JPS6128757B2 - - Google Patents

Info

Publication number
JPS6128757B2
JPS6128757B2 JP2648879A JP2648879A JPS6128757B2 JP S6128757 B2 JPS6128757 B2 JP S6128757B2 JP 2648879 A JP2648879 A JP 2648879A JP 2648879 A JP2648879 A JP 2648879A JP S6128757 B2 JPS6128757 B2 JP S6128757B2
Authority
JP
Japan
Prior art keywords
air
pump
liquid
pipe
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2648879A
Other languages
Japanese (ja)
Other versions
JPS55119199A (en
Inventor
Mitsuhiro Sato
Takeshi Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2648879A priority Critical patent/JPS55119199A/en
Publication of JPS55119199A publication Critical patent/JPS55119199A/en
Publication of JPS6128757B2 publication Critical patent/JPS6128757B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は陽極酸化処理、メツキ処理、酸洗処理
などに使用する金属の表面処理装置に関するもの
である。 処理槽中の処理液に被処理物を浸漬させて行う
金属の表面処理装置としては、例えば第3図に示
す陽極酸化処理装置に見られるように、無数の微
細な通気孔を有する多孔体31を処理槽32の底
部に設けて該多孔体31に連結された圧縮空気供
給管33を通じコンプレツサ34より供給される
圧縮空気を該多孔体31の通気孔から処理槽32
中の処理液の底方部に放出させて処理液中に微細
な気泡を形成させ、この気泡によつて処理液を撹
拌して処理効率を高めるようにしたものが知られ
ているが、従来のこの種金属の表面処理装置にお
ける気泡の発生は加圧空気によるものとしている
ため、極微細な気泡を得難いうえに処理液に浸漬
された被処理物ハに対する気泡の当り方がその底
面においては極めて強いのに対し側面においては
弱く、また、上面においては殆んど気泡が当らな
いという部分差が生じ、気泡の当りかたが強い底
面附近のイオン濃度は均一となるうえ冷却もよく
行われるのに対し上方に行くに従いイオン濃度が
不均一で冷却もあまり行われなくなり、被処理物
の表面に生成される酸化皮膜の厚みや硬度に差が
生じたり色むらの原因となる。しかも、この傾向
は電流密度を大きくするほど著しくなるので、あ
まり電流密度を上げることができず、そのため陽
極酸化の処理時間を長く要し、また、多孔体によ
り気泡が形成されるためにたとえ多孔体を処理槽
内の側壁に位置させて被処理物の上方部に対し側
方より気泡を噴出させようとしても気泡に勢がな
いためそのまま上昇して所期の目的を達成でき
ず、さらに、多孔体は使用中に目詰りを生じ易い
ためにその除去作業に手数を要する等種々の問題
点があつた。そこで、本出願人は先に前記のよう
な問題点を解決する目的で、外界空気の吸引によ
つて無数の微細な気泡を通過処理液中に形成され
る水流ポンプを処理槽中の被処理物に向け設けた
金属の表面処理装置を開発し、特願昭53−129001
号として特許出願してあるが、この先願の発明に
おいては処理時間に大きな影響を与える気泡率を
50%程度までしか高めることができないという唯
一の問題点を残していた。 本発明は前記のような問題点を解決した金属の
表面処理装置を目的として完成されたもので、以
下、図示の実施例について詳細に説明する。 第1図は本発明の実施例としての陽極酸化処理
装置を示すもので、1は槽壁にポンプ接続口2を
適数個配設するとともに底方部に循環用の管路接
続口3を設けた処理槽で、該処理槽1の外部にお
いて管路接続口3に一端を接続させた管路4の中
間には循環用のポンプ5を設けるとともに該管路
4の先方部は槽壁に沿い立ち上らせて外界空気の
吸引によつて無数の微細な気泡を通過処理液中に
形成させる水流ポンプ6の適数個を電極イ,ロの
背面位置において所要間隔下に取付け、該水流ポ
ンプ6の吐出管部7を前記ポンプ接続口2に嵌挿
固着して該吐出管部7の先端吐出口に処理槽1中
にセツトされた電極イ,ロの透孔を介して被処理
物に向けさせている。なお、前記水流ポンプ6は
管路4の先方部に配設された各分岐路に接続され
る給液口7′からポンプ室8に臨んだ先端のノズ
ル部9にわたる部分を先細テーパー状の給液路1
0に形成するとともにポンプ室8から吐出管部7
の吐出口にわたる部分を先拡きテーパー状の放液
路11に形成し、さらに、ノズル部9の下流側に
おいてポンプ室8内を吸気孔12を介し吸気管1
3に接続させるとともに該吸気管13とは別に管
路4から分岐された前記分岐路の中間部すなわち
ノズル部9の上流側には通過処理液中に空気を圧
送する送気管14を接続させて該送気管14の先
端を図示しないコンプレツサー等の圧縮空気供給
源に続かせたもので、ポンプ5を駆動させること
により処理槽1内の処理液が管路4および水流ポ
ンプ6を通じ再び処理槽1内に循環される間にノ
ズル部9からの液流の噴出によりポンプ室8内を
減圧し、吸気管13、吸気孔12を通じ外界空気
をポンプ室8内に吸引して通過処理液に混合させ
ると同時に送気管14より圧送される空気を該通
過処理液に混合させ、吐出管部7の先端吐出口か
らは吸引した空気に圧送した空気が無数の微細な
気泡として混在された処理液が被処理物に向け送
られるものとしている。なお、図中15は送気管
14の中間に設けられて圧送される空気の流量を
調節するバルブ、16は管路4の先方に配設され
る各分岐路内に設けられて通過処理液を送気管1
4からの空気と混在され易い旋回流にするための
撹拌羽根、17は送気管14内の基部に設けられ
る逆止弁である。 このように構成されたものは、在来の陽極酸化
処理装置と同様処理槽1内に処理液として所要量
の電解液を満すとともにこの処理液中に電極イ,
ロをセツトし、アルミニウム合金よりなる被処理
物ハを該電極イ,ロを対向させて通電して陽極酸
化処理を行うものであるが、この処理時において
ポンプ5を駆動させれば、処理槽1中の処理液の
一部は処理槽1の底方部に設けられている管路接
続口3よりポンプ5、管路4を経て該管路4の先
方部の電極イ,ロの背面位置に配設されている水
流ポンプ6の給液口7′に送られ、先テーパー状
の給液路10、ノズル部9、ポンプ室8′、内部
を先拡きテーパー状の放液路11とした吐出管部
7を経て電極イ,ロの透孔を介して被処理物ハ内
に向けた吐出口を通じ処理槽1内に循環されるこ
ととなる。ところが、この水流ポンプ6にポンプ
5をもつて送られてくる通過処理液は撹拌羽根1
6によつて旋回流となつて該水流ポンプ6のノズ
ル部9とポンプ5との間に設けた送気管14から
該通過処理液の圧力より大きな圧力をもつて圧送
されてくる空気が適当に混合されて比較的大きい
気泡を多量に含んだ空気混合液となり、しかも、
ノズル部9から噴出されるこの空気混合液の液流
によつてポンプ室8内は減圧されて吸気管13に
接続させた吸気孔12よりポンプ室8内に外界空
気をさらに吸い込み、無数の極めて微細な気泡が
形成されるとともに、送気管14から圧入された
空気により生じた気泡を破壊して微細な気泡を多
量に含有したものとなつているから、水流ポンプ
6の吐出口を電極イ,ロの透孔を介して被処理物
ハに向けたものとしている点と相俟つて陽極酸化
処理を行ううえにおいて次のような特長がある。
即ち、本発明においては処理槽1から引き出して
再び処理槽1に循環させる通過処理液中に送気管
14より圧送した空気と吸気管13から吸引され
る空気が多量に混在され、しかも、この空気混合
液は水流ポンプ6により減圧状態で気泡化されて
吐出管部7より被処理物ハに向けられているか
ら、処理槽1中の処理液に気泡径が極めて小さく
て液中における上昇速度の遅い微泡が多く形成さ
れ、この微泡の上昇に伴う撹拌作用と、処理槽1
から再び処理槽1内に循環される処理液の移動に
伴う撹拌作用によつて処理槽内の処理液全体の理
想的な撹拌が行われ、イオンの供給がよいうえ冷
却効率もよくてバーニングを起こすことはなく、
従つて、電流密度を上げることができて処理時間
を著しく短縮できる。さらに、処理槽1に循環さ
れる処理液自身に無数の微泡を含むことから、微
泡が被処理物の表面に均一に当る。この原因は泡
とくに2.5mm径以下の微泡は前記したように液中
の上昇速度が遅いため、水流ポンプからの処理液
の流れに乗つて被処理物の表面まで達しやすく、
被処理物の表面近傍は無数の微泡による乱流撹拌
作用により境膜が破壊されて新しい処理液が被処
理物表面にもたらされるから、陽極酸化処理効率
が上がり、またイオン濃度が均一となつて陽極酸
化皮膜の厚さは各部で均一のものとなり、さら
に、被処理物の表面近傍は各部が均一に冷却され
るから、電流密度を大きくしてもバーニングを生
じることがなくて短時間で処理を終えることがで
きる。なお、本発明が先に本出願人によつて出願
されている特願昭53−129001号と比較して特に優
れている点は先願による場合の気泡率の限界をさ
らに高めた点である。即ち、水流ポンプ6によつ
て吸気管13から取り入れられる空気の量は吸気
管13からの吸気圧がノズル部9から噴出される
噴出流の強さによつて定まる関係上吸気管13の
径をたとえ大きくしても吸気量は増えず、また、
吸気量を大きくするためポンプ圧を高めて噴出流
の強さを大きくすると処理液の流量は大きくなる
が気泡率は気泡量を流量で除したものであるた
め、ポンプ圧を大きくして流量が増えても気泡率
は大きくならず、気泡率は50%程度を上限とする
のに対し、本発明においては送気管14を通じ所
要量の空気を追加して供給できるから、気泡率の
上限を80%以上までも高めることができ、気泡に
よる被処理面の境膜破壊作用などによつて陽極酸
化処理時間を第3図に示した従来装置の約1/2、
本出願人による前記出願の装置に比較して約2/3
程度まで短縮できることとなる。なお、送気管1
4はノズル部9の上流側であれば水流ポンプ6自
身に設けることなく処理液循環用のポンプ6に続
く管路4の所要部分に設けてもよく、また、前記
説明は陽極酸化処理についてのみ説明されている
が、撹拌しながら金属の表面処理を行うメツキ処
理や酸洗処理などに使用できることは勿論であ
る。 次に、本発明装置を用いて行つた表面処理方法
の実験例を示す。 実験例 1 アルミニウム合金(JIS規格5052)よりなる500
mm×300mm×1mmの板を、第1図に示した装置を
用いて液組成、硫酸30W/V%、温度20℃、水流
ポンプのノズル径2.5mm、ポンプの圧力3.0Kg/
cm2、液循環量300/分、分岐管内圧力3.0Kg/
cm2、分岐管より管路4への空気供給量400/分
の条件で、電流密度を変えて陽極酸化皮膜の厚さ
が0.05mmに達するまで陽極酸化処理を行なつた結
果を下表に示す。
The present invention relates to a metal surface treatment apparatus used for anodizing, plating, pickling, etc. As a metal surface treatment apparatus in which the object to be treated is immersed in a treatment liquid in a treatment tank, for example, as shown in the anodization treatment apparatus shown in FIG. 3, a porous body 31 having numerous fine ventilation holes is used. is provided at the bottom of the processing tank 32 and the compressed air supplied from the compressor 34 through the compressed air supply pipe 33 connected to the porous body 31 is supplied to the processing tank 32 from the vent hole of the porous body 31.
It is known that the process liquid is released into the bottom part of the process liquid to form fine bubbles in the process liquid, and these bubbles agitate the process liquid to improve the process efficiency. Since the generation of bubbles in this type of metal surface treatment equipment is due to pressurized air, it is difficult to obtain extremely fine bubbles, and the way the bubbles hit the workpiece immersed in the treatment liquid is difficult to achieve on the bottom surface. The ion concentration is uniform near the bottom where air bubbles are more likely to hit, and the ion concentration is more uniform and cooling is also done well. On the other hand, as you move upward, the ion concentration becomes uneven and cooling becomes less effective, causing differences in the thickness and hardness of the oxide film formed on the surface of the object to be treated, and causing color unevenness. Moreover, this tendency becomes more pronounced as the current density increases, so it is not possible to increase the current density too much, so the anodizing process takes a long time, and since bubbles are formed in the porous material, even if it is porous. Even if the body is placed on the side wall of the processing tank and an attempt is made to eject air bubbles from the side toward the upper part of the object to be processed, the air bubbles have no force and will continue to rise, failing to achieve the intended purpose. Porous bodies have various problems, including the fact that they tend to become clogged during use, requiring time and effort to remove them. Therefore, in order to solve the above-mentioned problems, the present applicant has developed a water jet pump that passes countless fine bubbles through the treatment liquid by suctioning the outside air. Developed a metal surface treatment device for objects, and filed a patent application in 1984-129001.
However, in the invention of this earlier application, the bubble rate, which has a large effect on the processing time, has been applied for.
The only problem remaining was that it could only be increased to about 50%. The present invention was completed with the aim of providing a metal surface treatment apparatus that solves the above-mentioned problems, and the illustrated embodiments will be described in detail below. Fig. 1 shows an anodizing treatment apparatus as an embodiment of the present invention, in which a suitable number of pump connection ports 2 are provided on the tank wall and a circulation pipe connection port 3 is provided at the bottom of the tank. A pump 5 for circulation is provided in the middle of a pipe line 4 whose one end is connected to the pipe connection port 3 outside the processing tank 1, and the front end of the pipe line 4 is connected to the tank wall. An appropriate number of water jet pumps 6 are installed at required intervals on the backs of electrodes A and B to form countless fine bubbles in the passing treatment liquid by suction of external air. The discharge pipe part 7 of the pump 6 is inserted and fixed into the pump connection port 2, and the object to be processed is inserted into the distal end of the discharge pipe part 7 through the through holes of electrodes A and B set in the processing tank 1. I'm directing it towards. Note that the water pump 6 has a tapered supply section extending from the liquid supply port 7' connected to each branch channel arranged at the front end of the pipe line 4 to the nozzle section 9 at the tip facing the pump chamber 8. Liquid path 1
0 and the discharge pipe section 7 from the pump chamber 8.
The part extending over the discharge port is formed into a tapered liquid discharge path 11, and furthermore, the intake pipe 1 is connected to the inside of the pump chamber 8 through the intake hole 12 on the downstream side of the nozzle part 9.
3, and an air supply pipe 14 for pressurizing air into the passing treatment liquid is connected to the middle part of the branch line, that is, the upstream side of the nozzle part 9, which is connected to the intake pipe 13 and branched from the pipe line 4 separately from the intake pipe 13. The tip of the air supply pipe 14 is connected to a compressed air supply source such as a compressor (not shown), and by driving the pump 5, the processing liquid in the processing tank 1 passes through the pipe line 4 and the water pump 6 and returns to the processing tank 1. While being circulated inside the pump chamber 8, the pressure inside the pump chamber 8 is reduced by jetting out a liquid stream from the nozzle part 9, and external air is sucked into the pump chamber 8 through the intake pipe 13 and the intake hole 12 and mixed with the passing treatment liquid. At the same time, the air pumped through the air supply pipe 14 is mixed with the passing processing liquid, and from the discharge port at the tip of the discharge pipe section 7, the processing liquid in which the pumped air is mixed with the sucked air as countless fine bubbles is exposed. It is assumed that it will be sent to the processed material. In addition, in the figure, 15 is a valve provided in the middle of the air supply pipe 14 to adjust the flow rate of air to be fed under pressure, and 16 is a valve provided in each branch line arranged at the end of the pipe 4 to control the passing treatment liquid. Air pipe 1
17 is a check valve provided at the base of the air pipe 14. In the device configured in this way, the processing tank 1 is filled with a required amount of electrolyte as a processing solution, and electrodes and electrodes are placed in this processing solution, similar to conventional anodizing processing equipment.
B is set, and the workpiece C made of aluminum alloy is anodized by being energized with the electrodes A and B facing each other.During this process, if the pump 5 is driven, the processing tank A part of the processing liquid in 1 is supplied from the pipe connection port 3 provided at the bottom of the processing tank 1 to the pump 5 and the pipe 4 to the back side of electrodes A and B at the front end of the pipe 4. The liquid is sent to the liquid supply port 7' of the water flow pump 6 arranged in It is circulated into the processing tank 1 through the discharge pipe section 7, through the through holes of the electrodes A and B, and through the discharge port directed into the object to be treated C. However, the passing treatment liquid sent to this water flow pump 6 by the pump 5 is mixed with the stirring blade 1.
6, the air becomes a swirling flow and is pumped from the air pipe 14 provided between the nozzle portion 9 of the water flow pump 6 and the pump 5 with a pressure higher than that of the passing treatment liquid. When mixed, the air mixture becomes an air mixture containing a large amount of relatively large bubbles, and
The inside of the pump chamber 8 is depressurized by the liquid flow of the air mixture jetted from the nozzle part 9, and outside air is further sucked into the pump chamber 8 through the intake hole 12 connected to the intake pipe 13, causing countless air leaks. Since fine bubbles are formed and the bubbles generated by the air pressurized from the air supply pipe 14 are destroyed, resulting in a product containing a large amount of fine bubbles, the discharge port of the water pump 6 is connected to the electrode. Coupled with the fact that the anodic oxidation treatment is directed toward the object to be treated (C) through the through holes (B), the following features are achieved in carrying out the anodizing treatment.
That is, in the present invention, a large amount of air pumped through the air supply pipe 14 and air sucked through the intake pipe 13 are mixed in a large amount of the passing treatment liquid that is drawn out from the processing tank 1 and circulated back to the processing tank 1. Since the mixed liquid is bubbled under reduced pressure by the water pump 6 and directed to the object to be treated from the discharge pipe section 7, the bubble diameter in the processing liquid in the processing tank 1 is extremely small and the rate of rise in the liquid is low. Many slow microbubbles are formed, and the stirring action accompanying the rise of these microbubbles and the processing tank 1
The stirring action that accompanies the movement of the processing liquid that is then circulated back into the processing tank 1 provides ideal stirring of the entire processing liquid in the processing tank, providing good supply of ions and good cooling efficiency to prevent burning. without causing it,
Therefore, the current density can be increased and the processing time can be significantly shortened. Furthermore, since the processing liquid itself that is circulated in the processing tank 1 contains countless microbubbles, the microbubbles uniformly hit the surface of the object to be processed. The reason for this is that bubbles, especially microbubbles with a diameter of 2.5 mm or less, rise slowly in the liquid as mentioned above, so they easily reach the surface of the object to be treated by riding the flow of treatment liquid from the water pump.
Near the surface of the object to be treated, the membrane is destroyed by the turbulent stirring action of countless microbubbles and new treatment liquid is brought to the surface of the object to be treated, increasing the efficiency of the anodizing process and making the ion concentration uniform. As a result, the thickness of the anodic oxide film is uniform in each part, and each part near the surface of the object to be treated is uniformly cooled, so even if the current density is increased, no burning occurs and the process can be completed in a short time. processing can be completed. The particular advantage of the present invention compared to Japanese Patent Application No. 129001/1983 previously filed by the present applicant is that it further increases the limit of the bubble rate in the case of the earlier application. . That is, the amount of air taken in from the intake pipe 13 by the water pump 6 is determined by the diameter of the intake pipe 13 because the intake pressure from the intake pipe 13 is determined by the strength of the jet stream jetted from the nozzle part 9. Even if it is increased, the amount of intake air will not increase, and
If the pump pressure is increased to increase the strength of the jet flow in order to increase the intake air volume, the flow rate of the processing liquid will increase, but since the bubble rate is the bubble volume divided by the flow rate, increasing the pump pressure will increase the flow rate. Even if the bubble rate increases, the bubble rate does not increase, and the bubble rate is limited to about 50%.However, in the present invention, since the required amount of air can be additionally supplied through the air supply pipe 14, the bubble rate can be set at an upper limit of 80%. % or more, and the anodizing process time is approximately 1/2 that of the conventional equipment shown in Figure 3, due to the film-destructive action of bubbles on the surface to be treated.
Approximately 2/3 compared to the device of the said application by the present applicant.
This means that it can be shortened to a certain extent. In addition, air pipe 1
4 may be provided at a required portion of the pipe line 4 following the pump 6 for circulating the treatment liquid, instead of being provided in the water flow pump 6 itself, as long as it is upstream of the nozzle portion 9. Also, the above description only relates to anodizing treatment. Although described above, it goes without saying that it can be used for plating, pickling, etc., where metal surfaces are treated while being stirred. Next, an experimental example of a surface treatment method performed using the apparatus of the present invention will be shown. Experimental example 1 500 made of aluminum alloy (JIS standard 5052)
A plate of mm x 300 mm x 1 mm was prepared using the apparatus shown in Fig. 1.The liquid composition was determined using the apparatus shown in Figure 1.The liquid composition was sulfuric acid 30W/V%, the temperature was 20℃, the nozzle diameter of the water pump was 2.5mm, and the pump pressure was 3.0Kg/
cm 2 , liquid circulation rate 300/min, branch pipe pressure 3.0Kg/
cm 2 , and the air supply rate from the branch pipe to conduit 4 was 400/min, and the anodizing treatment was performed by changing the current density until the thickness of the anodic oxide film reached 0.05 mm. The results are shown in the table below. show.

【表】 このように本発明装置を用いた場合は30アンペ
ア/dm2、4.2分にて処理可能であり、陽極酸化
処理に要する時間は第3図に示す従来装置による
場合の約1/2、先願の特願昭53−129001号の装置
を用いた場合の約2/3に短縮され、生産性が著し
く向上した。 本発明は前記説明によつて明らかなように、外
界空気の吸引によつて無数の微細な気泡を通過処
理液中に形成させる水流ポンプを被処理物に向け
て設けてあり、しかも、水流ポンプによる空気吸
引量の不足分を水流ポンプのノズル部と処理液循
環用のポンプとの間に設けた送気管より通過処理
液中に強制圧送するとともにこれにより生ずる比
較的大きい気泡を外気吸引と同時に破壊して微細
化させるようにしたから、槽内の処理液は適度に
撹拌されるうえに水流ポンプにより還流された処
理液に含まれる無数の微細な気泡が各種の表面処
理を行ううえに極めて有効に作用するもので、処
理時間を著しく短縮することができるうえに優れ
た表面処理結果の得られる金属の表面処理装置と
して産業の発達に寄与することが極めて大きいも
のである。
[Table] As shown above, when using the device of the present invention, processing can be performed at 30 amperes/dm 2 in 4.2 minutes, and the time required for anodizing treatment is approximately 1/2 that of using the conventional device shown in Figure 3. , the time was reduced to about 2/3 compared to when using the device disclosed in the earlier patent application No. 129001/1983, and productivity was significantly improved. As is clear from the above description, the present invention is provided with a water jet pump facing the object to be treated, which forms countless fine bubbles in the passing treatment liquid by suctioning outside air. The insufficient amount of air suction is forcibly pumped into the processing liquid through an air pipe installed between the nozzle of the water pump and the processing liquid circulation pump, and the relatively large air bubbles generated by this are simultaneously sucked in from outside air. Since the process is broken down and made into fine particles, the treatment liquid in the tank is moderately agitated, and the countless minute bubbles contained in the treatment liquid refluxed by the water pump are extremely effective for performing various surface treatments. It works effectively, can significantly shorten processing time, and can greatly contribute to the development of industry as a metal surface treatment device that can provide excellent surface treatment results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す一部切欠正面
図、第2図は同じく要部の一部切欠正面図、第3
図は従来の金属の表面処理装置の1例を示す一部
切欠正面図である。 1:処理槽、5:循環用のポンプ、6:水流ポ
ンプ、9:ノズル部、13:吸気管、14:送気
管。
FIG. 1 is a partially cutaway front view showing an embodiment of the present invention, FIG. 2 is a partially cutaway front view of the main part, and FIG.
The figure is a partially cutaway front view showing an example of a conventional metal surface treatment apparatus. 1: treatment tank, 5: circulation pump, 6: water pump, 9: nozzle part, 13: intake pipe, 14: air supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 処理槽1中にセツトされた電極イ,ロの背面
に、ポンプ5により循環される処理液を噴出する
ノズル部9と、ノズル部9から噴出される液流に
よる減圧を利用して外気を吸引する吸引孔12
と、吸引孔12から吸引された外気によつて形成
された無数の微細な気泡を含む処理液を吐出する
吐出管部7とを備えた水流ポンプ6を設けるとと
もに、ノズル部9の上流側には処理液中に空気を
圧送する送気管14を接続し、また該水流ポンプ
6の吐出管部7の先端を電極イ,ロの透孔を介し
て被処理物ハに向けたことを特徴とする金属の表
面処理装置。
1 A nozzle part 9 that spouts out the processing liquid circulated by the pump 5 is installed on the back side of the electrodes A and B set in the processing tank 1, and outside air is pumped out using the reduced pressure caused by the liquid flow jetted from the nozzle part 9. Suction hole 12 for suction
and a discharge pipe section 7 for discharging a processing liquid containing countless fine bubbles formed by the outside air sucked from the suction hole 12. is characterized in that an air supply pipe 14 for pumping air into the processing liquid is connected, and the tip of the discharge pipe section 7 of the water pump 6 is directed toward the object to be processed C through the through holes of the electrodes A and B. Metal surface treatment equipment.
JP2648879A 1979-03-07 1979-03-07 Surface treatment apparatus for metal, etc. Granted JPS55119199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2648879A JPS55119199A (en) 1979-03-07 1979-03-07 Surface treatment apparatus for metal, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2648879A JPS55119199A (en) 1979-03-07 1979-03-07 Surface treatment apparatus for metal, etc.

Publications (2)

Publication Number Publication Date
JPS55119199A JPS55119199A (en) 1980-09-12
JPS6128757B2 true JPS6128757B2 (en) 1986-07-02

Family

ID=12194880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2648879A Granted JPS55119199A (en) 1979-03-07 1979-03-07 Surface treatment apparatus for metal, etc.

Country Status (1)

Country Link
JP (1) JPS55119199A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116800A (en) * 1985-11-15 1987-05-28 Hitachi Micro Comput Eng Ltd Plating device
KR100739298B1 (en) 2006-07-19 2007-07-12 삼성에스디아이 주식회사 The apparatus for electrolytic polishing and mask thereused
JP6029537B2 (en) * 2013-05-14 2016-11-24 株式会社ハイビック平田 Surface treatment apparatus and treatment method for workpiece
JP6914073B2 (en) * 2017-03-28 2021-08-04 上村工業株式会社 Surface treatment equipment

Also Published As

Publication number Publication date
JPS55119199A (en) 1980-09-12

Similar Documents

Publication Publication Date Title
JP4722102B2 (en) Process and apparatus for forming ceramic coatings on metals and alloys
JP2613702B2 (en) Apparatus and electrochemical method for microfinishing of stainless steel type bands
CN1262691C (en) An improved process and apparatus for cleaning and/or coating metal surfaces using electro-plasma technology
JPS6128038B2 (en)
JP4947282B2 (en) Plating method and apparatus
JPS6128757B2 (en)
JP6029537B2 (en) Surface treatment apparatus and treatment method for workpiece
CN112809456A (en) Micro-nano bubble enhanced plasma polishing method
JP3091583B2 (en) Method and apparatus for supplying oxygen to electroless plating solution
US20220170161A1 (en) Substrate plating apparatus including hybrid paddle that simultaneously circulates and stirs plating solution and removes air bubbles
JPH10158888A (en) Anodic oxidation treatment device
KR102215605B1 (en) Apparatus for anodizing metal using micro bubble
JPS59116398A (en) Horizontal type electroplating cell
JP4235710B2 (en) Via filling plating method and apparatus for substrate having blind via hole
CN110670113A (en) Stirring device of electroplating system
JP2723167B2 (en) Composite plating method for hollow members
JP2015077570A (en) Structure of nozzle to be used in gas dissolution liquid manufacturing system
TWM572376U (en) Stirrer for electroplating system
JPH031390B2 (en)
JP3706862B2 (en) Plating method and apparatus
RU2009864C1 (en) Method for jet blasting
JP3074024U (en) Solution tank jet device
JP2002038299A (en) Continuous automatic plating equipment
JPS5924200B2 (en) Electrolytic pickling method for stainless steel strip
JPH0730688Y2 (en) Vertical electroplating equipment