JPS61276952A - 強靭鋼 - Google Patents

強靭鋼

Info

Publication number
JPS61276952A
JPS61276952A JP11919485A JP11919485A JPS61276952A JP S61276952 A JPS61276952 A JP S61276952A JP 11919485 A JP11919485 A JP 11919485A JP 11919485 A JP11919485 A JP 11919485A JP S61276952 A JPS61276952 A JP S61276952A
Authority
JP
Japan
Prior art keywords
less
ferrite
forging
martensite
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11919485A
Other languages
English (en)
Inventor
Kimihiro Shibata
公博 柴田
Takashi Matsumoto
隆 松本
Kenji Isogawa
礒川 憲二
Katsunori Takada
高田 勝典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11919485A priority Critical patent/JPS61276952A/ja
Publication of JPS61276952A publication Critical patent/JPS61276952A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
(産業上の利用分野) 本発明は強靭鋼に係り、特に熱間鍛造又はオーステナイ
トとフェライトの二相域鍛造による部品製造が実用−に
容易で、強度、靭性の向1;を図った強靭鋼に関する。 (従来の技術及び問題点) 従来、熱間鍛造によって機械構造用部品を製造するに際
しては、素材を約1200℃以上の温度に加熱した後、
所定の形状に成形したり、特に部品強度と靭性が要求さ
れる場合には、鍛造後に焼入・焼もどし処理を施し、そ
の後必要に応じて機械加工を施したりして、製造してい
た。 しかし乍ら、近年のエネルギーコス1への高騰を背景と
し、鍛造後の熱処理を省略する方策が種々検討されてき
た。その代表的な方法としては、鍛造後、室温近くまで
冷却することなく、直接焼入れ処理を行い、その後必要
に応じて焼もどし処理を施す、いわゆる鍛造焼入方法が
ある。この方法によれば、鍛造焼入方法まで再加熱する
必要がないため、大幅なエネルギーの節減が可能となる
。 しかし、−J−記鍛造焼入方法は、通常1200℃以−
トの高温に加熱後鍛造し、直接焼入れするか、或いは鍛
造後所定温度まで冷却後焼入れするものであるため、鍛
造加熱時及び鍛造後の冷却時に結晶粒が著しく粗大にな
るため、焼入又は焼もどし処理を行った部品の靭性が著
しく劣化するという欠点があった。 そこで、この靭性向−■二の手段として、鍛造温度を下
げ、フェライトとオーステナイト域のいわゆる二相域温
度で鍛造し、直接急冷する方法が試みられているが、こ
の方法で従来の機械構造用鋼をそのま\用いると、前記
の二相域温度幅が著しく狭く、コントロールが極めて困
難であり、そのため、鍛造後の部品の硬さ、靭性等の品
質のバラツキが大きくなって、実操業−に大きな問題で
あった。 一方、この二相域温度幅を拡張する方法として、C含有
量の低減やSi含有量の増加が考えられるが、前者のC
含有量の低減については、部品強度を著しく低下するた
め、自ずから制限があり、また後者のSi含有量の増加
については、靭性が劣化するという問題がある。 (発明の目的) 4一 本発明は、前述の従来技術の欠点を解消し、種々の態様
の熱間鍛造によっても実用」二容易に部品を製造でき、
強度、靭性等を品質のバラツキを招くことなく向上し得
る強靭鋼を提供することを目的とするものである。 (発明の構成) 上記目的を達成するため、本発明者等は、前述の改善さ
れた熱間鍛造による製造法を適用し得る鋼種を見い出す
ため種々研究を重ねた結果、熱間鍛造後に二相域温度か
らの急冷又は前記温度で鍛造後急冷するに当たり、温度
のコントロール、すなわち得られる相の比率のコントロ
ールが実用的に容易で、かつ、強度と靭性を同時に満足
できる強靭鋼を見い出すに至った◎ すなわち1本発明に係る強靭鋼は、重量%で(以下、同
じ)、c:o、o5〜0.30%、Si:1゜0−3.
0%、Mn:0.8〜2.5%、Cr:0.4〜1.5
%、S:0.020%以下、p:o、o20%以下及び
0:0.0015%以下を基本成分とし、必要に応じて
、Ni:2%以下及びMo:0.5%以下のうちの1種
又は2種及び/又は、Afl:0.1%以下、Nb:0
.2%以下、’ri: 0 、2%以下、V:0.2%
以下及びN:0.03%以下のうちの1種又は2種以上
を含み、残部がFe及び不可避的不純物からなり、熱間
鍛造時にオーステナイト温度域で鍛造後、オーステナイ
トとフェライトの二相域から急冷するか、或いは前記二
相域で鍛造後急冷することにより、面積率でフェライト
が30〜70%、残部がマルテンサイト又はマルテンサ
イトとベイナイトからなる組織を有することを特徴とす
るものである。 以下に本発明の詳細な説明する。 前述のように、鍛造焼入法は二相域温度幅が著しく狭い
ために実操業上においてコントロールが極めて困難であ
る。例えば、−例として従来の機械構造用鋼(Fe−0
,25C−0,5Si−0,7Mn)について各加熱温
度での変形抵抗を調べたところ、第2図に示すように、
その二相域温度幅(図中、黒丸印のAc工〜Ac3間)
は約50〜60℃の如く極めて狭く、しかも比較的低い
ので、これを鍛造した場合には、変形抵抗が比較的大き
く、かつその幅が狭いため、鍛造後の部品の品質(硬さ
、靭性等)にバラツキが生じ、良好でないことが多い。 そこで、本発明者等は、その改善策として単にC含有量
を低減したり或いはSi含有量を増加させるのではなく
、同時に他の合金元素(例、Cr)を添加することによ
り、二相域温度幅を拡大し、かつ′、それを高温側にシ
フトさせ、鍛造−急冷する基礎実験を行ったところ、鍛
造部品の品質がバラツキを生じることなく向上でき、容
易に実施できることがわかった。 これは、例えば第1図に示すようにFe−0,2C−8
j−1,0Mn−0,7Cr鋼についてSi含有量を増
加した場合、従来のようにSi量を低含有量側で増加し
たときに比べ、Si量を1.0%以上の高含有量側で増
すことにより、Si含有量の増加に伴って二相域温度幅
を大幅に拡張でき、高めることができるので、第2図に
示す如く変形抵抗を著しく小さくすることができるため
である。 なお、第2図の実線は第1図に示した供試鋼でSi景を
1.70%とした鋼についてのものである。 」二記の基礎実験により得た知見に基づき、各種合金元
素の添加についても研究を重ねたところ、好結果を得る
ことができ、二Nに前記の如く本発明の強靭鋼を見い出
したものである。 次に、本発明における各成分含有量並びに組織の限定理
由を示す。 Cは強靭鋼としての強度を確保するために必要な成分で
あり、そのためには0.05%以上を必要とし、これに
より鍛造後の急冷によって一部現出するマルテンサイト
又はマルテンサイトとベイナイトにより所要の硬さを得
ることができる。しかし、C含有量が多すぎると、二相
温度幅が狭くなり、また靭性が劣化するので、0.30
%を上限値とする。 Siは二相温度域を拡張するうえで最も効果的な成分で
あって、多い程よく、1.0%以上含有させるが、3.
Q%を超えて含有せしめると靭性劣化を招き、実用上所
望の靭性確保ができなくなる。 Mnは強度を確保し焼入性を向上させる成分であるので
0.8%以上必要とするが、多く含有させると二相温度
域を狭くすることになるので、2.5%を上限値とする
。 Crは焼入性を向上させて強度を確保するために0.4
%以上添加するが、1.5%を超えて多く添加すると靭
性劣化を招くので、0.4〜1・5%の範iで添加する
。 S、P及びOは、鋼中含有量が低ければ低い程よい・特
にS及びPは、Si含有量を二相温度域を拡張するため
に上記の如く増加させる際、これらの含有量をより低く
抑えると靭性確保のうえ特に効果があることが判明した
ので、各々上限値を0・020%とする。またOは酸化
物系介在物を少すくシて靭性劣化を防止するために上限
値を0.0015%とする。 Ni及びMOは基地に固溶して強度並びに靭性を向上さ
せる成分であり、必要に応じてその1種yは2種を添加
することができる。添加するときは、Niは2%以下、
MOは0.5%以下とし、各々それよりも多く添加する
と靭性劣化を招くので、望ましくない。 また、Al、Nb、Ti、V及びNは、鍛造前、後にお
いて組織を微細化して靭性を向上させる効果を有する成
分であり、必要に応じてその1種又は2種以上を添加す
ることができる。添加するときは、Alは0.1%以下
、Nb、Ti及び■は各々0.2%以下とし、各々それ
よりも多く添加すると靭性を劣化させるので、望ましく
ない。またNは0.03%を超えて含有せしめるとブロ
ーホールが発生するので、このブローホール発生を防止
し、健全な鋼材を得るうえで、0.03%以下とするの
が望ましい。 −F記組成のものをオーステナイト温度域で鍛造後、オ
ーステナイトとフェライトの二相域から急冷し、或いは
前記二相域で鍛造後急冷することにより、フェライトと
マルテンサイト若しくはマルテンサイト及びベイナイト
とからなる組織を得るが、強靭鋼として強度を確保する
ためには、フェライトを面積率で30〜70%占めるよ
うにして、所要のマルテンサイト又はマルテンサイトと
ベイナイトを含む組織にする必要がある。なお、フェラ
イトとパーライトからなる組織では所望の強度を確保す
ることが不可能である。 以上の構成の本発明鋼は、強度及び靭性ともに優れた強
靭鋼として、熱間鍛造により製造される各種部品に用い
られるが、特にリヤースピンドル等の自動車用足廻り部
品用の材料として好適である。 次に本発明の実施例を示す。 (実施例1) 第1表に示す化学成分の供試鋼について、以下に示す実
験方法によって鍛造焼入、焼もどしを行った・ 供試鋼N(11,2は市販の従来鋼(SCR435等)
であり、これらについては、まず1200℃で35φ→
25φに鍛造後、860℃まで空冷して水焼入れし、そ
の後焼もどしを行って硬さ調整を図った後、JISa号
シャルピー試験片を作成した。 また、供試鋼Nα3〜11については、各鋼種の二相温
度域で35φ→25φに鍛造後、水焼入れを行い、その
後焼もどしを行って硬さ調整を図った後、J I S 
3号シャルピー試験片を作成した。 フェライト面積率は、各供試鋼の鍛造温度をコントロー
ルすることにより、いずれも45〜55%にした。 なお、各供試鋼Nn 1〜11についての上記硬さ調整
は、硬さをHRC19〜21のレベル(1)とHR’C
29〜31のレベル(II)に区分するべく、焼もどし
条件により行った。硬さ調整の結果は第2表にI、Hに
て併記した。 次いで、−上記各シャルピー試験片を用いて衝撃試験を
行い、シャルピー衝撃値を求めた。その結果を第2表に
示す。
【以下余白】
=14− 第2表 * 供試鋼Nα2.7はC含有量が低いため、同一の硬
さレベルHに硬さ調整した際、所望レベルの硬さが得ら
れなかったので、衝撃試験を行わなかった。 その結果は、第2表に示すように、比較鋼Nα1〜4は
いずれも靭性が劣っているのに対し、本発明鋼Nα5〜
11はいずれも各硬さレベルで高い衝撃値を示し、特に
高硬さレベル■でも優れた靭性が得られている。 (実施例2) 鍛造−急冷により得られた鍛造品におけるフェライト規
制の影響をみるために、以下の実験を行った・ 第1表に示した供試鋼Nn 5について、1100℃で
35φ→15φに鍛造後、二相域温度まで空冷し、水焼
入れを行った。その後、焼入れまN材の硬さとフェライ
ト量を測定すると共に、焼もどしを行い、HRC24〜
26に硬さ調整し、JISS号シャルピー試験片を作成
し、衝撃試験を行った。それらの結果を第3表に示す。
【以下余白】
第3表 拳 焼入時の硬さが低すぎたので衝撃試験を行わなかっ
た。 第3表より、化学成分が本発明の範囲内の供試鋼であっ
ても、フェライト面積率(%)が低すぎる場合には、焼
入れ時の硬さが十分得られても、靭性が劣り、またフェ
ライト面積率が高すぎると、焼入れ時の硬ささえ確保で
きない。これに対し、フェライト面積率が30〜70%
の範囲内にある場合には、硬さ及び靭性ともに満足でき
る。 (発明の効果) 以」二詳述したように、本発明によれば、強度、靭性と
もに優れた高品質の強靭鋼を提供することができ、しか
も省エネルギー化を図った鍛造−急冷法を適用して容易
に鍛造品を製造することができるので、その実用−トの
効果は極めて大きい。
【図面の簡単な説明】
第1図はSi含有量と変態点温度の関係を示す図、 第2図は鍛造温度と変形抵抗の関係を示す図である。 特許出願人  日産自動車株式会社 同    大同特殊鋼株式会社

Claims (1)

  1. 【特許請求の範囲】 1、重量%で、C:0.05〜0.30%、Si:1.
    0〜3.0%、Mn:0.8〜2.5%、Cr:0.4
    〜1.5%、S:0.020%以下、P:0.020%
    以下及びO:0.0015%以下を含み、残部がFe及
    び不可避的不純物からなり、熱間鍛造時にオーステナイ
    ト温度域で鍛造後、オーステナイトとフェライトの二相
    域から急冷し、或いは前記二相域で鍛造後急冷すること
    により、面積率でフェライトが30〜70%、残部がマ
    ルテンサイト又はマルテンサイトとベイナイトからなる
    組織を有することを特徴とする強靭鋼。 2、重量%で、C:0.05〜0.30%、Si:1.
    0〜3.0%、Mn:0.8〜2.5%、Cr:0.4
    〜1.5%、S:0.020%以下、P:0.020%
    以下及びO:0.0015%以下を含み、更にNi:2
    %以下及びMo:0.5%以下のうちの1種又は2種を
    含み、残部がFe及び不可避的不純物からなり、熱間鍛
    造時にオーステナイト温度域で鍛造後、オーステナイト
    とフェライトの二相域から急冷し、或いは前記二相域で
    鍛造後急冷することにより、面積率でフェライトが30
    〜70%、残部がマルテンサイト又はマルテンサイトと
    ベイナイトからなる組織を有することを特徴とする強靭
    鋼。 3、重量%で、C:0.05〜0.30%、Si:1.
    0〜3.0%、Mn:0.8〜2.5%、Cr:0.4
    〜1.5%、S:0.020%以下、P:0.020%
    以下及びO:0.0015%以下を含み、更にAl:0
    .1%以下、Nb:0.2%以下、Ti:0.2%以下
    、V:0.2%以下及びN:0.03%以下のうちの1
    種又は2種以上を含み、残部がFe及び不可避的不純物
    からなり、熱間鍛造時にオーステナイト温度域で鍛造後
    、オーステナイトとフェライトの二相域から急冷し、或
    いは前記二相域で鍛造後急冷することにより、面積率で
    フェライトが30〜70%、残部がマルテンサイト又は
    マルテンサイトとベイナイトからなる組織を有すること
    を特徴とする強靭鋼。 4、重量%で、C:0.05〜0.30%、Si:1.
    0〜3.0%、Mn:0.8〜2.5%、Cr:0.4
    〜1.5%、S:0.020%以下、P:0.020%
    以下及びO:0.0015%以下を含み、更にNi:2
    %以下及びMo:0.5%以下のうちの1種又は2種を
    含み、かつ、Al:0.1%以下、Nb:0.2%以下
    、Ti:0.2%以下、V:0.2%以下及びN:0.
    03%以下のうちの1種又は2種以上を含み、残部がF
    e及び不可避的不純物よりなり、熱間鍛造時にオーステ
    ナイト温度域で鍛造後、オーステナイトとフェライトの
    二相域から急冷し、或いは前記二相域で鍛造後急冷する
    ことにより、面積率でフェライトが30〜70%、残部
    がマルテンサイト又はマルテンサイトとベイナイトから
    なる組織を有することを特徴とする強靭鋼。
JP11919485A 1985-06-01 1985-06-01 強靭鋼 Pending JPS61276952A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11919485A JPS61276952A (ja) 1985-06-01 1985-06-01 強靭鋼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11919485A JPS61276952A (ja) 1985-06-01 1985-06-01 強靭鋼

Publications (1)

Publication Number Publication Date
JPS61276952A true JPS61276952A (ja) 1986-12-06

Family

ID=14755247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11919485A Pending JPS61276952A (ja) 1985-06-01 1985-06-01 強靭鋼

Country Status (1)

Country Link
JP (1) JPS61276952A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543979A (ja) * 1991-08-08 1993-02-23 Nippon Steel Corp マルテンサイト型高強度熱鍛非調質鋼機械部品
JPH0657376A (ja) * 1992-08-11 1994-03-01 Kobe Steel Ltd 加工性の良好な730N/mm2以上の強度を有する高強度熱延鋼板とその製造方法
WO2006017880A1 (en) * 2004-08-18 2006-02-23 Bishop Innovation Limited Method of manufacturing a hardened forged steel component
AU2005274665B2 (en) * 2004-08-18 2008-03-06 Bishop Innovation Limited Method of manufacturing a hardened forged steel component
US20170022580A1 (en) * 2009-12-22 2017-01-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength spring steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543979A (ja) * 1991-08-08 1993-02-23 Nippon Steel Corp マルテンサイト型高強度熱鍛非調質鋼機械部品
JPH0657376A (ja) * 1992-08-11 1994-03-01 Kobe Steel Ltd 加工性の良好な730N/mm2以上の強度を有する高強度熱延鋼板とその製造方法
WO2006017880A1 (en) * 2004-08-18 2006-02-23 Bishop Innovation Limited Method of manufacturing a hardened forged steel component
EP1789597A1 (en) * 2004-08-18 2007-05-30 Bishop Innovation Pty. Limited Method of manufacturing a hardened forged steel component
AU2005274665B2 (en) * 2004-08-18 2008-03-06 Bishop Innovation Limited Method of manufacturing a hardened forged steel component
EP1789597A4 (en) * 2004-08-18 2009-10-28 Bishop Innovation Pty Ltd METHOD FOR MANUFACTURING FORGED STEEL-TREATED COMPONENT
US20170022580A1 (en) * 2009-12-22 2017-01-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength spring steel

Similar Documents

Publication Publication Date Title
JPH0772323B2 (ja) 熱間鍛造用の非調質棒鋼
JPH039168B2 (ja)
JPS61276952A (ja) 強靭鋼
JPH01176055A (ja) 被削性に優れた熱間鍛造用非調質鋼
JP3246993B2 (ja) 低温靭性に優れた厚鋼板の製造方法
JPH01219121A (ja) 低温靭性の優れた極厚調質高張力鋼板の製造方法
JPS5852458A (ja) 非調質高強度靭性鋼
JPH04371547A (ja) 高強度強靭鋼の製造方法
JPS63166949A (ja) 熱間鍛造用非調質鋼
JPH04210449A (ja) 高靱性熱間鍛造用非調質鋼
JPH0696742B2 (ja) 高強度・高靭性非調質鋼の製造方法
JPH0813028A (ja) 析出硬化型高張力高靱性鋼材の製造方法
JP3229107B2 (ja) 一様伸びの優れた低降伏比高張力鋼板の製造方法
JP3089424B2 (ja) 強靭非調質鋼の製造方法
JPH026828B2 (ja)
JPH04297548A (ja) 高強度高靭性非調質鋼とその製造方法
JPH0867950A (ja) 強度及び靭性に優れたマルテンサイト系ステンレス鋼及びその製造方法
JP2583776B2 (ja) 熱間鍛造用非調質鋼
JP3692565B2 (ja) B添加高張力鋼の製造方法
JP3196006B2 (ja) 熱間鍛造用非調質鋼および熱間鍛造非調質品の製造方法ならびに熱間鍛造非調質品
JP3012997B2 (ja) 高強度ドライブシャフトの製造方法
JPH01129953A (ja) 高強度非調質鋼とその製造方法
JPS6011088B2 (ja) 低温用高張力鋼の製造方法
JPH0215122A (ja) 溶接性の優れた高強度高靭性厚肉鋼板の製造方法
JPS63130748A (ja) 高強度非調質強靭鋼