JPS61275309A - Acrylonitrile polymer - Google Patents

Acrylonitrile polymer

Info

Publication number
JPS61275309A
JPS61275309A JP11614685A JP11614685A JPS61275309A JP S61275309 A JPS61275309 A JP S61275309A JP 11614685 A JP11614685 A JP 11614685A JP 11614685 A JP11614685 A JP 11614685A JP S61275309 A JPS61275309 A JP S61275309A
Authority
JP
Japan
Prior art keywords
acrylonitrile
melt
polymer
fiber
reduced viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11614685A
Other languages
Japanese (ja)
Inventor
Yoshinobu Shiraishi
白石 義信
Teruhiko Sugimori
輝彦 杉森
Fumio Suzuki
文男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11614685A priority Critical patent/JPS61275309A/en
Publication of JPS61275309A publication Critical patent/JPS61275309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:An acrylonitrile polymer which can show improved melt moldability without using water as a plasticizer and can be used in the production of fiber, mainly consisting of acrylonitrile units and having a specified reduced viscosity and a MW distribution. CONSTITUTION:A melt-moldable acrylonitrile polymer consisting of 80wt% or above acrylonitrile and having a reduced viscosity <=1.0 and a molecular weight distribution, MW/MN ratio, <=1.8. It is further necessary that the half-value width of 2theta is 17 deg. in an X-ray diffraction pattern, which is a parameter representing the crystallinity of a fiber obtained by melt molding. By adopting such a half-value width, a fiber which can be actually used can be obtained. A fiber obtained by melt-molding the above polymer having an acrylonitrile unit content <80wt% is poorly crystalline, nonoriented one and is not desirable because of its poor fiber properties.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融賦形可能なアクリロニ)9ル系重合体(
−関するものであり、特に繊維やフィルム、シート状物
に賦形可能なアクリロニトリル系重合体に関するもので
ある。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a melt-formable acrylonitrile-based polymer (
In particular, it relates to acrylonitrile polymers that can be formed into fibers, films, and sheet-like materials.

〔従来の技術〕[Conventional technology]

アクリロニトリル系重合体の溶融紡糸法としては、種々
の方法が検討されており、例えばアクリロニトリル系重
合体のニトリル基に対して水を配位せしめて熱可塑性を
賦与する方法が特開昭50−29683号、同52−4
5683号及び同52−85523号公報に報告されて
いる。また、ガスバリヤ−件を有するアクリロニトリル
系重合体フィルムを溶融賦形法により作る方法が特公昭
46−31466号、特開昭49−55769号公報に
報告されている。
Various methods have been studied for melt-spinning acrylonitrile-based polymers. For example, a method of imparting thermoplasticity by coordinating water to the nitrile groups of an acrylonitrile-based polymer is disclosed in JP-A-50-29683. No. 52-4
It is reported in No. 5683 and No. 52-85523. Further, a method for producing an acrylonitrile polymer film having a gas barrier property by a melt shaping method is reported in Japanese Patent Publication No. 31466/1982 and Japanese Patent Application Laid-open No. 55769/1989.

〔発明が解決[2ようとする問題点〕 前記した技術のうち、アクリロニトリル系重合体のニト
リル基に水分子を配位せしめて溶融賦形する方法は、熱
溶融成形工程での水の分離を防止する為の加圧装置が必
要であり、また溶融成形(=より得られた成形体中に水
の揮散による多数のボイドが存在し、通常の衣料用繊維
や資材用繊維、或いは炭素繊維製造用プレカーサーとし
て使用することは不可能である。
[Problems to be Solved by the Invention [2] Among the above-mentioned techniques, the method of melt-forming by coordinating water molecules to the nitrile groups of an acrylonitrile-based polymer requires separation of water in the hot-melt molding process. A pressurizing device is required to prevent this, and there are many voids due to water volatilization in the molded product obtained by melt molding, which may cause problems in the production of ordinary clothing fibers, material fibers, or carbon fibers. It is impossible to use it as a precursor.

また、後者のガスバリヤ−性アクリロニトリル系フィル
ムを溶融賦形法によって作られたものはポリマーの押出
軸方向への庫み斑、が200係程度と極めて高いことが
判明しており、当該技術を繊維やフィルム形成技術へ応
用して得られるものも同様の斑が存在し、更に均一性良
好なものとすることは難しく実用性がないと言われてい
る。現在までのところ、水等の可塑剤を使用せず(=溶
融賦形法によってアクリロニトリル系繊維を製造する技
術は完成していない。
In addition, it has been found that the latter gas-barrier acrylonitrile film made by the melt-forming method has an extremely high retention unevenness of about 200% in the direction of the extrusion axis of the polymer. It is said that similar unevenness exists in products obtained by application to film forming technology, and it is difficult to achieve even better uniformity, making it impractical. To date, the technology for producing acrylonitrile fibers without using plasticizers such as water (= melt shaping method) has not been completed.

本発明者らは水をアクリロニトリル系重合体の可塑剤と
して使用することなく、その浴融賦形性を向上せしめ、
繊維製造可能なアクリロニトリル系重合体を得ることを
目的として検討の結果本発明に到達したものである。
The present inventors have improved the bath meltability of an acrylonitrile polymer without using water as a plasticizer,
The present invention was arrived at as a result of studies aimed at obtaining an acrylonitrile polymer that can be used to produce fibers.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨とするところはアクリロニトリル80重量
係以上から成り、還元粘度が1.0以下であ番】、分子
量分布MW/MN比が1.8以下である溶融賦形可能な
アクリロニトリル系重合体である。さらC二溶融賦形し
て得られる繊維の結晶性を示すパラメータであるXIR
回折像における2θ=17°の半価幅は2.0°以下で
あることが必要である。
The gist of the present invention is a melt-formable acrylonitrile polymer comprising acrylonitrile of 80% or more by weight, a reduced viscosity of 1.0 or less, and a molecular weight distribution MW/MN ratio of 1.8 or less. It is. Furthermore, XIR is a parameter indicating the crystallinity of the fiber obtained by melt-forming
The half width at 2θ=17° in the diffraction image needs to be 2.0° or less.

このような半価幅を採用することにより実用に耐えつる
繊維とすることが出来る。
By adopting such a half width, it is possible to obtain a fiber that is durable for practical use.

本発明のアクリロニトリル系重合体中のアクリロニトリ
ル単位の含有量は80重:1IEqb以上であることが
必要であり、アクリロニトリル単位の含有量が80重i
t係未満の重合体を溶融賦形すること(:よI]得られ
た繊維は結晶性に乏1. <無配向状態となり、繊維と
しての特性が劣ると共に、炭素繊維製造用プレカーサー
として用いる際には炭素化収率が低下するなど好ましく
ない性質を示す。また共重合体量が少なくなるほど溶融
賦形性は悪くなるが、可塑剤との組合せにより溶融賦形
性はさらに改善される。
The content of acrylonitrile units in the acrylonitrile polymer of the present invention must be 80 weight:1 IEqb or more, and the content of acrylonitrile units must be 80 weight:1 IEqb or more.
By melt-shaping a polymer with a molecular weight of less than t (:yo I), the resulting fibers have poor crystallinity (1), resulting in a non-oriented state, resulting in poor properties as a fiber, and when used as a precursor for carbon fiber production. shows unfavorable properties such as a decrease in carbonization yield.Furthermore, the smaller the amount of copolymer, the worse the melt formability becomes, but the melt formability is further improved by combination with a plasticizer.

共重合体としては、共重合せしめる単独重合体のガラス
転移温度(Tg )が−60℃〜+30℃の範囲の共重
合可能なモノマー、例えばメチル7” !J L/−ト
(Tg=3℃)、エチルアクリレート(’rg = −
22℃)、n−プロピルアクリレート(Tg = −4
4℃)、n−ブチルアクリレ−) (Tg= −56℃
)、n−へキシルメタクリレート(Tg=−5℃)、n
−オグチルメタグリレ−)(Tg=−20℃)、酢酸ビ
ニ/l/ (’rg = 29℃)、ビニリデンクロリ
ッド(Tg=−17℃)等が好ましいが、一般1ニアク
リロニトリルと共重合可能なモノマー、例えばアクリル
酸、メタクリル酸、イタコン酸、ヒドロキシアルキルア
クリレート又ハメタクリ1ノート、アクリルアミド、メ
タタクリルアミド等、さらにこれらのモノマーを複数個
組合せた共重合体でも実施可能であり、特に限定される
ものではない。
The copolymer may be a copolymerizable monomer whose glass transition temperature (Tg) of the homopolymer to be copolymerized is in the range of -60°C to +30°C, such as methyl 7''!J L/-t (Tg = 3°C). ), ethyl acrylate ('rg = −
22°C), n-propyl acrylate (Tg = -4
4℃), n-butyl acrylate) (Tg= -56℃
), n-hexyl methacrylate (Tg=-5°C), n
-Ogtylmethaglyre-) (Tg = -20°C), vinyl acetate/l/ ('rg = 29°C), vinylidene chloride (Tg = -17°C), etc. are preferred, but general 1 copolymerized with acrylonitrile Possible monomers such as acrylic acid, methacrylic acid, itaconic acid, hydroxyalkyl acrylate, acrylamide, methacrylamide, etc., and copolymers of a combination of two or more of these monomers can also be used, and there are no particular limitations. It is not something that will be done.

本発明の重要な要因は、アクリロニトリル系比が1.8
以下であることである。従来開発されてきたアクリロニ
トリル系重合体は、得られる繊維の物性やフィルムの物
性を高いものとするため、還元粘度値は高いものほどよ
いと考えられ、その成形性を考慮して還元粘度を1.5
〜2.5のものとされてきたのである。このように高い
還元粘度値を有するアクリロニトリル系重合体は、その
熱溶融成形性が劣るため、ジメチルホルムアミド、ジメ
チルアセトアミド、ジメチルスルホキシド、r−ブチル
ラクトンなどの有機溶媒、塩化亜鉛水溶液、ロダン塩水
溶液、硝酸水溶液などの無機系溶剤に溶解して紡糸され
ていたのであるが、得られる繊維中に残る溶剤が欅々の
点で不都合な現象を呈するのである。
An important factor in the present invention is that the acrylonitrile ratio is 1.8.
The following must be met. It is believed that the higher the reduced viscosity of the acrylonitrile polymers that have been developed, the better, in order to improve the physical properties of the resulting fibers and films. .5
It has been considered that the value is ~2.5. Acrylonitrile-based polymers having such a high reduced viscosity value have poor hot melt moldability, so they can be used with organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, r-butyllactone, zinc chloride aqueous solution, rhodan salt aqueous solution, The fibers were dissolved in an inorganic solvent such as an aqueous nitric acid solution and spun, but the solvent remaining in the resulting fibers causes problems in terms of strength.

そこで、アクリロニトリル系重合体を溶融賦形法により
賦形する方法が現出することが望まれるのであるが、従
来法においては、わずかにガスバリヤ−性フィルムを作
る技術のみが知られていたのである。このガスバリヤ−
性フィルムの作成に供されるアクリロニトリル系重合体
は、熱可塑性共重合成分としてメチルアクリレート等の
コモノマーを25〜50重量係の範囲〜で共重合せしめ
ることにより得られるアクリロニトリル系重合体に熱溶
融賦形性を付与しているのであり、このようなポリマー
は、その溶融流動性は良好なものとなっているが、アク
リロニトリル系重合体が本来有している結晶性配向性の
特性を消失した物性を示すものとなっている。
Therefore, it would be desirable to develop a method for shaping acrylonitrile polymers by melt shaping, but in the past, only a few techniques for producing gas barrier films were known. . This gas barrier
The acrylonitrile-based polymer used to create the adhesive film is obtained by hot-melting an acrylonitrile-based polymer obtained by copolymerizing a comonomer such as methyl acrylate as a thermoplastic copolymerization component in a range of 25 to 50% by weight. Although such polymers have good melt fluidity, they have physical properties that have lost the characteristics of crystalline orientation that acrylonitrile-based polymers originally have. It shows that.

また、この重合体は前述したごとく均一な物性あるいは
形状を持った糸状物やフィルム状物を与えるにたる溶融
流動性に不足している。
Furthermore, as described above, this polymer lacks the melt fluidity to provide a filamentous or film-like material with uniform physical properties or shape.

これに対し、本発明のアクリロニトリル系重合体は、そ
の還元粘度を1.0以下、とくに0.8〜0,2の範囲
のものとし、かつ分子量分布MwZMN 比を1.8以
下とすることにより、従来技術では予想もすることが出
来なかったアクリロニトリル系重合体本来の結晶性、配
向性等の特性を有したままで、良好な溶融流動性を付与
することに成功したものである。ここで重合体の還元粘
度が1.0を越すものでは共重合成分の上限量を本発明
の20重−1i1qbに比べ著しく多量にしなくては熱
溶融性が悪く、かつ、たとえ溶融可能となり、糸状物、
フィルム状物に成形出来たとしても、結晶性、配向性が
悪く、実用的なものとなり得ない。また分子量分布Mw
/MN比が、1.8を越えるものでは分子量分布が非常
に広いものとなり、加熱溶融性が、分子量により大きく
異なるため、未溶解の部分が多くなり、均一な溶解が困
難となった1)、高分子量の重合体まで完全溶解しよう
とすると、低分子量側の分解が起こり発泡の原因となる
。このため、溶融賦形に際し、糸切れ、ノズルづまりに
より紡糸性が著しく悪くなったり、フィルムとした場合
にフィルム表面にブツが発生したりして好ましく記条件
で測定した分子量分布Mw1MN比が、1.8以下の7
クリロニトリル系重合体を用いると結晶性も十分なもの
であり、結晶性を表わす指標であるX線回折像の20=
17°における半価幅βが2.0°以下のものとなる。
In contrast, the acrylonitrile polymer of the present invention has a reduced viscosity of 1.0 or less, particularly in the range of 0.8 to 0.2, and a molecular weight distribution MwZMN ratio of 1.8 or less. , we succeeded in imparting good melt fluidity while retaining the properties of acrylonitrile-based polymers, such as crystallinity and orientation, which could not have been predicted using conventional techniques. Here, if the reduced viscosity of the polymer exceeds 1.0, the upper limit of the copolymerization component must be significantly larger than the 20 weight-1i1qb of the present invention, or the thermal meltability will be poor, and even if it can be melted, filaments,
Even if it could be formed into a film, it would have poor crystallinity and orientation and would not be of practical use. Also, molecular weight distribution Mw
When the /MN ratio exceeds 1.8, the molecular weight distribution becomes very wide, and the heat-melting property varies greatly depending on the molecular weight, so there is a large amount of undissolved portion, making uniform dissolution difficult1) When attempting to completely dissolve even high molecular weight polymers, the low molecular weight side decomposes, causing foaming. For this reason, during melt shaping, spinnability may deteriorate significantly due to yarn breakage and nozzle clogging, and when formed into a film, spots may occur on the film surface. 7 below .8
When a crylonitrile polymer is used, crystallinity is sufficient, and the X-ray diffraction image of 20 =
The half width β at 17° is 2.0° or less.

このβ値が2.0°以下のものでは、結晶性が不十分で
あり、たとえば糸状物、フィルム状物に賦形したとして
も、沸水中で煮沸すると収縮が著しく、繊維、フィルム
としての実用性に耐えるものとはなり得ない。
If the β value is less than 2.0°, the crystallinity is insufficient, and even if it is shaped into a filament or film, it will shrink significantly when boiled in boiling water, making it difficult to put it to practical use as a fiber or film. It cannot be something that can withstand sex.

以上の条件を満たす本発明のアクリロニトリル系重合体
は、通常の溶液重合法、懸濁重合法、乳化重合法等、い
づれの方法によっても、製造可能であるが、特にアニオ
ン系界面活性剤として、脂肪族石鹸、アルキル硫酸塩、
ジアルキルスルホコハク酸塩、スルホン化エステル、ス
ルポン化アミドや、非イオン性界面活性剤としてポリエ
チレングリコール、ポリプロピレングリコール等の脂肪
酸エステル類、ソルビタン脂肪族エステル類などの乳化
剤を用い、分子i′調節剤としてプロピルメルカプタン
、イソプロピルメルカプタン、ブチルメルカプタン、ベ
ンジルメルカプタン、オクチルメルカプタン、ラウリル
メルカプタン等を比較的多量用いた乳化重合法を用いる
ことがより好ましい。この乳化重合法によって得られた
本発明の重合体は未反応のアクリロニトリルの含有量も
極めて少なく、その溶融賦形性も極めて良好であり、加
熱溶融によるポリマーの熱分解性も認められない。
The acrylonitrile polymer of the present invention that satisfies the above conditions can be produced by any method such as a normal solution polymerization method, suspension polymerization method, or emulsion polymerization method, but in particular, as an anionic surfactant, aliphatic soaps, alkyl sulfates,
Emulsifiers such as dialkyl sulfosuccinates, sulfonated esters, sulfonated amides, fatty acid esters such as polyethylene glycol and polypropylene glycol, and sorbitan aliphatic esters are used as nonionic surfactants, and propyl is used as a molecule i′ regulator. It is more preferable to use an emulsion polymerization method using a relatively large amount of mercaptan, isopropyl mercaptan, butyl mercaptan, benzyl mercaptan, octyl mercaptan, lauryl mercaptan, or the like. The polymer of the present invention obtained by this emulsion polymerization method has an extremely low content of unreacted acrylonitrile, has extremely good melt formability, and shows no thermal decomposition of the polymer by heating and melting.

本発明のアクリロニトリル系重合体を溶融賦形したもの
はポリマーの結晶性、配向性も良好であり、得られた成
形物中へのジメチルホルムアミド、ジメチルスルホキシ
ド、ジメチルアセトアミド等の溶剤が残存することもな
く、また未反応アクリロニトリルも認められないのであ
り、衣料用或いは工業用の繊維、フィルムとして或いは
医用や食品工業用フィルムとして利用することが出来る
ものである。
The melt-shaped acrylonitrile polymer of the present invention has good crystallinity and orientation, and solvents such as dimethylformamide, dimethylsulfoxide, and dimethylacetamide may remain in the resulting molded product. Furthermore, no unreacted acrylonitrile is detected, and it can be used as textiles or films for clothing or industrial use, or as films for medical use or the food industry.

〔実施例〕〔Example〕

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

4 還元粘度ηred は次の条件で測定した。4 Reduced viscosity ηred was measured under the following conditions.

溶媒ジメチルホルムアルデヒド100−に重合体0.5
g溶解させ、一定温度25℃によりオストワルド型粘度
計を使用して測定したポリマー濃度0.54時の還元粘
度の値を示す。
Solvent dimethyl formaldehyde 100- to polymer 0.5
The value of the reduced viscosity at a polymer concentration of 0.54 measured using an Ostwald viscometer at a constant temperature of 25° C. is shown.

口1分子量分布MW1MW比は次の条件で測定した。The molecular weight distribution MW1MW ratio was measured under the following conditions.

測定機器:ウォーターズ社製高速液体グロマトグラフ 測定条件:カラム   プレカラム(HM)+GM i
 X (83) + (84)溶媒   0.IMKS
CN/DMF 測定温度 25℃ 流速   12mfL/分 試料濃度 0.05 g / d立 柱入量  1.0 m交 RI感度 4x 検量線  単分散ポリスチレン5点測定による 実施例1 重合槽に脱イオン水1000部、乳化剤ペレックスOT
P l 0部、過硫酸カリ5部及び連鎖移動剤としてラ
ウリルメルカプタンを第1表に示す割合で仕込んだ0次
いでこの重合槽内にアクリロニトリル(A N)とメチ
ルアクリレート(MA)との比を第1表に示す割合で5
00部滴下し反応温度55℃で約6時間乳化重合した0
重合を完了した溶液はアクリロニトリル系重合体ラテッ
クスを常法により凝固、固化し、洗浄後45℃で乾燥し
た。得られた重合体の還元粘度1分子量分布MW/MW
比、230℃における溶解性および温度230℃、重合
体供給50 g/分、8取り速度1200m/分で溶融
賦形した糸を、清水中で4倍延伸した糸のβ値を第1表
に示す、第1表中No l + 5+8は比較例であり
いづれも溶融性が悪く230℃では全く溶解しなかった
。特にNo5では重合度はηred=0.71と十分低
いにもかかわらずMill/ MW比が2.10と大き
いため均一溶解を行なおうとすると発泡、分解が起こり
、良好な溶解性を示さなかった。これに対し本発明の範
囲にあるものは、多少の差はあるものの良好な溶解性を
示し、かつ得られるm維のβ値も十分小さいものであり
、結晶 性も良好であることがわかる。さらに、第1表の随7の
重合体を用いて、同様に紡糸して得た原糸を異った方法
で延伸を行ない、その糸強度、弾性率およびβ値、配向
度を第2表に示した。
Measuring equipment: High performance liquid chromatograph manufactured by Waters Measuring conditions: Column precolumn (HM) + GM i
X (83) + (84) solvent 0. IMKS
CN/DMF Measurement temperature: 25°C Flow rate: 12 mfL/min Sample concentration: 0.05 g/d Vertical column loading: 1.0 m Exchange RI sensitivity: 4x Calibration curve Example 1 based on 5-point measurement of monodisperse polystyrene 1000 parts of deionized water in the polymerization tank , Emulsifier Perex OT
0 parts of Pl, 5 parts of potassium persulfate, and lauryl mercaptan as a chain transfer agent were charged in the proportions shown in Table 1.Next, the ratio of acrylonitrile (AN) to methyl acrylate (MA) was adjusted to 5 in the proportion shown in the table
0 parts were added dropwise and emulsion polymerized for about 6 hours at a reaction temperature of 55°C.
After the polymerization was completed, acrylonitrile polymer latex was coagulated and solidified using a conventional method, washed, and then dried at 45°C. Reduced viscosity 1 molecular weight distribution MW/MW of the obtained polymer
Table 1 shows the solubility at 230°C, and the β value of the yarn obtained by drawing the yarn 4 times in fresh water after melting and forming the yarn at a temperature of 230°C, a polymer supply of 50 g/min, and a take-up speed of 1200 m/min. No. 1 + 5 + 8 in Table 1 are comparative examples, and all had poor meltability and did not dissolve at all at 230°C. In particular, in No. 5, although the degree of polymerization was sufficiently low at ηred = 0.71, the Mill/MW ratio was large at 2.10, so when attempting to uniformly dissolve it, foaming and decomposition occurred, and it did not show good solubility. . On the other hand, those within the scope of the present invention show good solubility, although there are some differences, and the β value of the obtained m-fibers is sufficiently small, indicating that the crystallinity is also good. Furthermore, using the polymer No. 7 in Table 1, the yarn obtained by spinning in the same manner was drawn in different ways, and the yarn strength, elastic modulus, β value, and degree of orientation are shown in Table 2. It was shown to.

第2表かられかるように、強度、弾性率、結晶性、配向
度とも同じ重合体を常法に従い湿式紡糸したものに比べ
ても、同等程度の性能が得られていることがわかる。
As can be seen from Table 2, it can be seen that comparable performance was obtained in terms of strength, modulus of elasticity, crystallinity, and degree of orientation when compared to wet spinning of the same polymer according to a conventional method.

実施例2 実施例1の第1表中の実験m6の重合体を、インフレー
ション法を用いて製膜な行なった。
Example 2 The polymer of Experiment m6 in Table 1 of Example 1 was formed into a film using an inflation method.

製膜条件は、第3表、第4表に示した通りである。得ら
れたフィルムは第4表に示したように、良好な強度をも
ち、また、ガスバリヤ−性も良好であった。
The film forming conditions are as shown in Tables 3 and 4. As shown in Table 4, the obtained film had good strength and gas barrier properties.

第  3  表 〔発明の効果〕 本発明のアクリロニトリル系重合体は溶融賦形が可能で
あり、低コストで繊維やフィルムを容易に製造すること
が出来る。
Table 3 [Effects of the Invention] The acrylonitrile polymer of the present invention can be melt-shaped, and fibers and films can be easily produced at low cost.

Claims (1)

【特許請求の範囲】 1 アクリロニトリル80重量%以上から成り、還元粘
度が1.0以下であり、分子量分布M_W/M_N比が
1.8以下である溶融賦形可能なアクリロニトリル系重
合体。 2 X線回折により得られる回折像において20=17
°における半価幅βが2.0°以下であることを特徴と
する特許請求の範囲第1項記載のアクリロニトリル系重
合体。
[Scope of Claims] 1. A melt-formable acrylonitrile polymer comprising 80% by weight or more of acrylonitrile, having a reduced viscosity of 1.0 or less, and a molecular weight distribution M_W/M_N ratio of 1.8 or less. 2 In the diffraction image obtained by X-ray diffraction, 20=17
2. The acrylonitrile polymer according to claim 1, which has a half width β at 2.0° or less.
JP11614685A 1985-05-29 1985-05-29 Acrylonitrile polymer Pending JPS61275309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11614685A JPS61275309A (en) 1985-05-29 1985-05-29 Acrylonitrile polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11614685A JPS61275309A (en) 1985-05-29 1985-05-29 Acrylonitrile polymer

Publications (1)

Publication Number Publication Date
JPS61275309A true JPS61275309A (en) 1986-12-05

Family

ID=14679881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11614685A Pending JPS61275309A (en) 1985-05-29 1985-05-29 Acrylonitrile polymer

Country Status (1)

Country Link
JP (1) JPS61275309A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304590A (en) * 1992-01-21 1994-04-19 Solcas Polymer, Inc. Acrylonitrile polymer compositions and articles and methods for their preparation
US5434205A (en) * 1992-01-21 1995-07-18 Solcas Polymer Limited Partnership Acrylonitrile polymer compositions and articles and methods for their preparation
JP2002161114A (en) * 2000-11-28 2002-06-04 Toray Ind Inc Acrylonitrile-based polymer and its producing method
EP1516893A4 (en) * 2002-06-03 2008-03-12 Sanyo Chemical Ind Ltd Micelle-containing organic polymer, organic polymer porous material and porous carbon material
JP2008083397A (en) * 2006-09-27 2008-04-10 Fujifilm Corp Pattern forming material, and color filter and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304590A (en) * 1992-01-21 1994-04-19 Solcas Polymer, Inc. Acrylonitrile polymer compositions and articles and methods for their preparation
US5434205A (en) * 1992-01-21 1995-07-18 Solcas Polymer Limited Partnership Acrylonitrile polymer compositions and articles and methods for their preparation
US5589520A (en) * 1992-01-21 1996-12-31 Solcas Polymer, Limited Partnership Acrylonitrile polymer composition and articles and methods for their preparation
JP2002161114A (en) * 2000-11-28 2002-06-04 Toray Ind Inc Acrylonitrile-based polymer and its producing method
JP4505980B2 (en) * 2000-11-28 2010-07-21 東レ株式会社 Method for producing acrylonitrile polymer
EP1516893A4 (en) * 2002-06-03 2008-03-12 Sanyo Chemical Ind Ltd Micelle-containing organic polymer, organic polymer porous material and porous carbon material
JP2008083397A (en) * 2006-09-27 2008-04-10 Fujifilm Corp Pattern forming material, and color filter and method for producing the same

Similar Documents

Publication Publication Date Title
US2790783A (en) Mixtures comprising acrylonitrile polymers with polyvinylpyrrolidone and fibers thereof
US2786043A (en) Plasticized acrylonitrile compositions
JPS61275309A (en) Acrylonitrile polymer
US3073669A (en) Method for producing shaped articles from polymers and copolymers of acrylonitrile
US2404719A (en) Acrylonitrile polymer solutions
US2404723A (en) Preparation of polymer solutions
US2531407A (en) N,n-dimethyl acetamide-containing compositions
US3078243A (en) Aqueous spinning dispersion of acrylonitrile polymer containing nitrile solvent
US2404716A (en) Polymer products
US3565876A (en) Oriented methacrylonitrile polymer articles
US5486409A (en) Nonwoven fabrics from high nitrile copolymers
US20170081471A1 (en) Polyamide capable of being deeply dyed and method for preparing the same
US2404724A (en) Preparing solutions of polymers
US2607751A (en) Acrylonitrile polymer dissolved in a dicarboxylic acid anhydride
US2533224A (en) Polymeric compositions and methods of preparing the same
US2798059A (en) Compositions comprising an acrylonitrile polymer and an nu-(2-cyanoethyl) acrylamide
US2802801A (en) Solutions of vinylidene chloride terpolymers in tetrahydrofuran and uses thereof
US2404726A (en) Polymer compositions and their preparation
US2404725A (en) Polymer solutions
JPS6169814A (en) Acrylonitrile polymer
US2687393A (en) Synthetic fiber preparation
US2644803A (en) Spinning solutions comprising an acrylonitrile-allyl alcohol copolymer
US2520150A (en) Compositions comprising an acrylonitrile polymerization product and an oxo-oxazolidine
US2696478A (en) Compositions of acrylonitrile polymers dissolved in 1-methyl-2-pyridone
US2404720A (en) Polymer products