JPS59871A - Electrolytic matrix for fuel cell - Google Patents

Electrolytic matrix for fuel cell

Info

Publication number
JPS59871A
JPS59871A JP57109968A JP10996882A JPS59871A JP S59871 A JPS59871 A JP S59871A JP 57109968 A JP57109968 A JP 57109968A JP 10996882 A JP10996882 A JP 10996882A JP S59871 A JPS59871 A JP S59871A
Authority
JP
Japan
Prior art keywords
matrix
electrolyte
whisker
silicon carbide
mechanical strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57109968A
Other languages
Japanese (ja)
Other versions
JPS6228547B2 (en
Inventor
Jitsuo Doi
土肥 実夫
Masaru Akiyama
勝 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP57109968A priority Critical patent/JPS59871A/en
Publication of JPS59871A publication Critical patent/JPS59871A/en
Publication of JPS6228547B2 publication Critical patent/JPS6228547B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve electrolyte holding quality, mechanical strength, etc., by using a beta type silicon carbonide whisker, in which a diameter and aspect ratio are specified, for a base material. CONSTITUTION:An electrolytic matrix for a fuel cell is molded to a thin plate shape of equal quality porous composition by blending about 2-20% resin system securing agent of polytetra fluoroethylene or the like in a beta type silicon carbonide whisker 0.1-0.5mum in diameter and 100 or more in aspect ratio. This matrix, in which the silicon carbonide whisker of high purity monocrystal is applied to a base material, is inverted into a strong thin plate molded material having fine equal quality porous composition through a molding process. In consequence, excellent wet and holding quality for an electrolyte and high mechanical strength are provided.

Description

【発明の詳細な説明】 本発明は、りん酸型燃料電池の構成部材として有用な電
解質マトリックスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrolyte matrices useful as components of phosphoric acid fuel cells.

りん酸型燃料電池は、濃9ん酸電解液を保持する電解質
マトリックスの両側に燃料(水素)極と空気極を配設し
て単位セルを構成し、灸単位セルをセパレーター叡を介
して積層することにより所定のスタック構造が形成され
る。このうち電解質マトリックスは、電池性能の向上と
長期安定化を図るうえに重要な構成部材で、材質的に耐
熱耐薬品性、N1気絶縁性、電解液に対する親和性(濡
れ性)ならびに保持性、機械的強度などの具備特性が要
求されている。
In a phosphoric acid fuel cell, a unit cell is constructed by arranging a fuel (hydrogen) electrode and an air electrode on both sides of an electrolyte matrix that holds a concentrated 9-phosphate electrolyte, and the moxibustion unit cells are stacked via a separator. A predetermined stack structure is thereby formed. Among these, the electrolyte matrix is an important component for improving battery performance and ensuring long-term stability. Specific properties such as mechanical strength are required.

従来、電解質マトリックスとしてフェノール樹脂、五酸
化タンタル、酸化ジルコニウムの繊維布、あるいは炭化
けい素等の粉末基材を樹脂系固着剤と共にシート状に成
形した材料が用いられている。
Conventionally, as the electrolyte matrix, materials have been used in which a powder base material such as phenol resin, tantalum pentoxide, zirconium oxide fiber cloth, or silicon carbide is molded into a sheet shape together with a resin-based adhesive.

しかしながら、フェノール樹脂、五酸化タンタル、酸化
ジルコニウムの繊維布によるものは電解液の保持性能が
十分でなく、炭化けい素等の粉末を基材とするものは機
械的強度が弱い欠点があり、いずれも上記要求特性を満
していない。また、シラン系の有機けい素化合物を紡糸
熱処理して得られる繊維状の炭化けい素を基材としたマ
トリックス材料も提案されているが、この炭化けい素繊
維は実質的に多結晶の焼結体からなる上に不純物、とく
にカーボン含有量が多い関係で固着剤との結合力が十分
に得られず、強度面での特性を満足しない難点がある。
However, those made of fiber cloth made of phenol resin, tantalum pentoxide, or zirconium oxide do not have sufficient electrolyte retention performance, and those made of powder such as silicon carbide have the disadvantage of weak mechanical strength. also does not meet the above required characteristics. In addition, a matrix material based on fibrous silicon carbide obtained by heat-treating a silane-based organosilicon compound has been proposed, but this silicon carbide fiber is essentially a polycrystalline sintered fiber. In addition to being made of solid wood, it also contains a large amount of impurities, especially carbon, which makes it difficult to obtain sufficient bonding strength with the fixing agent, making it unsatisfactory in terms of strength.

本発明は、基材に高純単結晶の炭化けい素ウィスカーを
適用することにより要求特性を悉く満足する均質多孔組
織の燃料電池用電解質マトリックスを提供するものであ
る。
The present invention provides an electrolyte matrix for fuel cells having a homogeneous porous structure that satisfies all required properties by applying high purity single crystal silicon carbide whiskers to the base material.

炭化けい素ウィスカーは、二酸化けい素含有粉末をカー
ボンブラックのよう々炭材と共に不活性雰囲気中で14
00〜1700℃の温度によ抄気相反応させて得られる
純度99%以上の短繊維状単結晶で、2000Kg/−
以上の引張り強さと500 A / mJを越える弾性
率を有する熱的・化学的に極めて安定な電気絶縁性の超
硬物質である。
Silicon carbide whiskers are produced by combining silicon dioxide-containing powder with a carbonaceous material such as carbon black in an inert atmosphere.
A short fibrous single crystal with a purity of 99% or more obtained by a gas phase reaction at a temperature of 00 to 1700℃, 2000Kg/-
It is a thermally and chemically extremely stable electrically insulating superhard material that has a tensile strength of over 500 A/mJ and an elastic modulus of over 500 A/mJ.

基材としては、直径0.1〜0.5μm、アスペクト比
100以上の性状をもつβ型炭化けい素ウィスカーが用
いられる。この選択範囲を外れると、最終的に得られる
マトリックスに良好な電解質保持機能とセル積層時に締
付は圧に耐える機械的強度を付与することが困難となる
As the base material, β-type silicon carbide whiskers having a diameter of 0.1 to 0.5 μm and an aspect ratio of 100 or more are used. Outside this selection range, it becomes difficult to impart a good electrolyte retention function to the finally obtained matrix and mechanical strength to withstand tightening pressure during cell stacking.

炭化けい素ウィスカーは、適宜な樹脂系固着剤を介在し
た状態で薄板状成形体として一体に結合される。
The silicon carbide whiskers are bonded together as a thin plate-like molded body with an appropriate resin adhesive interposed therebetween.

樹脂系固着剤には電、池作動温度(150〜220℃)
において耐りん酸抵抗性を有する樹脂類が用いられる。
Battery operating temperature (150-220℃) for resin-based adhesive
Resins having phosphoric acid resistance are used in these methods.

この挿樹脂類としては、弗素樹脂、ポリイミド樹脂、変
性フェノール樹脂などを挙げることができるが、とくに
ポリテトラフルオロエチレンの適用が好結果を与える。
Examples of the resin inserts include fluororesins, polyimide resins, modified phenolic resins, etc., but particularly good results are obtained when polytetrafluoroethylene is used.

樹脂系固着剤の介在量は、これを余勢多くすると多孔組
織の均質形成を阻害して電、基液の保持性を由ね、ポリ
テトラフルオロエチレンのような撥水性樹脂を用いる場
合にけ保持性の劣化を一層助長する結果を与える。一方
、介在量を極端に少なくすると機械的強度が弱化する。
If the amount of resin-based adhesive is too large, it will inhibit the homogeneous formation of a porous structure and affect the ability to retain electricity and base liquid. This results in further promoting sexual deterioration. On the other hand, if the amount of interposition is extremely reduced, the mechanical strength will be weakened.

電解液保持性と機械的強度を両立きせるには、樹脂系固
着剤の介在量を炭化けい素ウィスカーに対し2〜20重
量憾の範囲に設定することが望ましい。
In order to achieve both electrolyte retention and mechanical strength, it is desirable to set the amount of the resin-based fixing agent in the range of 2 to 20% by weight relative to the silicon carbide whiskers.

炭化けい素ウィスカーと樹脂系固着剤により市。Adhesive with silicon carbide whiskers and resin-based adhesive.

解質マ) IJラックス薄板状成形体を形成するために
は、炭化けい素ウィスカーと液状の樹脂系固着剤を十分
混練するか、炭化けい素ウィスカーのシート状ケーキに
液状固着剤を含浸または吹付けしたのち、モールド法あ
るいはロール法などにより。
In order to form an IJ Lux thin plate-like molded product, silicon carbide whiskers and a liquid resin-based adhesive are sufficiently kneaded, or a sheet cake of silicon carbide whiskers is impregnated or blown with a liquid adhesive. After attaching, use the mold method or roll method.

0.1〜2龍の薄板状に成形し、次いで固着剤を重合硬
化するなどの方法が用いられる。この際、基材となる炭
化けい素ウィスカーは、それ自体短線ll゛ #IO−ランダムに絡み合った均一空隙構造を備えてお
り、これが高純材質特性に基づく固着剤との高い親和結
合作用と相俟って、成形過程を通じ微細な均質多孔組織
を有する極めて強固な薄板状成形体に転化する。このた
め、電解液に対する優れた濡れ性ならびに保持性と高度
の機械的強度が付与ghx°         ヶ このように本発明により提供される雷解番マトリックス
は、この目的に要求される材質的特性を全面的に満足す
るから、作動電圧の高い大谷量燃料市池用として、長期
間、材質劣化を伴うことなしに’li:足し九発電性能
が保障される。
A method such as forming into a thin plate having a thickness of 0.1 to 2 mm and then polymerizing and curing the adhesive is used. At this time, the silicon carbide whiskers that serve as the base material have a uniform pore structure in which short lines are randomly intertwined, and this interacts with the high affinity bonding action with the fixing agent based on the properties of the high purity material. Through the molding process, it is transformed into an extremely strong thin plate-like molded product having a fine homogeneous porous structure. For this reason, it has excellent wettability and retention properties for electrolyte and a high degree of mechanical strength.Thus, the lightning matrix provided by the present invention has all the material properties required for this purpose. Therefore, it can be used for Otani fuel city ponds with high operating voltage, and the power generation performance is guaranteed for a long period of time without material deterioration.

実施例1゜ 直径0.2〜0.571 m、長さI 00−200 
ltmの性状を有する純度99.5%のβ型炭化けい素
ウィスカーを、樹脂系固着剤としてポリテトラフルオロ
エチレン(平均粒径0.371m)を水に懸濁させたデ
ィスパージョン溶液と十分に攪拌混合した。
Example 1゜Diameter 0.2-0.571 m, length I 00-200
β-type silicon carbide whiskers with a purity of 99.5% and having properties of ltm are thoroughly stirred with a dispersion solution in which polytetrafluoroethylene (average particle size 0.371 m) is suspended in water as a resin-based fixing agent. Mixed.

この際のポリテトラフルオロエチレンの介在量は、炭化
けい素ウィスカー基材に対し15重量係であった。この
混合物を狭隙ロール間を通して厚さ05朋の薄板に成形
し、ついで150℃で3時間乾燥したのち300℃で1
時間熱処理して固着剤を硬化した。
The amount of polytetrafluoroethylene present was 15% by weight based on the silicon carbide whisker base material. This mixture was passed between narrow-gap rolls and formed into a thin plate with a thickness of 0.5 mm, then dried at 150°C for 3 hours, and then heated at 300°C for 1 hour.
The adhesive was cured by heat treatment for a period of time.

得られたマトリックス板につき曲げ強度を測定した結果
、6 Kg/caの曲げ応力に対しても帛、裂破損現象
は生じなかった。次にマトリックス板を巾1cm、長さ
50傭に切断し先端1α部分を濃度95チのりん酸液K
vl、て吸い上げ上昇速度を測定したところ、54 c
yn / mi n、の速度で一様に上昇した。
As a result of measuring the bending strength of the obtained matrix plate, no tearing failure phenomenon occurred even under a bending stress of 6 Kg/ca. Next, cut the matrix plate into 1cm wide and 50cm long pieces, and cut the tip 1α into phosphoric acid solution K with a concentration of 95cm.
When I measured the suction rising speed with vl, it was 54 c
It rose uniformly at a rate of yn/min.

比較のために、基材に粒径1mμの炭化けい素微粉末を
用い上記と同一手法により成形したマトリックス板につ
いて曲げ強度およびりん酸吸い上げ上昇速度を測定した
。その結果、比較例マトリックス板はIK9/−の曲げ
応力で亀裂が発生し、吸い上げ速度は17σ/ min
、であった。
For comparison, the bending strength and phosphoric acid uptake rate were measured for a matrix plate formed by the same method as above using silicon carbide fine powder with a particle size of 1 mμ as a base material. As a result, cracks occurred in the comparative example matrix plate under a bending stress of IK9/-, and the suction speed was 17σ/min.
,Met.

以上の結果から、木゛発明に係る電解質マ) IJラッ
クスりん酸電解液に対し優れた親和性(濡れ性)と保持
性能をもつ極めて高強度の均質多孔組織を備えることが
確認された。
From the above results, it was confirmed that the electrolyte material according to the invention has an extremely high-strength homogeneous porous structure that has excellent affinity (wettability) and retention performance for the IJ Lux phosphate electrolyte.

実施例2 実施例IKより作成した本発明の電解質マ) IJラッ
クス190℃の熱濃りん酸(濃度95憾)中にI 00
0時間浸漬して耐用性を試験した。浸漬処理後の状態を
観察したところ材質劣化は全く認められず、安定した耐
熱耐薬品性を示した。
Example 2 Electrolyte matrix of the present invention prepared from Example IK) I00 in hot concentrated phosphoric acid (concentration 95) at IJ Lux 190°C
Durability was tested by immersion for 0 hours. When the condition after the immersion treatment was observed, no material deterioration was observed, and stable heat and chemical resistance was observed.

また、りん酸保持マトリックスの泡圧力は0.51V/
−を越え、水素イオン伝導度本高水準の値を示した。
In addition, the bubble pressure of the phosphoric acid retention matrix was 0.51V/
- exceeded the hydrogen ion conductivity level.

特許出願人 東海カーボン株式会社 代理人 弁理士  高 畑 正 也Patent applicant: Tokai Carbon Co., Ltd. Agent: Patent Attorney Masaya Takahata

Claims (1)

【特許請求の範囲】 !、直径0.1〜0.5pm、 7xペクト比100板
状成形体からなることを特徴とする燃料電池用電解質マ
トリックス。 2樹脂系向着剤がポリテトラフルオロエチレンで、炭化
けい素ウィスカーに対し2〜20重量%の範囲で介在す
る特許請求の範囲第1項記載の燃料電池用電解質マ) 
IJソックス
[Claims]! , a diameter of 0.1 to 0.5 pm, and a 7x aspect ratio of 100 plate-shaped molded bodies. (2) The electrolyte matrix for fuel cells according to claim 1, wherein the resin binder is polytetrafluoroethylene and is present in an amount of 2 to 20% by weight based on the silicon carbide whiskers.
IJ socks
JP57109968A 1982-06-28 1982-06-28 Electrolytic matrix for fuel cell Granted JPS59871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57109968A JPS59871A (en) 1982-06-28 1982-06-28 Electrolytic matrix for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57109968A JPS59871A (en) 1982-06-28 1982-06-28 Electrolytic matrix for fuel cell

Publications (2)

Publication Number Publication Date
JPS59871A true JPS59871A (en) 1984-01-06
JPS6228547B2 JPS6228547B2 (en) 1987-06-20

Family

ID=14523717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57109968A Granted JPS59871A (en) 1982-06-28 1982-06-28 Electrolytic matrix for fuel cell

Country Status (1)

Country Link
JP (1) JPS59871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273871A (en) * 1985-05-29 1986-12-04 Fuji Electric Co Ltd Matrix for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273871A (en) * 1985-05-29 1986-12-04 Fuji Electric Co Ltd Matrix for fuel cell

Also Published As

Publication number Publication date
JPS6228547B2 (en) 1987-06-20

Similar Documents

Publication Publication Date Title
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
KR20150113032A (en) Method for manufacturing an electrode paste
JPH0449747B2 (en)
JP2008204824A (en) Carbon fiber sheet and its manufacturing method
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
Dongjiang et al. High‐temperature conductive binder for an integrated electrode bipolar plate and its application in vanadium redox flow battery
JP4037955B2 (en) Method for producing polymer electrolyte fuel cell separator member
JPS6332863A (en) Carbon-graphite reservoir layer and manufacture of the same
JPS59871A (en) Electrolytic matrix for fuel cell
CN114373935B (en) Negative electrode binder for lithium battery, negative electrode, and lithium battery
JPS5926907A (en) Thin graphite plate and its manufacture
CN112436172A (en) Porous electrode and bipolar plate solidification integrated liquid flow energy storage battery
Hui et al. Effects of resin type on properties of graphite/polymer composite bipolar plate for proton exchange membrane fuel cell
US1784981A (en) Separator plate
KR100654242B1 (en) Method for manufacturing the bypolar plate of fuel cell
CN210052799U (en) Porous electrode and bipolar plate solidification integrated liquid flow energy storage battery
JPS60239358A (en) Carbonaceous thin plate and manufacture
CN117423881B (en) Method for improving effective contact surface of flow battery electrode and bipolar plate
JP2002324558A (en) Silica gel electrolyte film, its production method and its fuel cell
JPH01266223A (en) Production of anisotropic porous carbon formed product
JP2008204823A (en) Carbon fiber sheet and its manufacturing method
JPS6032251A (en) Gas electrode for fuel cell
EP0581367A1 (en) Substrates containing resin, fibers and anti-agglomeration agent
KR20230046112A (en) Method of manufacturing electrode plate of lead acid battery applied with TiO2 coating
JPH01253163A (en) Electrode substrate for fuel cell and manufacture thereof