JPS61273871A - Matrix for fuel cell - Google Patents

Matrix for fuel cell

Info

Publication number
JPS61273871A
JPS61273871A JP60115648A JP11564885A JPS61273871A JP S61273871 A JPS61273871 A JP S61273871A JP 60115648 A JP60115648 A JP 60115648A JP 11564885 A JP11564885 A JP 11564885A JP S61273871 A JPS61273871 A JP S61273871A
Authority
JP
Japan
Prior art keywords
matrix
grains
ptfe
fuel cell
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60115648A
Other languages
Japanese (ja)
Inventor
Koichi Harashima
原嶋 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60115648A priority Critical patent/JPS61273871A/en
Publication of JPS61273871A publication Critical patent/JPS61273871A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a matrix whose mechanical strength and electrolyte wetting property are high,by finding out an appropriate quantity of polytetrafluoroethylene grains to the matrix, in terms of the changes in the properties of the grains along with the change in their temperature. CONSTITUTION:Polytetrafluoroethylene (PTFE) grains have properties that they make a mechanically-strong reticulate structure when a shearing force is applied to the grains below their melting point and that the grains treated below the melting point have a lower water repellency than those treated when molten. The flexural strength and hydrophobicity of a matrix change depending on the quantity of the PTFE grains included in the matrix. As a result of a test conducted in terms of these properties of the PTFE grains and the matrix, the quantity of the grains added to the matrix and the heat treatment temperature of the matrix are determined to be 13 to 18% by weight and 250 to 290 deg.C, respectively. A desired matrix 3 is thus provided. A fuel cell is made of electrode bases 1, 2 and the matrix 3.

Description

【発明の詳細な説明】 、    〔発明の属する技術分野〕 本発明は燃料電池の電解液を保持するマ) 11ツクス
に関する0 5祥米技術とその問題点〕 第1図は例えば燐酸を電解液とする燃料電池の単電池を
分解斜視図で表わしたものである。第1図においてリプ
付電極基材lと触媒層1aからなる燃料電極Aおよび同
じくリプ付電極基材2と触媒層2aからなる酸化剤電極
Bを備え、この両電極A、Bの触媒層1aと2aの間に
燐酸1M[を含浸シたマド11.クス3が配置されてい
る。そして電解液を保持するマトリックス3にはと(に
次のような諸物件を具備することが必要となる。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a technology for holding an electrolyte in a fuel cell. This is an exploded perspective view of a unit cell of a fuel cell. In FIG. 1, there is provided a fuel electrode A consisting of an electrode base material 1 with lips and a catalyst layer 1a, and an oxidizer electrode B consisting of an electrode base material 2 with lips and a catalyst layer 2a, and catalyst layers 1a of both electrodes A and B. and 2a impregnated with 1M phosphoric acid 11. Box 3 is placed. The matrix 3 that holds the electrolyte needs to be equipped with the following items.

(11電気的絶縁体であること。(11. Be an electrical insulator.

(2)電解液に対して湿潤性を有し、かつイオン伝導性
が高いこと。
(2) It has wettability to the electrolyte and high ionic conductivity.

(3)作動温度および電解液中に詔いて化学的に安定で
あること。
(3) Be chemically stable at operating temperatures and in electrolytes.

(4)反応ガスが交差するのを阻止するのに十分な電圧
力を有すること。
(4) Have sufficient voltage force to prevent reactant gases from crossing.

(5)膜厚ができるだけ薄く、しかも適度の強度を有す
ること。
(5) The film should be as thin as possible and have appropriate strength.

(6)長時間にわたり電解液保持性能にすぐれているこ
と0 これらの緒特性を満足させるために、従来−r)■、ク
スはシリコンカーバイト(SiC)の微粉末を・匁゛ 、1″′   主材料とし、この5i(lこ少量のボ・
」テトラフルオく・ 、ス゛    ロエチレン(以下PTFEと称する)を
添加したイバ ン   ンク状混合物を両電極触媒層1a、2aのいず
れか゛   一方もしくは両方に薄く塗布した後PTF
Eの溶融、へ 温度で焼成することによりマトリックス層を形成してい
る。この際SiCに添加混合されたPTFEは7   
乳化重合してフィブリル化し、SiC微粉末にPTFE
:゛  のフィブリルが絡みつき網目構造を形成するこ
とま・□ ゛によりマトリックスの強度に寄与するのでP ’I”
 F El。
(6) Excellent electrolyte retention performance over a long period of time. In order to satisfy these characteristics, conventional ' As the main material, this 5i (a small amount of
After applying a thin layer of a mixture containing tetrafluoroethylene and sulfur ethylene (hereinafter referred to as PTFE) to one or both of the electrode catalyst layers 1a and 2a, the PTF was applied.
A matrix layer is formed by melting E and firing at a temperature of . At this time, the PTFE added and mixed with SiC was 7
Emulsion polymerization is performed to form fibrils, and PTFE is added to SiC fine powder.
:The fibrils of ゛ are entangled to form a network structure. □ ゛ contributes to the strength of the matrix, so P 'I''
F El.

□  の添加量もマトリックスを裏作する上で重要であ
゛   る。例えば特公昭5g−156号会報にはマト
リックス1′、1 □゛   を少なくとも90wt%ノSiCと10wt
%ま−rhノPTFE□) □、   とにより構成することが開示されている。
The amount of □ added is also important in forming the matrix. For example, in the Bulletin of Special Publication No. 5g-156, the matrices 1', 1 □゛ are mixed with at least 90wt% SiC and 10wt
It is disclosed that the composition is composed of %mar-rhnoPTFE□) □.

゛°“;    し力・しながらPTFEの添加量を1
0wt%までとし・) ′]゛だのでは上述の網目構造が形成されにクク、マド
・クリ、クスの機械的強度が不足するという問題が生゛
□  する0マトリックスの機械的強度が低いと、マド
す、クスを製作する過程および燃料電池を組み文く てろ過程において、曲げ、引張り、熱応力など外   
部から負荷される各椎応力に対抗できずマ) +1ツ 
   ′クスにひび割れなどの欠陥を生じやすい。
゛°“; While applying force, the amount of PTFE added is 1
If the mechanical strength of the 0 matrix is low, the above-mentioned network structure will be formed and the mechanical strength of the kuku, mud, crease, and kubu will be insufficient. In the process of manufacturing fuel cells and assembling fuel cells, bending, tension, thermal stress, etc.
Unable to resist the stress applied to each vertebra from the
'It is easy for defects such as cracks to occur in the wood.

このような欠陥を有するマトリックスを備えた   ゛
燃料電池を運転した場は一方の電極から他方の電   
′。
When a fuel cell with a matrix with such defects is operated, the field is from one electrode to the other.
'.

極へガスが吹き抜けるクロスオーバーや、局部的   
1な短絡などをひき起こし、燃料電池の特性と寿命  
 ゛に重大な悪影響を及ぼす。
Crossovers where gas blows through to the poles, and local
This may cause short circuits, etc., and reduce the characteristics and life of the fuel cell.
have a serious negative impact on

一方上述の欠陥を回避するために、マトリ、り   “
ス中に含まれるPTFEの量を必要以上に増すと、  
  1PTFEの有する撥水性が顕著になり、電解液の
マトリックスに対する濡れ性が低下して、濡れ残り  
 ′もしくは濡れの不十分な個所からのクロスオーバー
を生じたり、寸トリ、クスに保持された電解液   ”
一部分の電気抵抗が増大するなどにより、やはり燃  
 ′科電池の性能が損われる。
On the other hand, in order to avoid the above-mentioned defects, matrix
If the amount of PTFE contained in the gas is increased more than necessary,
1The water repellency of PTFE becomes remarkable, and the wettability of the electrolyte to the matrix decreases, resulting in no residual wetness.
``Or the electrolyte may cross over from an insufficiently wetted area, or the electrolyte may be retained in a vacuum.''
Due to increased electrical resistance in some parts, the combustion
'The performance of the battery will be impaired.

したがってマトリックスに添加するPTFBは適切な量
を設定することが望ましい。
Therefore, it is desirable to set an appropriate amount of PTFB to be added to the matrix.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり、その目
的Cま機械的強度が高く、しかも電解液に対して良好な
濡れ性を保有する燃料電池のマトリ。
The present invention has been made in view of the above-mentioned points, and its object (C) is to provide a fuel cell matrix that has high mechanical strength and also has good wettability with respect to electrolyte.

クスを提供することにある0 〔発明の要点〕 本発明は、PTFE粒子が溶融温度以下でせん断、  
 力を加えることにより、機械的に強固な網目構造81
1、   をとること・お1び溶融1以T″′″?J%
処@は゛   PTFEは溶融したものに比べて撥水性
が低いこと1゛ ′   に着目し、P T F Eの添加量を10〜2
5wt%、好まし゛   くは13〜18 wt%とし
、熱処理温度を230〜305℃。
[Summary of the Invention] The present invention provides a method in which PTFE particles are sheared at a temperature below the melting temperature.
A mechanically strong network structure 81 can be created by applying force.
1. Take ・1 and melt 1 or more T″′″? J%
Focusing on the fact that PTFE has lower water repellency than molten PTFE, the amount of PTFE added was increased from 10 to 2.
5 wt%, preferably 13 to 18 wt%, and the heat treatment temperature is 230 to 305°C.

□   好ましくは250〜290℃とすることにより
、強度゛1 □   と電解液濡れ性の良好なマトリックスを得たも
の゛、   である。
□ Preferably, by setting the temperature to 250 to 290°C, a matrix with a strength of 1 □ and good electrolyte wettability is obtained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

まず粒径10μmのSiC55wt%と例えば三井フロ
ロケミカル社製の商品名テフロン30Jの微粉末15w
t%を純水中で超音波を10分間印加して十分に分散混
合した後、さらにイングロビルアルコールを加えて凝集
沈澱させ濾過して得られたスラリーを混錬機を用いて5
分間混錬することによりPTFE、の網目構造を形成す
る。次にかくして得られたベースト状の混合物を燃料電
極もしくは酸化剤電極にプリント印刷法により塗布し、
これを不活性雰囲気中で280℃、15分間処理してO
,120mmの厚さを有するマトリックスを作製した0 以上のように作製した本発明のマトリックスは気孔率ω
%を有し、燐酸を浸透させたこのマトリックスの190
℃におけるイオン伝導に基づく電気抵抗はttyttf
当り35mΩである。この値は電流密度が200 fi
ヤ賃のとき7.0mVのI Rドロ、ブを生ずるこ  
 ′とを意味する。したがってIRドロ、プは従来のマ
トリックスに比べて同等もしくは本発明のマ) 11、
クスの方が若干低い。−力木発明のマトリックスの曲げ
に対する強さは、従来のマトリックスが曲げ半径110
00iでひび割れが発生するのに対し、曲げ半径550
11富まで耐えることができ1機械的強度は明らかに向
上する。
First, 15w of fine powder of 55wt% SiC with a particle size of 10μm and, for example, Teflon 30J manufactured by Mitsui Fluorochemical Co., Ltd.
After fully dispersing and mixing t% in pure water by applying ultrasonic waves for 10 minutes, inglobil alcohol was further added to coagulate and precipitate, and the resulting slurry was mixed using a kneader for 5 minutes.
A network structure of PTFE is formed by kneading for a minute. Next, the base-like mixture thus obtained is applied to the fuel electrode or oxidizer electrode by a printing method,
This was treated in an inert atmosphere at 280°C for 15 minutes and O
, 120 mm thick was fabricated. The matrix of the present invention fabricated as described above has a porosity ω
% of this matrix impregnated with phosphoric acid.
The electrical resistance based on ionic conduction at °C is ttyttf
It is 35 mΩ per unit. This value corresponds to a current density of 200 fi
7.0 mV of IR voltage may be generated when the voltage is high.
' means. Therefore, the IR dropout is equivalent to that of the conventional matrix or the matrix of the present invention) 11.
Kusu is slightly lower. - The bending strength of the matrix of the strength tree invention is higher than that of the conventional matrix with a bending radius of 110
00i, cracks occur, while bending radius 550
It can withstand up to 11 richness and the mechanical strength is clearly improved.

第1表は上述の製造法によって得られるマトリックスに
含まれるPTFEの量を種々変えたときのひび割れが生
じ始める曲げ半径との関係を示した、L    もので
ある。
Table 1 shows the relationship between the bending radius at which cracking begins and L when the amount of PTFE contained in the matrix obtained by the above manufacturing method is varied.

、     第1表 第1表かられかるようにマトリックスの曲げ強さはPT
FE量が多いほど大きくなる傾向をもつが20wt%付
近からほぼ同穆度となる。しかしPTFE量が25wt
%以上になると、上述の製造方法では熱処理温度をPT
FEの溶融温度以下としてPTFEを溶融することはな
いが、疎水性がかなり強く現われ、電解液に対する濡れ
性が悪くなり、例えばガスの泡圧力が急激に低下するよ
うになる0したがってマトリックス中のP ’[’ F
 g量は10〜25wt%の範囲とし、PTFEを溶融
させない温度範囲230〜305℃とするのがよいが、
マトリックスの強度と撥水性とを堪案してPTFE量1
3〜18wt%。
As shown in Table 1, the bending strength of the matrix is PT
Although it tends to increase as the amount of FE increases, it becomes almost homogeneous from around 20 wt%. However, the amount of PTFE is 25wt.
% or more, the above manufacturing method reduces the heat treatment temperature to PT
Although the temperature is below the melting temperature of FE, PTFE will not melt, but its hydrophobicity will appear quite strong, and its wettability to the electrolyte will be poor, for example, the gas bubble pressure will drop rapidly. Therefore, the P in the matrix '['F
The amount of g should be in the range of 10 to 25 wt%, and the temperature should be in the range of 230 to 305°C, which does not melt PTFE.
Considering the strength and water repellency of the matrix, the amount of PTFE is 1.
3-18wt%.

熱処理温度を250〜290℃とするのがより好まし 
  □い0 〔発明の効果〕 IE1!18 ’It保持L SiCトP’l’FE 
トカラfx ’) 、PTFEの添加量を10wt%と
している従来の燃料電池のマトリックスは、機械的強度
が不足し製作または使用中にひび割れを発生するなどの
問題があったのに対し、本発明によればP T F E
の添加室を10〜25wt%、好ましくは13〜18 
wt%とし、熱処理温度をPTFEの溶融温度以下の2
30〜305℃、好ましくは250〜290℃としたこ
とにより、機械的強度   ′が大きく、電解液の保持
性の良好なマトリックスとすることができるために次の
効果が得られる。
It is more preferable that the heat treatment temperature is 250 to 290°C.
□I0 [Effect of the invention] IE1!18 'It retention L SiC to P'l'FE
Tokara fx'), conventional fuel cell matrices in which the amount of PTFE added was 10 wt% had problems such as insufficient mechanical strength and cracks during manufacture or use. According to P T F E
The addition chamber is 10 to 25 wt%, preferably 13 to 18 wt%.
wt%, and the heat treatment temperature is 2 below the melting temperature of PTFE.
By setting the temperature to 30 to 305°C, preferably 250 to 290°C, a matrix with high mechanical strength and good electrolyte retention can be obtained, resulting in the following effects.

(11マド11.クスおよび燃料電池を製作する過程に
おいて、マトリックスに低強度に起因するひび割れなど
の欠陥を生ずることカナイ。
(11. In the process of manufacturing gas and fuel cells, defects such as cracks may occur due to low strength in the matrix.)

(2)燃料電池の運転時にヒートサイク′を受けた1ト
リツクスが膨張収縮による応力に対抗して健全性を保持
することができ、燃料電池が長寿命となる。
(2) One trix that undergoes heat cycling during operation of the fuel cell can maintain its integrity against the stress caused by expansion and contraction, resulting in a long life of the fuel cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燐酸型燃料電池の分解斜視図である。 3・・・マトリックス。 表)。 9.? し′ 第1図 FIG. 1 is an exploded perspective view of a phosphoric acid fuel cell. 3... Matrix. table). 9. ? death' Figure 1

Claims (1)

【特許請求の範囲】 1)電解液を保持する燃料電池のマトリックスにおいて
、10〜25wt%のポリテトラフルオロエチレンと残
部シリコンカーバイトからなり、かつ230〜305℃
で熱処理したことを特徴とする燃料電池のマトリックス
。 2)特許請求の範囲第1項記載のマトリックスにおいて
、ポリテトラフルオロエチレンの量を13〜18wt%
とすることを特徴とする燃料電池のマトリックス。 3)特許請求の範囲第1項または第2項記載のマトリッ
クスにおいて熱処理温度を250〜290℃とすること
を特徴とする燃料電池のマトリックス。
[Scope of Claims] 1) The matrix of the fuel cell holding the electrolyte is composed of 10 to 25 wt% polytetrafluoroethylene and the balance is silicon carbide, and is 230 to 305°C.
A fuel cell matrix characterized by being heat-treated with. 2) In the matrix according to claim 1, the amount of polytetrafluoroethylene is 13 to 18 wt%.
A fuel cell matrix characterized by: 3) A matrix for a fuel cell, characterized in that the matrix according to claim 1 or 2 is subjected to heat treatment at a temperature of 250 to 290°C.
JP60115648A 1985-05-29 1985-05-29 Matrix for fuel cell Pending JPS61273871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60115648A JPS61273871A (en) 1985-05-29 1985-05-29 Matrix for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60115648A JPS61273871A (en) 1985-05-29 1985-05-29 Matrix for fuel cell

Publications (1)

Publication Number Publication Date
JPS61273871A true JPS61273871A (en) 1986-12-04

Family

ID=14667836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60115648A Pending JPS61273871A (en) 1985-05-29 1985-05-29 Matrix for fuel cell

Country Status (1)

Country Link
JP (1) JPS61273871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2535150A (en) * 2015-02-05 2016-08-17 Intelligent Energy Ltd Component for a fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229934A (en) * 1975-09-02 1977-03-07 United Technologies Corp Process for producing electrolyte holding matrix for fuel cell
JPS59871A (en) * 1982-06-28 1984-01-06 Tokai Carbon Co Ltd Electrolytic matrix for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229934A (en) * 1975-09-02 1977-03-07 United Technologies Corp Process for producing electrolyte holding matrix for fuel cell
JPS59871A (en) * 1982-06-28 1984-01-06 Tokai Carbon Co Ltd Electrolytic matrix for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2535150A (en) * 2015-02-05 2016-08-17 Intelligent Energy Ltd Component for a fuel cell system

Similar Documents

Publication Publication Date Title
JPS61273871A (en) Matrix for fuel cell
JP2000136493A (en) Production of carbon sheet and production of fuel cell electrode
JP2001076734A (en) Solid polymer fuel cell
JPH0227661A (en) Electrode catalyst layer for fuel cell
JPH01122565A (en) Composite electrode for fuel cell
JPS58165259A (en) Electrode-matrix combination and manufacture for matrix type fuel cell
JPS58165264A (en) Fuel cell
JPS6348753A (en) Manufacture of electrode catalyst layer for fuel cell
JPS60216464A (en) Laminated structure of fuel cell
JPS59111268A (en) Electrolyte-holding matrix for fuel cell
JPS6282652A (en) Manufacture of gas diffusion electrode
JPS60186490A (en) Manufacture of gas diffusion electrode
JPS61225768A (en) Gas diffusion electrode of fuel cell
JPH02210763A (en) Phosphoric acid fuel cell
JPS61259460A (en) Matrix for phosphoric-acid fuel cell
JPS6037668A (en) Manufacture of matrix for fuel cell
JPS6332865A (en) Electrolyte holding matrix for fuel cell
JP2792174B2 (en) Electrode catalyst layer of phosphoric acid fuel cell
JPH0224969A (en) Phosphoric acid type fuel cell
JPS61279064A (en) Fuel cell
JPS5956364A (en) Manufacture of electrolyte matrix for fuel cell
JPS60212961A (en) Fuel cell
JPH0388272A (en) Electrode of phosphoric acid type fuel cell and manufacture thereof
JPS60133660A (en) Manufacture of electrode substrate of fuel cell
JPS60172170A (en) Nonaqueous battery