JPS61288052A - Precipitation hardening type high-mn nonmagnetic steel having high strength and high toughness and its production - Google Patents

Precipitation hardening type high-mn nonmagnetic steel having high strength and high toughness and its production

Info

Publication number
JPS61288052A
JPS61288052A JP60129909A JP12990985A JPS61288052A JP S61288052 A JPS61288052 A JP S61288052A JP 60129909 A JP60129909 A JP 60129909A JP 12990985 A JP12990985 A JP 12990985A JP S61288052 A JPS61288052 A JP S61288052A
Authority
JP
Japan
Prior art keywords
steel
toughness
less
precipitation hardening
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60129909A
Other languages
Japanese (ja)
Other versions
JPH0561342B2 (en
Inventor
Kiyohiko Nohara
清彦 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60129909A priority Critical patent/JPS61288052A/en
Publication of JPS61288052A publication Critical patent/JPS61288052A/en
Publication of JPH0561342B2 publication Critical patent/JPH0561342B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To advantageously obtain a titled steel which satisfies various requirements for a material for an outer rotor of a superconductive generator by specifying the range of C and V of a specifically composed high-Mn steel, the upper limit of N and O thereof and the range of precipitation heat treatment conditions for the V-C compd. thereof. CONSTITUTION:The steel contg., by weight, 0.2-0.6% C, 26-30% Mn, 6-8% Cr, 1.0-2.0% V, <0.02% N and <=0.005% O and consisting of the balance <=0.015% P, 0.010 S and other impurities to be unavoidably incorporated therein and Fe is prepd. Such steel is subjected a soln. heat treatment for 0.5-3hr at 1,050-1,100 deg.C then to a precipitation hardening treatment for 5-80hr at 625-675 deg.C. The high Mn-steel satisfying the performances required for the nonmagnetic material for which the extreme cold strength, good ductility as well as toughness, castability, machinability and weldability are required is thus obtd. at a low cost without using Al and REM, Ca, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 超電導発電機の開発に関連してとくにアウターロータ一
部には超電導コイルによる大きな電磁誘導力のほかに回
転遠心力が加わるので、高い常温、耐力とじん性を有す
る非磁性材料が必要である。
[Detailed Description of the Invention] (Industrial Application Field) In connection with the development of superconducting generators, in particular, a part of the outer rotor is subject to rotational centrifugal force in addition to the large electromagnetic induction force caused by the superconducting coil, so A non-magnetic material with proof strength and toughness is required.

超電導発電機は先端技術分野に属し、これまでに実用機
の製造実績はなく、現在開発試作が各国で行われている
Superconducting generators belong to the field of cutting-edge technology, and there has been no actual production of a practical machine so far, and prototypes are currently being developed and manufactured in various countries.

なかでもアウターローター用材料は電磁力と遠心力の双
方に耐えるために高強度(常温で望ましくは80MPa
以上の耐力)と相応のしん性(常温で望ましくは30J
以上のシャルピー吸収エネルギー)を有し、かつ非磁性
でなければならないだけではなく、フアプリケーション
の上から被削性及び溶接性の良好なことも要求され、そ
して形状と寸法規模から厚肉の鍛鋼品となるところより
別に鍛造性及び製品の均一性がよくなくてはならない。
Among these, the material for the outer rotor has high strength (preferably 80 MPa at room temperature) in order to withstand both electromagnetic force and centrifugal force.
or more yield strength) and appropriate toughness (preferably 30J at room temperature)
Not only must it have a Charpy absorbed energy of In addition to being a good product, forging properties and product uniformity must be good.

同時に実用段階を踏まえ低価格であることが前提となる
At the same time, it is assumed that the price will be low based on the practical stage.

(従来の技術) 上記のような要請にマツチする既存の材料は見当らない
(Prior Art) No existing material has been found that meets the above requirements.

たとえばステンレス鋼の場合、常温耐力がせいぜい40
0MPaであるから適合しえない。
For example, in the case of stainless steel, the proof stress at room temperature is at most 40
Since it is 0 MPa, it is not compatible.

高Ni鋼(A286など)やTi合金は材質的には対応
できる可能性はあるが、高価な材料であり製造性に問題
があるところから歩留りがよくなく、一層コスト高を招
く難点がある。
High Ni steel (such as A286) and Ti alloy may be suitable materials, but they are expensive materials and have problems with manufacturability, resulting in poor yields and further increased costs.

一方REMSCaを添加した常温耐力の高い(70kg
/mm2以上)高Mn鋼(特願昭59−035228号
)もあるが、これとて鍛造性にかなり難点があってコス
トアップを招くほか、材料の均質性も必ずしも十分とは
いえなかった。
On the other hand, with the addition of REMSCa, it has high room temperature resistance (70 kg).
/mm2 or more) high Mn steel (Japanese Patent Application No. 59-035228), but this has considerable drawbacks in forgeability, leading to increased costs, and the homogeneity of the material is not necessarily sufficient.

(発明が解決しようとする問題点) 超電導発電機とくにアウターローター用材料における諸
要請つまり (1)常温耐力を冷間加工によらず(ローター形状から
冷間加工の適用は不可)して、800MPa以上に安定
的に保つこと、 (2) 800MPa以上の耐力を有する材料のシャル
ピー吸収エネルギーを30J以上にすること、(3)上
記のような高強度材の被削性を実加工可能の程度以上に
すること、 (4) (1)〜(3) を満たすべきオーステナイト
系の非磁性材料は本来高溶接割れを起こしやすいが、こ
の難点を伴わない溶接が可能なこと、(5)厚肉鍛造品
の製造性(#R造性)を良好ならしめ、実用大型部材の
製造を可能にすること、その際の歩留りもよくして低コ
スト化を計ること、をあわせ充足する、非磁性鋼を与え
、かつその存利な製造法を確立することが、この開発研
究の目的である。
(Problems to be Solved by the Invention) Various requirements for superconducting generators, especially materials for outer rotors, namely (1) room temperature proof stress of 800 MPa without cold working (cold working is not possible due to rotor shape); (2) The Charpy absorbed energy of materials with a yield strength of 800 MPa or more should be kept at 30 J or more; (3) The machinability of high-strength materials such as the above should be maintained at a level higher than that which can be actually processed. (4) Austenitic non-magnetic materials that satisfy (1) to (3) are inherently prone to weld cracking, but it is possible to weld without this difficulty; (5) thick-walled forging; We are developing non-magnetic steel that has good product manufacturability (#R manufacturability), enables the manufacture of practical large-sized parts, and also achieves high yields and lower costs. The purpose of this research and development is to provide a reliable method for producing the same.

(問題点を解決するための手段) 上記の目的は、次の事項によって達成される。(Means for solving problems) The above objectives will be achieved by:

C: 0.2〜0.6wt%、Mn:26〜30wt%
、Cr:6〜8wt%、V : 1. O〜2.0wt
%、N : 0.02wt%未満、0:0、005wt
%以下、を含有し、残部は0.015%以下に抑制した
P、0.010%以下に抑制したSlその他不可避に混
入する不純物ならびにFeの組成になることを特徴とす
る、高強度及び高じん性を有する析出硬化高Mn非磁性
鋼(第1発明)ならびにC:0.2〜0.6wt%、M
n:26〜30wt%、Cr:6〜8wt%、V:1.
0〜2.0IIlt%、N : 0.02wt%未満、
O:0.005wt%以下、を含有し、残部は0.01
5%以下に抑制したP、0.010%以下に抑制したS
lその他不可避に7混入する不純物ならびにFeの組成
になる鋼を、1050〜1100℃、0.5〜3時間に
て容体化処理し、次いで625〜675℃、5〜80時
間の範囲で析出硬化処理を行うことを特徴とする高強度
、及び高じん性を有する析出硬化型高Mn非磁性鋼の製
造法(第2発明)。
C: 0.2-0.6wt%, Mn: 26-30wt%
, Cr: 6 to 8 wt%, V: 1. O~2.0wt
%, N: less than 0.02wt%, 0:0, 005wt
% or less, and the balance is P suppressed to 0.015% or below, Sl suppressed to 0.010% or below, other unavoidably mixed impurities, and Fe. Precipitation hardened high Mn nonmagnetic steel with toughness (first invention) and C: 0.2 to 0.6 wt%, M
n: 26-30 wt%, Cr: 6-8 wt%, V: 1.
0 to 2.0IIlt%, N: less than 0.02wt%,
O: Contains 0.005 wt% or less, the balance is 0.01
P suppressed to 5% or less, S suppressed to 0.010% or less
l Steel with a composition of Fe and other unavoidable impurities is subjected to a container treatment at 1050 to 1100°C for 0.5 to 3 hours, and then precipitation hardened at 625 to 675°C for 5 to 80 hours. A method for producing a precipitation hardening type high Mn nonmagnetic steel having high strength and high toughness (second invention).

上掲した■添加系の高Mn非磁性鋼の成分組成、そして
さらに熱処理の特定化した組合せによって、従来技術で
達成できなかった問題解決の実現に成功したものである
By combining the chemical composition of the above-mentioned high-Mn additive type nonmagnetic steel and furthermore, a specific combination of heat treatments, we have succeeded in solving problems that could not be achieved with conventional techniques.

すなわちCと■の範囲規制とN及びOの上限規定、それ
に容体化及び■−C化合物の析出熱処理条件の範囲規定
とその組合せの下でAIやREM 。
That is, AI and REM can be applied under the range regulation of C and (1), the upper limit regulation of N and O, and the range regulation of the conditions for encapsulation and precipitation heat treatment of (2)-C compounds, and the combination thereof.

Caなどの使用を要せずして、とくに耐力、シャルピー
吸収エネルギーのバランスが良好となり、鍛造性とその
均質性にもすぐれるところに特徴づけられる。
It is characterized in that it does not require the use of Ca or the like, has a particularly good balance between yield strength and Charpy absorbed energy, and has excellent forgeability and homogeneity.

発明者らは、次の点に着目して検討と実験を進めた。The inventors conducted studies and experiments focusing on the following points.

(1〉 磁性の点から26〜30%程度の高Mn鋼に■
添加による析出硬化を利用することにより耐力≧800
MPaの可能性があること、 (2)シャルピー吸収エネルギーを高めるためにC,N
、および0量を規制すること、 (3)溶体化温度及び時効温度が耐力とシャルピー吸収
エネルギーにシビアに効くこと、(4)C,Nおよび0
量はまた、被削性、溶接性、鍛造性にとくに関与してい
ること、つまり超伝導発電機のアウターローターのよう
な高強度を要する中空円筒体用非磁性材料としては、高
Ni鋼やTi合金などがまず考えられるが、これに対し
磁気的安定性、耐力アップの可能性、経済性等の観点か
ら、高Mn鋼について種々検討した結果、Cと■の含有
を骨子とした合金とその製造技術を確立し、上掲各発明
の成功を導くに至った。
(1) From the point of view of magnetism, high Mn steel of approximately 26 to 30% is used.
Proof strength ≧800 by using precipitation hardening by addition
(2) In order to increase the Charpy absorption energy, C, N
(3) Solution temperature and aging temperature have a severe effect on yield strength and Charpy absorbed energy; (4) C, N and O
The amount is also particularly involved in machinability, weldability, and forgeability.In other words, high Ni steel and The first thing to consider would be a Ti alloy, but as a result of various studies on high Mn steel from the viewpoints of magnetic stability, possibility of increasing yield strength, economic efficiency, etc., we found that alloys based on the content of C and ■ were considered. We established the manufacturing technology and led to the success of each of the above-mentioned inventions.

さて高Mn鋼の常温強度(耐力)を高める方法として、 ■成分の固溶硬化を利用する。Now, as a method to increase the room temperature strength (yield strength) of high Mn steel, ■ Utilize solid solution hardening of components.

■炭化物、窒化物、金属間化合物などの析出硬化を利用
する。
■ Utilize precipitation hardening of carbides, nitrides, intermetallic compounds, etc.

■加工ひずみを利用する。■Use processing strain.

などの手段が考えられるところ■については製品が大寸
の中空円筒状になるところから現実には不可能である。
Although methods such as (2) can be considered, it is actually impossible as the product would be in the shape of a large hollow cylinder.

そこで■、■の可能性を種々検討した結果、主として■
の析出硬化を利用すること、さらに具体的には■とCの
含有割合と熱処理条件の適正化、それにC規制に加えて
Nや0の上限規制によるしん性の確保、被削性、溶接性
、鍛造性の具備、により初期の目的を達成しうろことが
知見されたのである。
Therefore, after considering various possibilities of ■ and ■, we found that
Taking advantage of precipitation hardening, more specifically, optimizing the content ratio of ■ and C and heat treatment conditions, and ensuring toughness, machinability, and weldability by regulating the upper limits of N and 0 in addition to C regulations. It was discovered that the initial objective could be achieved by providing forgeability.

この際、AI添加による固溶硬化、あるいはREVやC
a添加による被削性のアップなどは、いずれも鍛造性及
びじん性の点で好ましくない。
At this time, solid solution hardening by adding AI, or REV or C
Increasing machinability by adding a is unfavorable in terms of forgeability and toughness.

そこで基本的には、Mn:26〜3ht%、Cr:6〜
8賀t%、N : 0.02wt%未満、O:0.O0
5智t%以下の条件を満たした上で常温耐力≧800M
Pa、常温シャルピー吸収エネルギー≧30Jを同時に
満足しろる、Cと■の成分範囲及び溶体化温度と析出処
理温度のそれぞれのコンビネーションが重要である。
So basically, Mn: 26~3ht%, Cr: 6~
8g t%, N: less than 0.02wt%, O: 0. O0
Room temperature yield strength ≧800M after meeting the conditions of 5% or less
It is important to find a combination of the component ranges of C and (2) and the solution temperature and precipitation treatment temperature that simultaneously satisfy Pa, normal temperature Charpy absorbed energy ≧30 J.

これらの点については実験の結果第1図、第2図に示す
ように■とCの成分範囲ならびに溶体化、析出処温度範
囲の相互関係を規定すべきことが知見された。ここに析
出硬化が■炭化物の粒内微細析出によってもたらされる
ことも確かめられている。
Regarding these points, as shown in FIGS. 1 and 2 as a result of experiments, it was found that the interrelationship between the component ranges of ■ and C and the solution treatment and precipitation treatment temperature ranges should be defined. It has also been confirmed that precipitation hardening is brought about by the intragranular fine precipitation of carbides.

(作 用) 次に各成分範囲及び熱処理条件の限定理由を述べる。(for production) Next, the reason for limiting the range of each component and heat treatment conditions will be described.

C:浸入型の固溶元素で固溶硬化の効果が期待されると
同時に■と化合して析出硬化を生ずる。
C: An interstitial solid solution element that is expected to have the effect of solid solution hardening, and at the same time combines with ■ to cause precipitation hardening.

このために少くとも0.2%以上の含有を必要とするが
、0.6%を越えると鍛造性、被削性、溶接性などを阻
害するので、0.2〜0.6%の範囲とする。
For this reason, it is necessary to contain at least 0.2%, but if it exceeds 0.6%, forgeability, machinability, weldability, etc. will be impaired, so the content should be in the range of 0.2 to 0.6%. shall be.

■:発明鋼を特徴づける元素であり、析出熱処理による
炭化物の析出によって所要の常温強度を確保するのに必
須である。そのためには第1図に示すように少なくとも
1.0%以上含有されなければならない。しかし、2.
0%を越えるとじん性の低下、溶接性の劣化が大きく、
他の手段で回避しきれなくなる。
■: An element that characterizes the invented steel, and is essential for ensuring the required room temperature strength through the precipitation of carbides during precipitation heat treatment. For this purpose, the content must be at least 1.0% as shown in FIG. However, 2.
If it exceeds 0%, there will be a significant decrease in toughness and weldability.
cannot be avoided by other means.

Mn:Mnは発明鋼を特徴づける元素であり、磁気的安
定性及び加工性確保のため26%以上必要であるが、3
0%を越えると溶接性が劣化するので26〜30%とす
る。
Mn: Mn is an element that characterizes the invented steel, and it is necessary to have a content of 26% or more to ensure magnetic stability and workability.
If it exceeds 0%, weldability deteriorates, so it is set at 26 to 30%.

Cr:Crは固溶強化とある程度の耐食性確保のために
6%以上必要であるが経済性の観点から8%に限定する
Cr: 6% or more of Cr is required for solid solution strengthening and ensuring a certain degree of corrosion resistance, but is limited to 8% from the economic point of view.

N10:窒化物や酸化物の発生を抑制して延性及びじん
性の向上を計るために、それぞれ0.02%未満、0.
005%以下とする。これにより溶接性の向上も期待で
きる。
N10: less than 0.02% and 0.02%, respectively, in order to suppress the generation of nitrides and oxides and improve ductility and toughness.
0.005% or less. This can also be expected to improve weldability.

な右この高Mn非磁性鋼の鋼中不純物は代表的にはPお
よびSでそれぞれ0.015wt%以下、0.010%
以下に抑制されるを要するがその他の不純物についても
、通常混入が不可避とされている程度であれば許容され
る。
The impurities in this high Mn non-magnetic steel are typically P and S of 0.015wt% or less and 0.010%, respectively.
Although other impurities must be suppressed to the following level, they are generally allowed to the extent that their inclusion is considered unavoidable.

次に溶体化処理温度は、1050℃未満のとき、析出処
理温度の如何にかかわらず耐力800MPa以上が得ら
れず一方1100℃をこえると、吸収エネルギ−30J
以上を期待し得ない。
Next, when the solution treatment temperature is less than 1050°C, a yield strength of 800 MPa or more cannot be obtained regardless of the precipitation treatment temperature, whereas when it exceeds 1100°C, the absorbed energy is 30 J.
I couldn't have expected more.

また析出処理温度については、625℃未満ではやはり
耐力8QOMPa以上が、そして675℃をこえると吸
収エネルギ−30J以上が何れも充足されない。
Regarding the precipitation treatment temperature, if the temperature is lower than 625°C, the yield strength of 8 QOMPa or more will not be satisfied, and if it exceeds 675°C, the absorbed energy of 30 J or more will not be satisfied.

従って溶体化処理は1050〜1100℃、また析出処
理温度は625〜675℃の範囲に限定される。
Therefore, the solution treatment temperature is limited to 1050 to 1100°C, and the precipitation treatment temperature is limited to 625 to 675°C.

(実施例) 表1にこの発明に従う数種の実施例を従来例ならびに参
考例とともに示した。
(Examples) Table 1 shows several examples according to the present invention, together with conventional examples and reference examples.

これらの供試鋼は通常の転炉で溶製したのち、炉外真空
精錬炉にて精錬し、造塊、加熱、鍛造処理を注意深く行
い、析出硬化処理を経て50mm厚の鍛造製品とした。
These test steels were melted in a normal converter, then refined in an outside-furnace vacuum refining furnace, carefully ingot-formed, heated, and forged, and then subjected to precipitation hardening to produce a forged product with a thickness of 50 mm.

そして常温での材質を調査するとともに、鍛造性、均質
性、被削性及び溶接性も調べた。
In addition to investigating the material properties at room temperature, we also investigated forgeability, homogeneity, machinability, and weldability.

鍛造性は、10トン鋼塊の鍛造試験を実際に行って評価
し、均質性は、鋼塊相当位置の成分、機械的性質の比較
にて判断し被削性は、旋削性およびドリルによる穴あけ
加工性にて評価し、溶接性については開先つきTIG肉
盛溶接にて判定した。
Forgeability is evaluated by actually conducting a forging test on a 10-ton steel ingot. Homogeneity is determined by comparing the components and mechanical properties at the position corresponding to the steel ingot. Machinability is determined by turning ability and drilling. The workability was evaluated, and the weldability was determined by grooved TIG overlay welding.

表1から分るとおり、従来例の常温耐力は、ステンレス
鋼やA1合金では500MPa以下であって目標とした
800MPaにはるかに及ばない。
As can be seen from Table 1, the room temperature yield strength of the conventional example is 500 MPa or less for stainless steel and A1 alloy, which is far below the target of 800 MPa.

高Ni (たとえばA286 )やTi合金の場合は目
標をある程度クリヤできるが、両材料とも構造材料とし
て多量に使うには高価であり、また鍛造性や溶接性もよ
くない。Ti合金は800MPa以上の常温耐力を有す
るものの延性(伸び)とじん性(シャルピー衝撃値)が
劣る。
Although high Ni (for example, A286) and Ti alloys can achieve this goal to some extent, both materials are too expensive to use in large quantities as structural materials, and their forgeability and weldability are poor. Although the Ti alloy has a room temperature yield strength of 800 MPa or more, it has poor ductility (elongation) and toughness (Charpy impact value).

これに対し、発明鋼のすべては800MPa以上の常温
耐力と30J以上の常温シャルピー吸収エネルギーを有
し、かつ延性、鍛造性、均質性、被削性、溶接性なども
良好であって透磁率も極めて低い値を示している。
On the other hand, all of the invented steels have a room temperature proof stress of 800 MPa or more and a room temperature Charpy absorbed energy of 30 J or more, and also have good ductility, forgeability, homogeneity, machinability, weldability, etc., and have low magnetic permeability. This shows an extremely low value.

参考例のうちN007は熱処理条件不適でじん性不良、
No、8はC含有量過多でじん性不良、N009はC含
有量過少で強度不足、NO,10は■含有量過多でじん
性不良、No、 11はC含有量過多と熱処理条件不適
でじん性及び鍛造性不良、N0012はAI含有鋼で強
度とじん性のバランスはよいが鍛造性と均質性が不良の
ケースである。
Among the reference examples, N007 had poor toughness due to inappropriate heat treatment conditions.
No. 8 has poor toughness due to excessive C content, No. 10 has poor toughness due to too little C content, No. 10 has poor toughness due to excessive C content, and No. 11 has excessive C content and unsuitable heat treatment conditions. N0012 is an AI-containing steel with a good balance of strength and toughness, but poor forgeability and homogeneity.

(発明の効果) 第1発明は超電導発電機のアウターローターのごとき著
大な常温強度と良好な延性とじん性、鍛造性、被削性、
溶接性を有することが要請される非磁性材料として必要
性能をコストアップの要因を内在することなく、有利に
満足することができ、第2発明は、該非磁性材料の有利
な製造方法に適合する。
(Effects of the invention) The first invention has remarkable room-temperature strength like the outer rotor of a superconducting generator, and good ductility, toughness, forgeability, and machinability.
The performance required for a non-magnetic material that is required to have weldability can be advantageously satisfied without any inherent cost increase factor, and the second invention is compatible with an advantageous manufacturing method for the non-magnetic material. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC及び■含有量で層別した常温の耐力とシャル
ピー吸収エネルギーの区分図であり、第2図は溶体化処
理温度と析出処理温度で層別した常温の耐力とシャルピ
ー吸収エネルギーの区分図である。
Figure 1 is a classification diagram of yield strength at room temperature and Charpy absorbed energy stratified by C and ■ content, and Figure 2 is a diagram of yield strength and Charpy absorbed energy at room temperature stratified by solution treatment temperature and precipitation treatment temperature. It is a divisional diagram.

Claims (1)

【特許請求の範囲】 1、C:0.2〜0.6wt%、 Mn:26〜30wt%、 Cr:6〜8wt%、 V:1.0〜2.0wt%、 N:0.02wt%未満、 O:0.005wt%以下、 を含有し、残部は0.015%以下に抑制したP、0.
010%以下に抑制したS、その他不可避に混入する不
純物ならびにFeの組成になることを特徴とする、高強
度及び高じん性を有する析出硬化型高Mn非磁性鋼。 2、C:0.2〜0.6wt%、 Mn:26〜30wt%、 Cr:6〜8wt%、 V:1.0〜2.0wt%、 N:0.02wt%未満、 O:0.005wt%以下、 を含有し、残部は0.015%以下に抑制したP、0.
010%以下に抑制したS、その他不可避に混入する不
純物ならびにFeの組成になる鋼を、1050〜110
0℃、0.5〜3時間にて溶体化処理し、次いで625
〜675℃、5〜80時間の範囲で析出硬化処理を行う
ことを特徴とする高強度、及び高じん性を有する析出硬
化型高Mn非磁性鋼の製造方法。
[Claims] 1. C: 0.2 to 0.6 wt%, Mn: 26 to 30 wt%, Cr: 6 to 8 wt%, V: 1.0 to 2.0 wt%, N: 0.02 wt% P: less than 0.005 wt%, with the remainder suppressed to 0.015% or less, O: 0.005 wt% or less;
A precipitation hardening type high Mn nonmagnetic steel having high strength and toughness, characterized by having a composition of S suppressed to 0.10% or less, other unavoidably mixed impurities, and Fe. 2, C: 0.2 to 0.6 wt%, Mn: 26 to 30 wt%, Cr: 6 to 8 wt%, V: 1.0 to 2.0 wt%, N: less than 0.02 wt%, O: 0. 0.005 wt% or less, and the balance was suppressed to 0.015% or less, 0.005 wt% or less.
Steel with a composition of S suppressed to 0.010% or less, other unavoidably mixed impurities, and Fe is 1050-110%
Solution treatment at 0°C for 0.5 to 3 hours, then 625
A method for producing a precipitation hardening type high Mn nonmagnetic steel having high strength and high toughness, the method comprising performing a precipitation hardening treatment at ~675°C for 5 to 80 hours.
JP60129909A 1985-06-17 1985-06-17 Precipitation hardening type high-mn nonmagnetic steel having high strength and high toughness and its production Granted JPS61288052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60129909A JPS61288052A (en) 1985-06-17 1985-06-17 Precipitation hardening type high-mn nonmagnetic steel having high strength and high toughness and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129909A JPS61288052A (en) 1985-06-17 1985-06-17 Precipitation hardening type high-mn nonmagnetic steel having high strength and high toughness and its production

Publications (2)

Publication Number Publication Date
JPS61288052A true JPS61288052A (en) 1986-12-18
JPH0561342B2 JPH0561342B2 (en) 1993-09-06

Family

ID=15021387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129909A Granted JPS61288052A (en) 1985-06-17 1985-06-17 Precipitation hardening type high-mn nonmagnetic steel having high strength and high toughness and its production

Country Status (1)

Country Link
JP (1) JPS61288052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271308A (en) * 1986-05-19 1987-11-25 日本原子力研究所 Superconductive cable conductor
US5431753A (en) * 1991-12-30 1995-07-11 Pohang Iron & Steel Co. Ltd. Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271308A (en) * 1986-05-19 1987-11-25 日本原子力研究所 Superconductive cable conductor
JPH0570887B2 (en) * 1986-05-19 1993-10-06 Japan Atomic Energy Res Inst
US5431753A (en) * 1991-12-30 1995-07-11 Pohang Iron & Steel Co. Ltd. Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability

Also Published As

Publication number Publication date
JPH0561342B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
EP0806490B1 (en) Heat resisting steel and steam turbine rotor shaft
GB1595707A (en) Ferrous alloys
CN107974620B (en) A kind of yield strength &gt;=600Mpa high speed rotor of motor non-orientation silicon steel and production method
JPS61147834A (en) Corrosion-resistant high-strength ni alloy
KR890002033B1 (en) Steel alloy for super low temperature and the producing method
JPS61288052A (en) Precipitation hardening type high-mn nonmagnetic steel having high strength and high toughness and its production
GB2365022A (en) Heat resistant steels
JP3424314B2 (en) Heat resistant steel
JPS61238942A (en) Heat resisting alloy
JPH11117019A (en) Production of heat resistant parts
JPH11117020A (en) Production of heat resistant parts
JPS6013020A (en) Heat treating method of heat resistant alloy
US5116570A (en) Stainless maraging steel having high strength, high toughness and high corrosion resistance and it&#39;s manufacturing process
JPS60245772A (en) Low alloy steel for rotor of integrated high and low pressure type steam turbine
JPS60128242A (en) High manganese steel for nonmagnetic drill collar
JPH11106860A (en) Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone
JPS602653A (en) Production of precipitation hardening type nickel-base alloy
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPS63145752A (en) Austenitic iron alloy having strength and toughness
JPS61170545A (en) High manganese steel for very low temperature use having superior rust resistance
CN111304539B (en) High-speed high-power-density motor rotating shaft and preparation method thereof
JPS6046353A (en) Heat resistant steel
JPH06104860B2 (en) Manufacturing method of high heat input welding steel with excellent low temperature toughness
JP3397508B2 (en) Heat resistant steel
JPS61104056A (en) High-strength and high-toughness low-carbon cr-mo steel plate having excellent creep-resisting property as well as superior resistance to weld crack and erosion