JPS61277882A - Helium compressor - Google Patents

Helium compressor

Info

Publication number
JPS61277882A
JPS61277882A JP12120385A JP12120385A JPS61277882A JP S61277882 A JPS61277882 A JP S61277882A JP 12120385 A JP12120385 A JP 12120385A JP 12120385 A JP12120385 A JP 12120385A JP S61277882 A JPS61277882 A JP S61277882A
Authority
JP
Japan
Prior art keywords
compressor
oil
motor
lubricating oil
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12120385A
Other languages
Japanese (ja)
Inventor
Katsumi Hokotani
克己 鉾谷
Satoru Fujimoto
悟 藤本
Shigeki Hagiwara
萩原 茂喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12120385A priority Critical patent/JPS61277882A/en
Publication of JPS61277882A publication Critical patent/JPS61277882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent overheat of a motor and also prevent deterioration of lubricating oil for higher lubricating performance by directly cooling lubricating oil inside the closed chamber in a closed-type helium compressor and spraying the lubricating oil on the motor. CONSTITUTION:A water cooling heat-exchanger 13 is positioned in lubricating oil of a lubricating oil reservoir 8 inside a closed container to cool the lubricating oil. A through-hole is formed in both a compressor body 6 within the closed container and the rotary shaft 10 of the motor 7 and a pump mechanism 11 is built in said through-hole. The rotary shaft 10 is turned by the operation of the compressor 1 to actuate the pump mechanism 11, whereby having cooled lubricating oil sprayed on the motor 7 from the upper site.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はヘリウム圧縮機に係り、特に調1滑油及び電動
機を冷却するための冷却機構に関する。 (従来の技術) ヘリウムを冷媒として使用するヘリウム冷凍装置は、−
200’l:以下の極低温が容易に得られることから従
来より極低温用として利用されている。 従来の小型ヘリウム冷凍装置は第4図に示す如く高圧ド
ーム形のヘリウム圧縮機fi+と膨張機、冷却器等から
なる利用側ユニツ) [21とをガス送り管131及び
ガス戻し管+41で接続してなる回路構造であるが、ヘ
リウムガスの断熱係数かに=1.66と高い値を有して
いるため、一般に圧縮比が2〜4程度で使用され、30
℃程度で吸入したヘリウムガスは吐出側では20Q℃以
上にもなる。 その結果、高圧ドーム形のヘリウム圧縮m 111では
高温による油粘度の低下による潤滑不良、高温にもとづ
く油の劣化及び圧縮機吐出弁の折損等の問題が生じる。 (発明が解決しようとする問題点) か\る点から、圧縮中のヘリウムガスを冷却するタメに
油インジェクションが実施されており、第4肉において
圧縮機下部に溜められた高圧雰囲気中の潤滑油(以下前
と略称する)を架構15)の外面に巻き付けられた前コ
イルガに流す過程で、この油コイル闘に熱交換可能とな
して前記架構(5)の外面に巻き付けてなる冷却水フィ
ル蜘によってl00℃程度から30℃程度まで冷却した
後、オリアイス冗を介し前記ガス戻し管(4)内のヘリ
ウムガス中に噴射注入させることにより、圧縮m [1
1の吐出弁a9近辺の温度を120〜130℃程度まで
低下し得るようにしていたC実願昭59−1845)号
参照)。 かくすることによって、吐出弁付近の局部温度を低下さ
せ弁材の温度を低く保持して折損の防止をはかり、また
、油の劣化防止ならびに油粘度増大により各部の摺動部
の潤滑性の向上を果させていた。 しかしながら一方では、油を戻りヘリウムガス中に注入
しているために、(イ)吐出弁α9に対する衝撃力が別
途発生する、
(Industrial Application Field) The present invention relates to a helium compressor, and more particularly to a cooling mechanism for cooling a hydraulic oil and an electric motor. (Prior art) Helium refrigeration equipment that uses helium as a refrigerant is -
200'l: It has been used for cryogenic purposes since it can easily obtain cryogenic temperatures below 200'l. As shown in Fig. 4, a conventional small helium refrigeration system connects a user unit (21) consisting of a high-pressure dome-shaped helium compressor fi+, an expander, a cooler, etc. with a gas feed pipe 131 and a gas return pipe +41. However, since helium gas has a high thermal insulation coefficient of 1.66, it is generally used at a compression ratio of about 2 to 4, and 30
Helium gas inhaled at a temperature of about 0.degree. C. reaches a temperature of 20Q.degree. C. or more on the discharge side. As a result, the high-pressure dome-shaped helium compressor m 111 suffers from problems such as poor lubrication due to a decrease in oil viscosity due to high temperatures, oil deterioration due to high temperatures, and breakage of the compressor discharge valve. (Problems to be Solved by the Invention) For this reason, oil injection is carried out to cool the helium gas being compressed, and in the fourth part, oil injection is performed to cool down the helium gas that is being compressed. In the process of flowing oil (hereinafter abbreviated as front) to the front coil coil wrapped around the outer surface of the frame 15), a cooling water filter is formed so as to be able to exchange heat with the oil coil and wrapped around the outer surface of the frame (5). After cooling the helium gas from about 100°C to about 30°C with a spider, it is injected into the helium gas in the gas return pipe (4) through an orifice, thereby compressing m [1
(See C Utility Application No. 1845/1983) in which the temperature near the discharge valve a9 of No. 1 can be lowered to about 120 to 130°C). By doing this, the local temperature near the discharge valve is reduced and the temperature of the valve material is kept low to prevent breakage, and the lubricity of each sliding part is improved by preventing oil deterioration and increasing oil viscosity. I was making it happen. However, on the other hand, since the oil is returned and injected into the helium gas, (a) an additional impact force is generated on the discharge valve α9;

【口】′?Fji圧縮が相当貴行なわれる
ことlこより圧縮機+11の各部に応力が発生する・I
/i圧縮機+11の運転圧力、主として差圧の変動によ
りインジェクション量の大巾な変化による適正量の制御
が困難である、等の欠点は免れ得なかった。 また、ヘリウムガスの熱容量はフロンガスに比して%〜
l/108度と小さいため、ヘリウムガスで電動機(7
)のフィルを冷却するのが困難である点から圧縮機の外
部に水を流通させる熱交換器を巻きつけて、10℃〜3
0℃程度の冷水を流して電動機(7)のコイルを冷却す
るのが一般的であったが、架Wにフィルを巻きつけるの
が複雑な手数を要していて製作困難であった。 このように従来のヘリウム圧縮機が種々の問題点を有し
ている事実に対処して本発明は成されたものであって、
圧縮機の油溜め内に簡単な構造の熱交換器を設けると共
に、通常の圧縮機が普遍的に備えている油ポンプの機能
を利用することによって、冷却された油により圧縮機本
体、圧縮機用電動機及び圧縮中のガスを有効に冷却する
と共に、ガス冷却を油インジェクションに殆ど又は全く
依存することなく行わしめて油圧縮の現象を可及的に低
減せしめ、もって尚滑性能を安定的に高めて装置の信頼
性向上をはかる点を目的とする。 (問題点を解決するための手段) しかして本発明は圧縮機本体(61と電動機(7)とを
上下関係に配置し、かつ軸(10)を共通させて架構渇
1内に収設し、冷媒にヘリウムを用いてなる圧縮機にお
いて、冷却水を流通させる伝熱管からなる熱交換器03
1を前記架構15)内の油溜め(8)に配設する一方、
前記軸+101内に該軸(10)方向に延設した通路を
備えて前記油溜め(8]の油を前記電動機(7)の上部
に供給し得るポンプ機構(!11を圧縮機+11に付設
した構成としたものである。 (作用) 本発明は前記熱交換器[131によって油溜め(81に
存する曲を冷却し、同時に冷却された油をポンプ機構(
1旧こより電動機(7)の上部に供給して電動機[7)
巻線の上部より落下せしめて巻線を冷却することが可能
である。 (実施例) 以下、本発明の実施例を添付図面にもとづいて説明す、
る。 第1図は本発明の第1実施例を示し、■】は高圧ドーム
形のヘリウム圧縮機で膨!II!機、冷却器等からなる
利用側ユニット
【mouth】'? Due to the fact that Fji compression is carried out considerably, stress is generated in each part of the compressor +11.
The operating pressure of the /i compressor +11, mainly due to fluctuations in differential pressure, led to wide changes in the injection amount, making it difficult to control the appropriate amount. Also, the heat capacity of helium gas is ~% compared to fluorocarbon gas.
Since it is small at 1/108 degrees, an electric motor (7 degrees) using helium gas
) Since it is difficult to cool the fill, a heat exchanger that circulates water around the outside of the compressor is wrapped around the compressor.
It was common practice to cool the coil of the electric motor (7) by running cold water at about 0°C, but winding the fill around the frame W required complicated steps and was difficult to manufacture. The present invention has been made in response to the fact that conventional helium compressors have various problems.
By installing a simple heat exchanger in the oil reservoir of the compressor and using the oil pump function that is universally provided in ordinary compressors, the cooled oil is used to cool the compressor body and the compressor. In addition to effectively cooling the electric motor and the gas being compressed, the gas cooling is performed with little or no dependence on oil injection, thereby reducing the phenomenon of oil compression as much as possible, thereby stably improving the lubrication performance. The purpose is to improve the reliability of the equipment. (Means for Solving the Problems) Accordingly, the present invention arranges the compressor main body (61) and the electric motor (7) in a vertical relationship, shares the shaft (10), and houses the compressor body (61) in the frame structure 1. In a compressor using helium as a refrigerant, a heat exchanger 03 consisting of a heat transfer tube through which cooling water flows
1 is disposed in the oil reservoir (8) in the frame 15),
A pump mechanism (!11 is attached to the compressor +11) that is provided with a passage extending in the direction of the axis (10) in the shaft +101 and can supply oil from the oil reservoir (8) to the upper part of the electric motor (7). (Function) The present invention cools the curve existing in the oil reservoir (81) by the heat exchanger [131, and at the same time pumps the cooled oil to the pump mechanism (
1 Supply the upper part of the electric motor (7) from the old one to the electric motor [7]
It is possible to cool the winding by letting it fall from the top of the winding. (Example) Hereinafter, an example of the present invention will be described based on the attached drawings.
Ru. FIG. 1 shows a first embodiment of the present invention, where ■] is expanded using a high-pressure dome-shaped helium compressor. II! User unit consisting of a machine, cooler, etc.

【2)との間をガス送り管【31及びガ
ス戻し管(4)で循環的に接続せしめてヘリウム冷凍装
置を構成している。 圧縮機H1の架構(5)内には電動機(以下モータと称
す)(7)とロータリ形圧縮機本体(6)とを上下の関
係で配置し、かつ同軸直結させて収納せしめており、そ
して架構(5)の内底部を油溜め(8]となしている。 叙上の構成になる圧縮機H1は前記前溜め(81内に熱
交換器(131を配設せしめているが、この熱交換器1
131は伝熱管を例えば2重コイル状に巻装してなる構
造であって、これを油溜め+81内に立設せしめている
。 上記熱交換器(13)は両端部を架構15)に気密貫通
させて外方に取り出して、一端部を冷却水系の送り管旧
)に、他端部を同じく戻り管QI5)に夫々接続せしめ
て、冷却水循環回路ζこ形成している。 圧縮機+11はさらに、第2図に示す如く圧縮機本体1
61とモータ(7)とに共通の軸(10)を中空軸に形
成して該中空部を通路となすと共に、前記中空部内にリ
ボン状の捩り、[fll+を介挿させているが、この捩
り板+II+は圧縮機本体(6)の回転方向と捩り方向
とに相関々係を有するものであって、らせんが油溜め(
8)に向けて下向きに前進する如きらせん送りになって
いることが必要である。 しかして前記軸[01の上端部には、開口を塞がせて円
盤t121を水平に横設し固着させていると共に該円盤
+121の直下の軸周部分に複数個の礼α0を分散して
穿設せしめている。 かく構成した圧縮機【11は、モータ(7)に通電して
態動すると、圧縮機本体(61において圧縮されたヘリ
ウムガスは、ガス送り管(31の途中に設けられた冷却
器+91で冷却された後、約22 atgの高圧ガスの
状態で利用個ユニット(21で膨張しかつ冷却作用をな
し、そして冷却部を−263〜−243℃(10〜30
°K)に冷却し、約6 atgの低圧ガスとなって圧縮
機(11に戻る。 この冷凍運転中に前記油溜め(8]内の、油αaが高温
となってくると、これを図示しない温度検出器が検出し
て熱交換器a3Iに接続した送り管Q41中に介設して
なる流量制御弁(図示せず)に開弁指令を発する結果、
熱交換器Q31に冷却水が流れて油α&を伝熱管壁を介
し直接的に冷却し、油温を約60〜70℃の一定温度に
保持せしめる。      ゛この場合に、冷却水によ
って油の冷却が十分ζこ成されるところから、この冷却
された油(+81が圧縮機本体(61を直接冷却する口 また、油溜め(8)の冷却された油αaは捩り板(11
1のポンプ作用によって軸(I01内中空邪を昇ってモ
ータ(7)上部に至り、円盤α2と衝突して孔(161
から飛び出して再び円盤t+21に衝突し、遠心力によ
り散布された後、降下してモータ(7]の固定子と回転
子の間または圧縮機本体【61の側方を通って油溜め(
81に戻る。 従って冷却された油[+81によってモータ【7)も冷
却される。 勿論、本来の圧am潤滑用に利用される油α&は、軸1
1Q+側面に沿う給油孔tn、l2D)から尚滑面(軸
受及び圧i機フェイス面等)を通り圧縮室曲に至り、弁
(」9)を通り吐出され、下部の油溜め(8)に戻るの
で、圧縮中のガスは、冷却されて吐出ガス温度を十分低
下させることが可能である。 なお、第1図々示例は前記捩り板nt+の下端邪に軸1
101を回転中心とした回転翼訂を横設せしめて1泊溜
め(8)内の油Q81を攪拌し得るように構成している
ので、油Uは熱交換器031の伝熱管とより接触して冷
却が促進される。 次に、@3図に示す第2実施例について説明するが、前
記第1実施例と同じ構造については詳細な説明は省略す
る。 この第2実施例は圧縮機本体16】とモータ(7)との
配置が逆関係の上下、すなわち圧縮機本体16)が上で
モータ(7)が下の配置となっているのが基本的に異な
っていて、従って共通の軸(10)は中間部のモータ(
7)に対し直上方となる位置まで中空に形成して、この
中空部の上端に連絡させたノズル囚、固をモータ(7)
の直上部に、軸1101と一体に横設せしめる一方、中
望部内には第1実施例と同じく捩り板曲を挿設せしめて
いる。 この例においても、熱交換器αJが泊溜めfi+で油(
(8)を冷却し、この油が圧縮機本体(61の本来の潤
滑に利用される一方、捩り板+111によってモータ(
7)上方に導かれ、モータ+7)を冷却する点は第1実
施例と同じである。 なお、第1実施例と第2実施例とは圧縮機本体(61と
電動機(7)との上下関係が逆になっているが、いずれ
が上部に配置されても同様の作用を奏するものである。 また、両実施例において捩り板(11]はポンプ機構と
なるものであって、か−るポンプ作用を同様に行い得る
他の変型は、また当然可能であり、例えば通常の圧縮機
において回転軸に関連して給油ポンプが付設されてなる
構造を、若干の改良を施すことによって本発明に適用し
得ることは言うまでもなく、各種の変型もまた本発明に
包含される。 (発明の効果) 本発明は以上述べた構成及び作用をなすものであって、
油溜め(8)内に設けた熱交換器+131に冷却水を流
通して油を直接的に冷却せしめており、さらにこの冷却
された油をポンプ機構(l旧こよって電動機(7)上部
に送り、電動機(7)に散布し冷却せしめる構成である
から、圧縮機外部に冷媒と潤滑油との水冷却熱交換器の
巻付が不用になり、圧縮機本体(6)及び電動機(7)
巻線の温度が過度に上昇することは抑えられて、吐出弁
の破損、油の劣化、!動機(7)の過熱を防止し得ると
共に、吐出ガス温度を最通な値に低下させることが可能
である。 ま・た、ガス戻し管への油インジェクションを行う必要
が全くなく、油圧縮の過量による圧縮機損傷、吐出弁の
破損、制御の不安定さにもとづく油温の変動などのイン
ジェクションの実施による不都合は解消されて安定した
油潤滑を実現できるので信頼性の高いヘリウム圧縮機を
提供し得る利点がある。
A helium refrigeration system is constructed by cyclically connecting the gas supply pipe (2) and the gas return pipe (4) with a gas feed pipe (31) and a gas return pipe (4). In the frame (5) of the compressor H1, an electric motor (hereinafter referred to as the motor) (7) and a rotary type compressor main body (6) are arranged in a vertical relationship and are housed in a coaxial direct connection, and The inner bottom of the frame (5) is an oil sump (8).The compressor H1 having the above configuration has a heat exchanger (131) disposed in the front sump (81). Exchanger 1
Reference numeral 131 has a structure in which a heat exchanger tube is wound, for example, in a double coil shape, and is set upright in the oil reservoir +81. The heat exchanger (13) has both ends passed through the frame 15) in an airtight manner and taken out to the outside, and one end is connected to the cooling water system's feed pipe (old) and the other end is connected to the same return pipe QI5). This forms a cooling water circulation circuit. The compressor +11 further includes a compressor body 1 as shown in FIG.
A shaft (10) common to the motor (7) and the shaft (10) is formed into a hollow shaft, and the hollow part is used as a passage. The torsion plate +II+ has a correlation between the rotation direction and the torsion direction of the compressor main body (6), and the helix is connected to the oil sump (
8) It is necessary that the feed be in a spiral manner as if it were moving downwards toward point 8). However, at the upper end of the shaft [01, a disk t121 is horizontally installed and fixed by closing the opening, and a plurality of bows α0 are distributed on the circumferential portion of the shaft directly below the disk +121. It is perforated. When the compressor [11] configured in this manner is activated by energizing the motor (7), the helium gas compressed in the compressor body (61) is cooled by the cooler +91 provided in the middle of the gas feed pipe (31). After that, the unit (21) is expanded and cooled in the state of high pressure gas of about 22 atg, and the cooling part is heated to -263 to -243°C (10 to 30°C).
°K) and returns to the compressor (11) as a low pressure gas of about 6 atg.During this refrigeration operation, when the oil αa in the oil sump (8) becomes high temperature, this is shown in the figure. As a result, a temperature sensor detects the temperature and issues a valve opening command to a flow rate control valve (not shown) interposed in the feed pipe Q41 connected to the heat exchanger a3I.
Cooling water flows through the heat exchanger Q31 to directly cool the oil α& through the heat transfer tube wall, thereby maintaining the oil temperature at a constant temperature of about 60 to 70°C.゛In this case, since the oil is sufficiently cooled by the cooling water, this cooled oil (+81) is directly cooled by the compressor main body (61) and also by the cooled oil sump (8). Oil αa is applied to the torsion plate (11
Due to the pumping action of 1, the shaft (I01) rises through the hollow shaft (I01) and reaches the upper part of the motor (7), collides with the disk α2 and forms the hole (161).
It jumps out from the disk and collides with the disk t+21 again, and after being dispersed by centrifugal force, it descends and passes between the stator and rotor of the motor (7) or the side of the compressor body [61] and into the oil sump (
Return to 81. Therefore, the motor [7] is also cooled by the cooled oil [+81]. Of course, the oil α & used for the original pressure am lubrication is the shaft 1
From the oil supply holes (tn, l2D) along the 1Q+ side, it passes through smooth surfaces (bearings, pressurizer face, etc.) to the compression chamber curve, is discharged through the valve (9), and is discharged into the oil reservoir (8) at the bottom. As the gas is returned, the gas being compressed is cooled and the temperature of the discharged gas can be sufficiently lowered. In addition, in the example shown in the first figure, there is a shaft 1 at the lower end of the torsion plate nt+.
Since the rotor blade 101 is installed horizontally and is configured to stir the oil Q81 in the overnight reservoir (8), the oil U is more likely to come into contact with the heat exchanger tubes of the heat exchanger 031. cooling is accelerated. Next, a second embodiment shown in Fig. @3 will be described, but detailed explanation of the same structure as the first embodiment will be omitted. In this second embodiment, the arrangement of the compressor body 16) and the motor (7) is basically in an inverse relationship, that is, the compressor body 16) is on top and the motor (7) is on the bottom. are different and therefore the common axis (10) is the intermediate motor (
7), and the nozzle cap, which is connected to the upper end of this hollow part, is connected to the motor (7).
It is horizontally installed directly above the shaft 1101, integrally with the shaft 1101, and a torsion plate is inserted in the central viewing part as in the first embodiment. In this example as well, the heat exchanger αJ is filled with oil (
(8), and this oil is used for the original lubrication of the compressor body (61), while the torsion plate +111 drives the motor (61).
7) It is the same as the first embodiment in that it is guided upward and cools the motor +7). Note that in the first and second embodiments, the vertical relationship between the compressor main body (61 and the electric motor (7)) is reversed, but the same effect can be achieved no matter which one is placed at the top. In addition, in both embodiments, the torsion plate (11) serves as a pump mechanism, and other modifications that can perform the same pumping action are of course also possible, for example in a normal compressor. It goes without saying that the structure in which a refueling pump is attached in relation to the rotating shaft can be applied to the present invention by making some improvements, and various modifications are also included in the present invention. ) The present invention has the configuration and operation described above,
Cooling water is passed through a heat exchanger +131 installed in the oil sump (8) to directly cool the oil, and the cooled oil is then transferred to the upper part of the electric motor (7). Since the configuration is such that the water is distributed to the electric motor (7) and cooled, there is no need to wrap a water-cooled heat exchanger for refrigerant and lubricating oil outside the compressor, and the compressor body (6) and the electric motor (7)
This prevents the winding temperature from rising excessively, causing damage to the discharge valve and deterioration of the oil! It is possible to prevent overheating of the motor (7) and to lower the discharge gas temperature to an acceptable value. In addition, there is no need to inject oil into the gas return pipe, and there are no inconveniences caused by injection, such as damage to the compressor due to excessive oil compression, damage to the discharge valve, and fluctuations in oil temperature due to unstable control. This has the advantage of being able to provide a highly reliable helium compressor since stable oil lubrication can be achieved by eliminating this problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例に係る装置回路図、第2図及
び第3図は本発明の各実施例の略示構造図、第4図は従
来のヘリウム冷凍装置回路図であ゛る。 (61・・・架構、16)・・・圧縮機本体。 (7)・・・電動機、(81・・・油溜め。 +101・・・軸、  fll+・・・ポンプ機構。 LI31・・・熱交換器。 第1図 第2図 第3図
FIG. 1 is a circuit diagram of a device according to an embodiment of the present invention, FIGS. 2 and 3 are schematic structural diagrams of each embodiment of the present invention, and FIG. 4 is a circuit diagram of a conventional helium refrigeration system. Ru. (61...Frame, 16)...Compressor main body. (7)... Electric motor, (81... Oil sump. +101... Shaft, flll+... Pump mechanism. LI31... Heat exchanger. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機本体(6)と電動機(7)とを上下関係に配
置し、かつ軸(10)を共通させて架構(5)内に収設
し、冷媒にヘリウムを用いてなる圧縮機において、冷却
水を流通させる伝熱管からなる熱交換器(13)を前記
架構(5)内の油溜め(8)に配設する一方、前記軸(
10)内に該軸(10)方向に延設した通路を備えて前
記油溜め(8)の油を前記電動機(7)の上部に供給し
得るポンプ機構(11)を圧縮機(1)に付設したこと
を特徴とするヘリウム圧縮機。
1. In a compressor that uses helium as a refrigerant, the compressor body (6) and the electric motor (7) are arranged in a vertical relationship and housed in a frame (5) with a common shaft (10). , a heat exchanger (13) consisting of a heat transfer tube through which cooling water flows is disposed in an oil reservoir (8) in the frame (5), while the shaft (
10) a pump mechanism (11) provided in the compressor (1) with a passage extending in the direction of the axis (10) and capable of supplying oil from the oil reservoir (8) to the upper part of the electric motor (7); A helium compressor characterized by being attached.
JP12120385A 1985-06-03 1985-06-03 Helium compressor Pending JPS61277882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12120385A JPS61277882A (en) 1985-06-03 1985-06-03 Helium compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12120385A JPS61277882A (en) 1985-06-03 1985-06-03 Helium compressor

Publications (1)

Publication Number Publication Date
JPS61277882A true JPS61277882A (en) 1986-12-08

Family

ID=14805415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12120385A Pending JPS61277882A (en) 1985-06-03 1985-06-03 Helium compressor

Country Status (1)

Country Link
JP (1) JPS61277882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090345A1 (en) * 2010-12-27 2012-07-05 三菱電機株式会社 Refrigerant compressor
JP2016186238A (en) * 2015-03-27 2016-10-27 株式会社豊田自動織機 Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090345A1 (en) * 2010-12-27 2012-07-05 三菱電機株式会社 Refrigerant compressor
JP2016186238A (en) * 2015-03-27 2016-10-27 株式会社豊田自動織機 Compressor

Similar Documents

Publication Publication Date Title
US3744935A (en) Cooling systems for motor driven pumps and the like
JP4561326B2 (en) Fluid machinery
US3795117A (en) Injection cooling of screw compressors
JP4816220B2 (en) Refrigeration equipment
JPH10131889A (en) Compressor for perforator
CN106321499A (en) Turbo machine and refrigerating cycle apparatus
WO2014083901A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP3728399B2 (en) Oil / refrigerant pump for centrifugal chillers
US3112618A (en) Cooling means for refrigerant compressor motors
JP2003090651A (en) Refrigeration cycle system
JPS61277882A (en) Helium compressor
JP6075451B2 (en) Heat pump equipment
JP2007298254A (en) Heat pump type water heater and its starting method
JPH06193598A (en) Very low temperature rotary equipment
JP2016161163A (en) Air conditioner
JP3606883B2 (en) Rotary compressor cooling system
JP6927911B2 (en) Refrigeration cycle equipment
US3051373A (en) Enclosed motor compressor unit
JP3146705B2 (en) Scroll compressor
JPS63100285A (en) Compressor
JP2001173598A (en) Liquid refrigerant pump
JPS6032985A (en) Refrigerant compressor
JP2644039B2 (en) Self-cooling type sealed liquid supply device for vacuum pump
JP5892261B2 (en) Refrigeration cycle apparatus and heat pump water heater
JP2001214863A (en) Liquid refrigerant pump and ice heat accumulating air- conditioning system having this pump