form an electron emitting material layer having bulk characteristics has been a major problem. . Conventionally, methods for forming the above-mentioned electron emitting material layer include (1) a method of powdering a bulk electron emitting material, mixing it with glass powder, etc., and coating it in a thick film (thick film method); A method of processing it into a thin layer and applying a solid layer,
(3) A method using plasma spraying technology, (4) A method using resistance heating vapor deposition technology (evaporation method), and (5) A method using hot-dip plating technology.

ところが、電子放射物質をこれらの方法で陰極基板40
に被着させたのでは、電子放射物質のもつ特性を十分に
発揮させることができなかった。
However, the electron-emitting material cannot be transferred to the cathode substrate 40 using these methods.
However, the properties of the electron emitting material could not be fully exhibited.

すなわち、これらの方法では、(イ)電子放射物質の表
面が不純物で覆れたり、(ロ)厚く強固な層を形成する
のが回連であったり、(ハ)多数高密度に配列すること
が困雛であったりなどの大きな問題点があった。
In other words, in these methods, (a) the surface of the electron-emitting substance is covered with impurities, (b) a thick and strong layer is formed by the circulation, and (c) a large number of electron-emitting substances are arranged in high density. There were major problems, such as the difficulty of producing chicks.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来技術の優れた特徴は生かすと
ともに問題点を解決した平面表示デバイスを提供するこ
とである。
An object of the present invention is to provide a flat display device that takes advantage of the excellent features of the prior art and solves the problems.

〔発明の概要〕[Summary of the invention]

本発明は電子放射物質として特に六硼化ランタン(La
Be)を用い、電子ビーム蒸着技術によりソーダガラス
基板上に直接、または熱膨張係数を調整するための補助
層の上にLaB 6薄膜を形成し、陰極として動作させ
、この陰極からの電子を用いることにより前記従来技術
の問題点を解決したことを特徴とする。
The present invention particularly uses lanthanum hexaboride (La) as an electron emitting material.
Using Be), a LaB 6 thin film is formed directly on the soda glass substrate by electron beam evaporation technique or on an auxiliary layer for adjusting the thermal expansion coefficient, and is operated as a cathode, and the electrons from this cathode are used. This invention is characterized in that the problems of the prior art described above are solved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図〜第5図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 5.

第2図は本発明の平面表示デバイスの分解斜視図を第3
図−(イ)はその断面図を示す。ソーダガラスから成る
基板10上に直接LaB aの薄膜(0,5〜3μmが
適当)110を第2図に示すように複数互いに平行(ピ
ッチ0.2m程度、線幅0.1n+m程度)になるよう
に形成し、陰極として動作させる。なおLaB s薄膜
の形成は高真空C’;= 10− ’ Torr)中で
電子ビーム蒸着技術を用いて行う。このとき、ソーダガ
ラスから成る基板10を加熱(基板の融点以下の温度で
)すると基板と薄膜の接着力も強く、しかも良質の膜を
効率よく形成できる。一方、透明なソーダガラスから成
る面板90には、少なくともAuかAgまたはNi−ペ
ーストなどを印刷焼成した陽極130を第2図に示すよ
うに、陰極110と交叉するように複数互いに平行に形
成する(ピッチ0.2I程度、線幅0.05mm程度)
。次に、この上に放電空間140を形成するためのガラ
スペーストを印刷焼成したバリア120を、陽極130
と平行かつ陽極130の少なくとも一部が露出するよう
に形成する(ピッチ0.2m程度、高さ0.1m程度)
。このように形成した面板90と基板10を重ね合せ、
周囲をガラスフリット等を用いて大気圧で機密に封じ、
XeかN e −X eなどの希ガスを760Torr
以下の適当の圧力に刺入する。
FIG. 2 is an exploded perspective view of the flat display device of the present invention.
Figure-(A) shows its cross-sectional view. A plurality of LaBa thin films (appropriately 0.5 to 3 μm) 110 are deposited in parallel to each other (pitch of about 0.2 m, line width of about 0.1 n+m) as shown in FIG. 2 directly on a substrate 10 made of soda glass. It is formed to act as a cathode. Note that the LaBs thin film is formed using an electron beam evaporation technique in a high vacuum C' (= 10-' Torr). At this time, when the substrate 10 made of soda glass is heated (at a temperature below the melting point of the substrate), the adhesion between the substrate and the thin film is strong, and a high-quality film can be efficiently formed. On the other hand, on the face plate 90 made of transparent soda glass, a plurality of anodes 130 printed and baked with at least Au, Ag, or Ni paste are formed in parallel so as to intersect with the cathode 110, as shown in FIG. (Pitch approximately 0.2I, line width approximately 0.05mm)
. Next, a barrier 120 on which glass paste is printed and fired to form a discharge space 140 is placed on the anode 130.
The anodes 130 are formed in parallel with each other and at least a portion of the anode 130 is exposed (pitch of about 0.2 m, height of about 0.1 m).
. The thus formed face plate 90 and substrate 10 are stacked,
The surrounding area is secretly sealed at atmospheric pressure using glass frit, etc.
Rare gas such as Xe or N e -X e at 760 Torr
Insert to the appropriate pressure below.

なお、前記デバイスにおいて、LaBG@膜110の厚
膜が厚くなること、機密に封じるプロセス(〜500℃
の高温になる)などで膜が剥離したりするので、第3図
−(ロ)に示すように、LaB B薄膜110と基板1
0との間に、両者の熱膨張係数の差による歪みを吸収す
る補助層111を形成するとよい。この補助層111は
厚さ〜IOμ程度で、Au、Ag、Niなどのペースト
を印刷焼成して形成した線状の導体またはガラスペース
トなどを印刷焼成した絶縁体が適当である。
In addition, in the above device, the thickness of the LaBG@ film 110 is increased, and the process of secretly sealing (~500°C
As shown in FIG. 3-(b), the LaB B thin film 110 and substrate 1
0, it is preferable to form an auxiliary layer 111 that absorbs distortion due to the difference in coefficient of thermal expansion between the two. This auxiliary layer 111 has a thickness of about IOμ, and is suitably a linear conductor formed by printing and baking a paste such as Au, Ag, or Ni, or an insulator formed by printing and baking a glass paste.

さらに、第3図−(ハ)に示すように、補助層111の
各表示画素に対応する部分に尖端112を設け、LaB
 e薄膜110に実効的な尖端113を設けるとその部
に電界が集中するので。
Furthermore, as shown in FIG.
e If an effective tip 113 is provided on the thin film 110, the electric field will be concentrated at that portion.

まず低い電圧でその尖端113から微少の電子が放出し
て、かすかに発光しく初期電子源として作用する)、さ
らに電圧を少し上げると大きな電流が得られ、高速、低
電圧応答特性の優れた特性が得られる。
First, at a low voltage, a small amount of electrons are emitted from the tip 113, emitting faint light and acting as an initial electron source).If the voltage is further increased a little, a large current can be obtained, and it has excellent characteristics of high speed and low voltage response characteristics. is obtained.

第4図は第3図に示した表示デバイスにNe−Ar(0
,/1%)、またはXeまたはNe−Xe(0,2%)
ガスを封入したときの陽極Aと陰極に間の放電維持電圧
Vmのガス圧力P依存性を示す。ここで、太線は陰極に
として本発明のLaB 6薄膜を、陽ViAとしてNi
ペーストを印刷焼成したものを用いた。細線は上記を逆
に用いた場合で、陰極にとしてNiペーストを印刷焼成
したものを、陽極AとしてLaB B薄膜を用い、電極
以外の条件は全て同じになるようにした。細線のN e
 −A r (0,4%)のデータは参考書等に発表さ
れているデータとほぼ同じである(陽極の材質にはほと
んど影響されない)。N e −A r(0,4%)ガ
スを用いたときの放電電圧vmは図中矢印で示すように
約90V以下になる。この値は、例えばLaB6膜を従
来技術のLaB 6粉末とガラス粉末を混合しペースト
状にして印刷焼成して形成したときの電圧低下値50〜
60Vに比べ、大幅に向上している。次にN e −X
 e(0,2%)混合ガスの場合の電圧低下値は約50
Vで、維持電圧Vmの絶対値は従来知ら九ているN e
 −A r (0,4%)と大差なく、また第4図に示
す如く圧力による電圧Vmの変化が少ないことから動作
マージンの安定性から大変望ましいガスである。また、
このガスはNeの可視発光を直接利用できるか、Xeの
真空紫外線を用いてけい光体を励起発光させることもで
き、けい光体を用いたカラー表示用としても有益である
。なお、このとき色純度が問題となる場合には、第4図
に示すようにXeガスも大変効果的である(電圧低下値
〜100v、従来技術の厚膜法ではほとんど効果なし)
FIG. 4 shows the display device shown in FIG.
, /1%), or Xe or Ne-Xe (0,2%)
The dependence of the discharge sustaining voltage Vm between the anode A and the cathode on the gas pressure P when gas is sealed is shown. Here, the thick line indicates the LaB 6 thin film of the present invention as the cathode, and the Ni film as the positive ViA.
A paste printed and fired was used. The thin wire is a case in which the above was used in reverse; a Ni paste printed and fired was used as the cathode, a LaB B thin film was used as the anode A, and all conditions other than the electrodes were kept the same. Thin line N e
-A r (0.4%) data is almost the same as data published in reference books etc. (almost unaffected by the material of the anode). When N e -Ar (0.4%) gas is used, the discharge voltage vm is approximately 90 V or less, as indicated by the arrow in the figure. This value is, for example, the voltage drop value of 50 to 50 when a LaB6 film is formed by mixing conventional technology LaB6 powder and glass powder and printing and baking the paste.
This is a significant improvement compared to 60V. Then N e −X
The voltage drop value for e(0,2%) mixed gas is approximately 50
The absolute value of the sustaining voltage Vm is N e which is conventionally known.
-A r (0.4%), and since there is little change in voltage Vm due to pressure as shown in FIG. 4, it is a very desirable gas from the viewpoint of stability of the operating margin. Also,
This gas can be used to directly utilize the visible light emitted from Ne or to excite the phosphor to emit light using the vacuum ultraviolet rays from Xe, and is also useful for color display using the phosphor. In addition, if color purity is a problem at this time, Xe gas is also very effective as shown in Figure 4 (voltage drop value ~100V, conventional thick film method has almost no effect).
.

一方、本発明によるデバイスの寿命特性も非常に良好で
、例えばデバイスにN a −A r 混合ガスを封入
し、定電圧で動作させたときの放電電流の変化は従来の
Ni厚膜陰極に比べて115以下であった。
On the other hand, the lifetime characteristics of the device according to the present invention are also very good. For example, when the device is filled with a Na-Ar mixed gas and operated at a constant voltage, the change in discharge current is less than that of a conventional Ni thick film cathode. It was 115 or less.

第5図は別の実施例を示す。本例では、上記のようなガ
スは封入しなく、デバイスの内部は高真空に保っている
ことを特徴とする。ガラス等から成る基板10上に前記
電子ビーム蒸着技術を用いてLaB g薄膜(陰極)1
10を形成する。このとき、各表示画素に対応して尖端
113を設けるとよい。この上に空間150を形成する
スペーサI C図示せず)を設ける。次にLaB51J
膜110の尖端113から放出する電子を通過させるた
めの電子通過口(170,190,’210)を有する
スペーサ■180の裏面(電子の通過方向と逆の面)に
は複数の互いに平行な第1格子160を、絶縁体180
の表面には第1格子160と直交するように複数の互い
に平行な第2格子200を設ける。この上に、前記電子
通過口(170,190,210)に対応して(各表示
画素に対応)複数個の電子加速空間230を有するスペ
ーサ■220を設置する。一方、透明なガラス等から成
る面板90には電子加速電極250と前記電子加速空間
230に面したところにカラー表示のための蛍光体24
0が設けである。
FIG. 5 shows another embodiment. This example is characterized in that the above-mentioned gas is not sealed and the inside of the device is kept at a high vacuum. A LaBg thin film (cathode) 1 is formed on a substrate 10 made of glass or the like using the electron beam evaporation technique.
form 10. At this time, it is preferable to provide a tip 113 corresponding to each display pixel. A spacer IC (not shown) is provided thereon to form a space 150. Next, LaB51J
The spacer 180 has electron passage holes (170, 190, '210) through which electrons emitted from the tip 113 of the membrane 110 pass. On the back surface (the surface opposite to the electron passage direction), there are a plurality of mutually parallel holes. 1 grid 160, insulator 180
A plurality of mutually parallel second gratings 200 are provided on the surface thereof so as to be orthogonal to the first grating 160. On top of this, a spacer 220 having a plurality of electron acceleration spaces 230 (corresponding to each display pixel) is installed corresponding to the electron passage holes (170, 190, 210). On the other hand, a face plate 90 made of transparent glass or the like has an electron acceleration electrode 250 and a phosphor 24 for color display facing the electron acceleration space 230.
0 is the default.

このデバイスの動作原理は、LaB B薄膜(陰極)1
10と第1格子間160に印加した電圧によってLaB
(Ha膜110より電子を発生させ。
The operating principle of this device is that the LaB B thin film (cathode) 1
10 and the voltage applied to the first interstitial space 160
(Electrons are generated from the Ha film 110.

第1格子160および第2格子200に印加する表示信
号によって前記電子が電子通過口(170゜19.21
0)を通過するのを制御し、通過した電子は電子加速電
極250に印加した電圧で加速され、蛍光体を励起発光
させて情報を表示することを基本原理とする。なお、第
1格子160や第2格子200の形状は限定するもので
はない。
The display signals applied to the first grating 160 and the second grating 200 cause the electrons to pass through the electron passage hole (170°19.21
The basic principle is that the passing electrons are accelerated by a voltage applied to the electron accelerating electrode 250, and the fluorescent material is excited to emit light to display information. Note that the shapes of the first grating 160 and the second grating 200 are not limited.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明はLaB 6薄膜110を電
子ビーム蒸着技術を用いて、ソーダガラス基板10上に
直接又は熱膨張係数を調整するための補助層111上に
形成して陰極として動作させ、そこから放出される電子
を直接加速制御して蛍光体を励起発光させるか、または
前記電子を用いるとともに加速空間にNe’−Xeまた
はXeガスを封入してこれらガスを電離し、このとき発
生する可視光を直接用いるか、またはこのとき発生する
真空紫外線で蛍光体を励起発光させて情報を表示するこ
とを基本とし、低電圧動作、および長寿命特性を達成で
きるという大きな効果がある。
As explained above, the present invention uses electron beam evaporation technology to form the LaB 6 thin film 110 directly on the soda glass substrate 10 or on the auxiliary layer 111 for adjusting the coefficient of thermal expansion, and operates it as a cathode. Either the electrons emitted therefrom are directly accelerated and controlled to excite the phosphor to emit light, or the electrons are used and the acceleration space is filled with Ne'-Xe or Xe gas to ionize these gases, which are generated at this time. Basically, information is displayed by directly using visible light or by exciting a phosphor to emit light using the vacuum ultraviolet rays generated at this time, and has the great effect of achieving low voltage operation and long life characteristics.

【図面の簡単な説明】 第1図は従来例の説明図、第2図は本発明のデバイスの
分解斜視図1、第3図は本発明のLaB B4膜形成断
面図、第4図は本発明の効果の一例を示す放電特性図、
第5図は本発明の別の実施例を示す断面図である。 10:基板、30:補助陽極、4o:陰極基板、60:
電子放射物質、90:面板、100 : l’J)極、
]、 10 : LaB e薄膜、120:バリア、1
30:陽極、111:補助層、112:補助層の尖端、
113:LaBa5?膜の尖端、160:第1格子、1
80ニスペーサ■、200:第2格子、220ニスペー
サ■、240:蛍光体、250:電子加速電極。 170.190,210:電子通過口。 代理人 弁理士 小 川 勝 男パ15、防3図 〃゛ス居力P(乃r/−)
[Brief Description of the Drawings] Fig. 1 is an explanatory diagram of a conventional example, Fig. 2 is an exploded perspective view 1 of the device of the present invention, Fig. 3 is a sectional view of LaB B4 film formation of the present invention, and Fig. 4 is a diagram of the present invention. A discharge characteristic diagram showing an example of the effects of the invention,
FIG. 5 is a sectional view showing another embodiment of the present invention. 10: Substrate, 30: Auxiliary anode, 4o: Cathode substrate, 60:
Electron emitting material, 90: face plate, 100: l'J) pole,
], 10: LaBe thin film, 120: barrier, 1
30: anode, 111: auxiliary layer, 112: tip of auxiliary layer,
113:LaBa5? Membrane tip, 160: first lattice, 1
80 Ni spacer ■, 200: second grating, 220 Ni spacer ■, 240: phosphor, 250: electron accelerating electrode. 170.190,210: Electron passage port. Agent Patent Attorney Masaru Ogawa Male Pa 15, Defense 3 Figure゛S Iriki P (no r/-)

Claims (1)

【特許請求の範囲】 1、少なくとも複数の陰極と複数の陽極とで構成した表
示デバイスにおいて、前記陰極として拒絶性基板上に直
接電子ビーム蒸着技術を用いて形成した六硼化ランタン
(LaB_6)薄膜を用いたことを特徴とする平面表示
デバイス。 2、特許請求の範囲第1項において、前記 LaB_6薄膜と前記絶縁性基板との間に、少なくとも
両者の熱膨張係数の違いによる歪みを吸収する補助層を
設けたことを特徴とする平面表示デバイス。 3、特許請求の範囲第1項又は第2項において、前記陰
極の稼動部を先端にしたことを特徴とする平面表示デバ
イス。 4、特許請求の範囲第1項、第2項又は第3項において
、前記陰極と前記陽極との間に、XeまたはNe−Xe
を主体としたガスを封入したことを特徴とする平面表示
デバイス。5、特許請求の範囲第1項、第2項又は第3
項において、少なくとも前記陰極と前記陽極との間を真
空にしたことを特徴とする平面表示デバイス。
[Claims] 1. In a display device comprising at least a plurality of cathodes and a plurality of anodes, a lanthanum hexaboride (LaB_6) thin film formed directly on a rejective substrate using an electron beam evaporation technique as the cathode; A flat display device characterized by using. 2. A flat display device according to claim 1, characterized in that an auxiliary layer is provided between the LaB_6 thin film and the insulating substrate to absorb at least the strain caused by the difference in coefficient of thermal expansion between the two. . 3. A flat display device according to claim 1 or 2, characterized in that the movable portion of the cathode is at the tip. 4. In claim 1, 2 or 3, Xe or Ne-Xe is provided between the cathode and the anode.
A flat display device characterized by being filled with a gas mainly composed of. 5.Claim 1, 2 or 3
2. The flat display device according to item 1, wherein a vacuum is created between at least the cathode and the anode.
JP60128125A 1985-06-14 1985-06-14 Flat display device Pending JPS61288343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128125A JPS61288343A (en) 1985-06-14 1985-06-14 Flat display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128125A JPS61288343A (en) 1985-06-14 1985-06-14 Flat display device

Publications (1)

Publication Number Publication Date
JPS61288343A true JPS61288343A (en) 1986-12-18

Family

ID=14977010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128125A Pending JPS61288343A (en) 1985-06-14 1985-06-14 Flat display device

Country Status (1)

Country Link
JP (1) JPS61288343A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502966A1 (en) * 1995-01-31 1995-06-14 Ignaz Prof Dr Eisele Opto-electronic component for colour display screen or gas sensor
KR100366944B1 (en) * 2000-06-30 2003-01-09 엘지전자 주식회사 Plasma Display Panel and Method of Fabricating the Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502966A1 (en) * 1995-01-31 1995-06-14 Ignaz Prof Dr Eisele Opto-electronic component for colour display screen or gas sensor
KR100366944B1 (en) * 2000-06-30 2003-01-09 엘지전자 주식회사 Plasma Display Panel and Method of Fabricating the Same

Similar Documents

Publication Publication Date Title
US3743879A (en) Cold cathode display panel having a multiplicity of gas cells
US5663611A (en) Plasma display Panel with field emitters
US6147456A (en) Field emission display with amplification layer
JPH08241666A (en) Field emission device and its preparation
JP2000311640A (en) Insulating film and fluorescent display device
US3908147A (en) Glow-discharge display device including cathode elements of finely divided carbon
US6051923A (en) Miniature electron emitter and related vacuum electronic devices
JPS61288343A (en) Flat display device
JP3056558B2 (en) Gas discharge tube and driving method thereof
JP3063644B2 (en) Fluorescent display tube
JP2002367542A (en) Field emission display and method of manufacturing the same
KR100251159B1 (en) Manufacturing method of plasma display panel
JP3159826B2 (en) Method of manufacturing gas discharge panel
US7994696B2 (en) Electron emission device, electron emission type backlight unit including the electron emission device, and method of manufacturing the electron emission device
JP3159825B2 (en) Method of manufacturing gas discharge panel
JP2005317534A (en) Electron emission display device
JP2716305B2 (en) Field emission type electron tube
JPH04132147A (en) Image display device
WO2004008474A1 (en) Image display unit
JP2005044705A (en) Cold cathode field electron emission display device
JP2002033054A (en) Electron-emissive thin film and plasma display panel using the same, and method of manufacturing the same
JP2762035B2 (en) Manufacturing method of cold cathode for display discharge tube
JP2001155648A (en) Plasma display panel and method of fabricating it
JP2001325891A (en) Direct-current discharge type plasma display panel
JP4674511B2 (en) Plasma display panel