JPS61272607A - Shearing interferometer - Google Patents

Shearing interferometer

Info

Publication number
JPS61272607A
JPS61272607A JP60114337A JP11433785A JPS61272607A JP S61272607 A JPS61272607 A JP S61272607A JP 60114337 A JP60114337 A JP 60114337A JP 11433785 A JP11433785 A JP 11433785A JP S61272607 A JPS61272607 A JP S61272607A
Authority
JP
Japan
Prior art keywords
mirror
interference fringes
spindle
total reflection
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60114337A
Other languages
Japanese (ja)
Inventor
Masashi Furuse
古瀬 昌司
Takayoshi Morooka
高義 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60114337A priority Critical patent/JPS61272607A/en
Publication of JPS61272607A publication Critical patent/JPS61272607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure a three-dimensional surface shape with high accuracy by turning an optical element which performs shearing operation in two orthogonal direction by rotating mechanisms. CONSTITUTION:Two rotating mechanisms 70 each consisting of a cylindrical spindle holder 72 having a internal screw 71 at part of the inner peripheral surface, a spindle 74 having an external screw 73 engaging the internal screw, etc., are arranged for a total reflecting element. When the object surface is measured, the mirror 59 is rotated around a Z axis by a desired angle to shift the optical axis of reflected light from a beam splitter laterally and interference fringes are observed. Then, the mirror 59 is rotated around a Y axis to make a lateral shift and interference fringes are observed. Then, the residual aberrations are removed from data on those both interference fringes and a fringe analysis is taken to compute the three-dimensional shape of the object surface. Thus, the shear direction is known easily and accurately by turning the mirror in the two directions and the angle of turning of the mirror 59, i.e. shear quantity is know easily and accurately from the movement extent of the spindle 74.

Description

【発明の詳細な説明】 ・〔産業上の利用分野〕 本発明は、レンズ、鏡等の光学部品の面形状、特に球面
、非球面を高精度IIc測定するシェアリング干渉針に
関し、シェア(横ずらし)方向の直交性を保証し、シェ
ア量を容易に知9得るようにしたものである。
Detailed Description of the Invention - [Field of Industrial Application] The present invention relates to a shearing interference needle for measuring the surface shape of optical components such as lenses and mirrors, especially spherical and aspherical surfaces with high precision IIc. This ensures orthogonality in the (shift) direction and allows the amount of share to be easily determined.

〔従来の技術〕[Conventional technology]

シュアリング干渉針社、基準参照面を用いず。 Schurling Interference Needle Co., Ltd., without using a standard reference surface.

被測・定波面を二つに分け、横すらしを与えて自分自身
で干渉を起こさせる干渉針で、従来から種々提案されて
おり、その−例を#!6図に示す。これ監理化学研究所
・(株)Vコー共同開発(埋伏シンポジウム1982年
11月19f1発表)による縞走査方式を併用したマツ
八・ツエンダ−型のシェアリング干渉針であって、レー
ザー光源11から出射した光はビーム拡大器12.ビー
ムスプリツメ13.14および集光レンズ15を通って
被検面16を照射する。被検面16からの反射光はビー
ムスプリッタ14によシ一部透過し一部反射される。そ
のうち反射光、はピエゾ素子18等の駆動装置によって
駆動される参照鏡19によって位相変化を与えられ、さ
らに平行平面板20で横ずらしされた後、ビームスプリ
ッタ14を透過しビームスプリッタ13によって反射さ
れた光をビームスプリツメ11により再び重ね合わされ
て干渉を起こす。そして、この重ね合わされた光は結像
レン     □ズ21によって撮像索子22上に結像
され干渉縞を形成する。
Various types of interference needles have been proposed in the past, which divide the measured/constant wave surface into two, provide horizontal slenderness, and cause interference on their own. Examples are #! It is shown in Figure 6. This is a Matsuhachi-Zehnder type shearing interference needle that uses a fringe scanning method jointly developed by the Supervising Chemical Research Institute and V Co., Ltd. (presented at the Impaction Symposium on November 19th, 1982), and is emitted from a laser light source 11. The beam expander 12. The test surface 16 is irradiated through the beam splitters 13, 14 and the condenser lens 15. The reflected light from the test surface 16 is partially transmitted by the beam splitter 14 and partially reflected. Among them, the reflected light is given a phase change by a reference mirror 19 driven by a driving device such as a piezo element 18, and is laterally shifted by a parallel plane plate 20, and then transmitted through a beam splitter 14 and reflected by a beam splitter 13. The beam splitter 11 superimposes the beams again, causing interference. The superimposed lights are then imaged onto the imaging probe 22 by the imaging lens 21 to form interference fringes.

このようにシェアリング干渉計は自分自身を参照面とす
るので、参照基準面のいらない干渉測定法である。この
場合、測定結果は被検面16の微分である横収差に相当
する。また、シェア量(横ずらしの一1ift)を変化
させることによって得られる干渉縞の本数を調節でき、
シェア量を小さくとれば、干渉縞の間隔が混み合って測
定が不可能になるようなことはない。したがって、比較
的収差の量が大きい光学部品、特に非球面5の測定に有
利とされる。
In this way, since the shearing interferometer uses itself as a reference plane, it is an interferometric measurement method that does not require a reference plane. In this case, the measurement result corresponds to the lateral aberration, which is the differential of the surface 16 to be measured. In addition, the number of interference fringes obtained can be adjusted by changing the shear amount (lateral shift - 1ift).
If the shear amount is kept small, the intervals between interference fringes will not become crowded and measurement will not be possible. Therefore, it is said to be advantageous for measuring optical components with a relatively large amount of aberration, especially the aspherical surface 5.

なお、全反射g819を前後に数分の一波長刻みで動か
して縞走査すると、参照光と被検光の位相が全反射鏡1
9の移動量に応じて変化するため、百分の一波長8度の
精度が得られ読取シ精度を向上させることができる。
Note that when scanning the fringe by moving the total reflection g819 back and forth in steps of a fraction of a wavelength, the phases of the reference light and the test light are different from that of the total reflection mirror 1.
Since it changes according to the amount of movement of 9, it is possible to obtain an accuracy of 8 degrees per hundredth wavelength and improve reading accuracy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

シェアリング干渉法は、シェアの方向によシ被検面のシ
ェア方向と平行な断面形状を観察するため、被検面が球
面、非球面等のE次元形状の場合は、一方向だけでは面
形状を正確に知ることができず、少なくとも2方向のシ
ェアを行なう必要がある。また、シェア方向およびシェ
ア量を正確に知る必要がある。しかし、未だシェア方法
が十分確立しておらず、したがってシェア方向およびシ
ェア綾をその都度測定する必要があり、測定に手間がか
かるという不都合があった。
Shearing interferometry observes the cross-sectional shape of the surface under test parallel to the shear direction regardless of the shear direction. Since the shape cannot be known accurately, it is necessary to perform shearing in at least two directions. It is also necessary to accurately know the share direction and share amount. However, the shearing method has not yet been sufficiently established, and therefore, it is necessary to measure the shearing direction and shearing direction each time, which is disadvantageous in that it takes time and effort to measure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るシェアリング干渉側は上述したような問題
点を解決すべくなされたもので、光源と、被検面からの
反射光を2つの光束に分割する光学素子と、この2つの
光束のうち一方に横すらしを与える光学素子と、これら
両光束を重ね合わせて干渉縞を形成する光学素子と、こ
の干渉縞を観察する撮像索子と、前記2つの光束のうち
一方に横すらしを与える前記光学素子を直交する2方向
に回動させる回IJJ機構とで構成したものである。
The sharing interference side according to the present invention was made to solve the above-mentioned problems, and includes a light source, an optical element that splits the reflected light from the test surface into two light beams, and a light source that splits the reflected light from the test surface into two light beams. an optical element that imparts transverse alignment to one of the two beams, an optical element that superimposes both of these light beams to form interference fringes, an imaging element that observes the interference fringes, and an optical element that imparts transverse alignment to one of the two light beams; The optical element is provided with a rotary IJJ mechanism that rotates the optical element in two orthogonal directions.

〔作用〕[Effect]

本発明においてはシェアリングを行なう光学素子を回動
機構により直交する2方向に回動させるようにしている
ので、簡便にして三次元の面形状を高精匿で測定でき、
またシェア方向、シェア量を容易に知り得る。
In the present invention, since the optical element that performs sharing is rotated in two orthogonal directions by a rotation mechanism, it is possible to easily measure a three-dimensional surface shape with high precision.
Also, the share direction and share amount can be easily known.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図れ本発明に係るシェアリング干渉針の一実施例の
光学系を示す図である。同図において、50はレーザー
光源、51U光1′調整器、52祉全反射鏡、53は発
散レンズ、54はビームスプ  ″リッタ、55はコリ
メータ、56は集光レンズ、51は被検面、58はビー
ムスプリッタ、59゜60は全反射鏡、61は全反射鏡
60を光軸方向に移動させるピエゾ素子等の駆動装置、
62はリレーレンズ、63は全反射鏡、64は結像レン
ズ、65は撮像索子、66はA/′D変換器、67は縞
解析を行なうコンピュータである。
FIG. 1 is a diagram showing an optical system of an embodiment of a shearing interference needle according to the present invention. In the figure, 50 is a laser light source, 51U light 1' adjuster, 52 total reflection mirror, 53 is a diverging lens, 54 is a beam splitter, 55 is a collimator, 56 is a condensing lens, 51 is a surface to be inspected, 58 59 is a beam splitter, 60 is a total reflection mirror, and 61 is a drive device such as a piezo element that moves the total reflection mirror 60 in the optical axis direction.
62 is a relay lens, 63 is a total reflection mirror, 64 is an imaging lens, 65 is an imaging probe, 66 is an A/'D converter, and 67 is a computer for performing fringe analysis.

全反射鏡59はシェアリングを行なうため彼述する回動
(幾何によって直交する2方向に回動されるよう構成さ
れており、!2図では紙面内で角度θだけ傾斜された状
態を示し、これによってシェア量Sが与えられる。同様
VC紙面と垂直な面内でも傾斜される。
In order to perform sharing, the total reflection mirror 59 is configured to rotate in two orthogonal directions due to geometry, and Figure 2 shows a state where it is tilted by an angle θ in the plane of the paper. This gives a share amount S. Similarly, the plane perpendicular to the plane of the VC paper is also tilted.

このような構成からなるシェアリング干渉針において、
レーザー光源50から出射された光束は光1kv!4整
器51を通p全反射鏡52によって反射され、発散レン
ズ53によって発散光とされる。
In the shearing interference needle with such a configuration,
The luminous flux emitted from the laser light source 50 is 1 kV of light! The light is reflected by the p-total reflection mirror 52 through the 4 rectifier 51, and is converted into diverging light by the diverging lens 53.

この発散光はビームスプリツメ54によって反射され、
コリメータ55で半行光とされた後集光レンズ56を通
って被検面57を照射する。被検面51からの反射光は
集光レンズ56.コリメータ55およびビームスプリッ
タ54を透過し、ビームスプリッタ58により一部透過
し、一部反射される。そのうち透過光はピエゾ素子等の
駆動装置61によって駆動される全反射鏡60によシ反
射され、再び前記ビームスプリッタ58に戻る。また、
ビームスプリッタ5BVCよシ反射された反射光社会反
射鏡59によって横ずらしされた仮、再びビームスプリ
ッタ58に戻p、前記全反射鏡60からの反射光と重ね
合わされ、干渉を起こす。この重ね合わされた光束はリ
レーレンズ62を透過し、全反射鏡63によって反射さ
れた彼、結像レンズ64によって撮像素子65上に結像
され干渉縞を形成する。そして、干渉縞は撮像素子65
によって画像情報として電気信号に変換されfCaA/
D変換器66によpデジタル信号に変換され、コンピュ
ータ67に送られる。コンピュータ67は画像情報より
干渉計固有の残留収差を取り除き、縞解析を行なうこと
で被検面51の面形状を算出する。この残留収差は、シ
ェアリング干渉針においては基準参照面を必要としない
かわりに干渉計固有のものとして測定値に加算されるも
ので、この残留収差を取り除くことによシ測定精度を高
めている。
This diverging light is reflected by the beam splitter 54,
After the beam is converted into a semi-linear beam by a collimator 55, it passes through a condensing lens 56 and irradiates a surface to be inspected 57. The reflected light from the test surface 51 is collected by a condenser lens 56. The light passes through the collimator 55 and the beam splitter 54, and is partially transmitted and partially reflected by the beam splitter 58. The transmitted light is reflected by a total reflection mirror 60 driven by a drive device 61 such as a piezo element, and returns to the beam splitter 58 again. Also,
The reflected light reflected by the beam splitter 5BVC is laterally shifted by the social reflector 59, returns to the beam splitter 58 again, and is superimposed with the reflected light from the total reflector 60, causing interference. This superimposed light flux passes through the relay lens 62, is reflected by the total reflection mirror 63, and is imaged onto the image sensor 65 by the imaging lens 64, forming interference fringes. The interference fringes are formed by the image sensor 65.
fCaA/ is converted into an electrical signal as image information by
It is converted into a p-digital signal by a D converter 66 and sent to a computer 67. The computer 67 removes residual aberrations specific to the interferometer from the image information and performs fringe analysis to calculate the surface shape of the test surface 51. This residual aberration is unique to the interferometer and is added to the measured value instead of requiring a standard reference surface in the shearing interference needle.By removing this residual aberration, measurement accuracy is improved. .

また、球面、非球面等の面形状を測定するためには直交
する2方向のシェアデー・夕が必要であ如、残留収差を
消去するためには干渉針の光学系を変えることなくシェ
アする必要がある。
In addition, in order to measure surface shapes such as spherical and aspherical surfaces, it is necessary to use shear data in two orthogonal directions, and in order to eliminate residual aberrations, it is necessary to share data without changing the optical system of the interference needle. There is.

第3図はこのようなシェアを行なうために全反射鏡59
に対して、配設された回動機構の一実施例を示す断面図
である。この回動機1170は円筒状に形成され内周面
の一部にめねじ11が形成されたスピンドルホルダー1
2と、このスピンドルホルダー12に挿通され外周の一
部に前記めねじ11と螺合するおねじ13が形成された
スピンドル74とを備え、このスピンドル74の前進運
動によ)全反射鏡59の一側縁部を押圧し、その回転中
心0を中心として回動させるように構成されている。し
たがって、スピンドル14の移動量によシ全反射*59
の回転角度、換言すればシェア量を容易に知ることがで
きる。
Figure 3 shows a total reflection mirror 59 to perform such sharing.
FIG. 3 is a cross-sectional view showing an example of a rotation mechanism arranged in the same manner as in FIG. This rotating device 1170 is a spindle holder 1 that is formed in a cylindrical shape and has a female thread 11 formed on a part of its inner peripheral surface.
2, and a spindle 74 which is inserted into this spindle holder 12 and has a male thread 13 formed on a part of its outer periphery to be screwed into the female thread 11. It is configured to press one side edge and rotate about its rotation center 0. Therefore, depending on the amount of movement of the spindle 14, total reflection *59
The rotation angle, in other words, the share amount can be easily determined.

この場合、単極方向に長い複数個の溝15をスピンドル
ホルダー72の内周面に周方向に所定の間隔をおいて形
成し、これに対応して鋼球11をスピンドル74に配設
してもよい。鋼球17はスピンドル14の外周に形成さ
れた四部16に出没自在に配設されて抜けを防止され、
かっばね7Bによシ突出方向に付勢されることによpそ
の一部を外部に突出させて前記#175のいずれが一つ
に嵌入し、これによってスピンドル14の進退時にクリ
ック感を与えるようにしている。このような構成におい
ては全反射f#59を一定角度ずつステップ状に回動さ
せることができることは明らかであろう。また、更に他
の実施例としては第4図に示すようにスピンドル74を
カム80によって進退移動させるようにしてもよい。
In this case, a plurality of grooves 15 that are long in the monopole direction are formed on the inner circumferential surface of the spindle holder 72 at predetermined intervals in the circumferential direction, and steel balls 11 are correspondingly arranged on the spindle 74. Good too. The steel balls 17 are disposed in four parts 16 formed on the outer periphery of the spindle 14 so as to be freely retractable, and are prevented from coming off.
By being biased in the protruding direction by the cover spring 7B, a part of the p is protruded to the outside and fitted into one of the #175, thereby giving a click feeling when the spindle 14 moves back and forth. I have to. It is clear that in such a configuration, the total reflection f#59 can be rotated stepwise by a constant angle. In yet another embodiment, the spindle 74 may be moved forward and backward by a cam 80, as shown in FIG.

全反射鏡590回転方向としてはM5図に示すようにy
軸と2軸を回転中心として微小角度回動される。したが
って、全反射鏡59に対して前述した回動機構γ0が2
つ配設される。被検面57の測定に際しては先ず2軸を
回転中心として全反射鏡59を所望角度回動させてビー
ムスプリッタ58(第1図)からの反射光の光軸を横ず
らしし、干渉縞を観測する。この時は被検面57のy軸
に平行な断面形状が得られる。次に、y軸を回転中心と
して全反射鏡59を回動させて横ずらしし。
The rotation direction of the total reflection mirror 590 is y as shown in diagram M5.
It is rotated by a minute angle around the two axes. Therefore, the rotation mechanism γ0 described above for the total reflection mirror 59 is 2
One is provided. When measuring the surface to be measured 57, first, the total reflection mirror 59 is rotated by a desired angle around two axes to horizontally shift the optical axis of the reflected light from the beam splitter 58 (Fig. 1), and interference fringes are observed. do. At this time, a cross-sectional shape parallel to the y-axis of the surface to be inspected 57 is obtained. Next, the total reflection mirror 59 is rotated about the y-axis and shifted laterally.

干渉縞を観測する。そして、これら2つの干渉縞による
データから前述した残留収差を取シ除いて縞解析を行な
うことによシ被検面51の凸三次元形状を算出する。
Observe interference fringes. Then, the convex three-dimensional shape of the test surface 51 is calculated by removing the aforementioned residual aberration from the data of these two interference fringes and performing fringe analysis.

かくして、このような構成からなるシェアリング干渉計
によれば、全反射鏡59を直交する2方向()r、z方
向)に回動させるようにしているので、その回動方向に
よってシェア方向を容易に正確に知ることができ、また
スピンドル14の移動量によシ全反射鏡590回動角度
、換言すればシェア敏を容易に正確に知ることができる
。また、全反射鏡59をy軸と2軸周りに回動させれば
、シェア方向の直交性も保証されているので、被検面5
7を高精度で測定することができる。
Thus, according to the shearing interferometer having such a configuration, since the total reflection mirror 59 is rotated in two orthogonal directions (r and z directions), the shearing direction is determined by the direction of rotation. This can be easily and accurately determined, and the rotation angle of the total reflection mirror 590, in other words, the shear sensitivity can be easily and accurately determined based on the amount of movement of the spindle 14. In addition, by rotating the total reflection mirror 59 around the y-axis and two axes, orthogonality in the shear direction is guaranteed, so the surface to be inspected 5
7 can be measured with high precision.

なお、本発明は上記実施例に何ら特定されること々く、
干渉計の光学系1回動機構10等を適宜変更し得るもの
である。
Note that the present invention is not specified in any way by the above embodiments;
The optical system 1 rotation mechanism 10 of the interferometer can be changed as appropriate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係るシェアリング干渉針は
、シェアリングを行なう元手索子全回動機構によって直
交する2方向に回動させるようにしたので、三次元の面
形状を高精度で測定でき、また回動方向が特定されてい
るので、シェア方向を容易に知ること1ができ、しかも
回動角によシシエア量も容易に知ることができる。
As explained above, the shearing interference needle according to the present invention is configured to rotate in two orthogonal directions by the full rotation mechanism of the base rope that performs shearing, so the three-dimensional surface shape can be formed with high precision. Since it can be measured and the rotation direction is specified, the shear direction can be easily known1, and the amount of shear air can also be easily determined based on the rotation angle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の光学系を示す図、第2図は
全反射鏡の回動によるシェア緻を示す図、第3図は回動
機構の断面図、第4図り回動機構の他の実施例を示す側
面図、第5図は全反射鏡の回動方向を示す斜視図、第6
図は従来のマツハ・ツエンダ−型シェアリング干渉計の
光学系を示す図である。 50・・・・レーザー光源、54.58・・・・ビーム
スプリッタ、55・・@Φコリメータ、56・・・・集
光レンズ、51・・・・被検面、59.60・・・・全
反射鏡、70・・・・回動機構。
Fig. 1 is a diagram showing the optical system of an embodiment of the present invention, Fig. 2 is a diagram showing the shear density due to the rotation of the total reflection mirror, Fig. 3 is a sectional view of the rotation mechanism, and Fig. 4 is a diagram showing the rotation of the total reflection mirror. FIG. 5 is a side view showing another embodiment of the mechanism; FIG. 5 is a perspective view showing the direction of rotation of the total reflection mirror; FIG.
The figure shows the optical system of a conventional Matsuha-Zehnder type shearing interferometer. 50...Laser light source, 54.58...Beam splitter, 55...@Φ collimator, 56...Condensing lens, 51...Test surface, 59.60... Total reflection mirror, 70... Rotating mechanism.

Claims (1)

【特許請求の範囲】[Claims] 光源と、被検面からの反射光を2つの光束に分割する光
学素子と、この2つの光束のうち一方に横ずらしを与え
る光学素子と、これら両光束を重ね合わせて干渉縞を形
成する光学素子と、この干渉縞を観察する撮像素子と、
前記2つの光束のうち一方に横ずらしを与える前記光学
素子を直交する2方向に回動させる回動機構とを備えた
ことを特徴とするシェアリング干渉計。
A light source, an optical element that splits the reflected light from the test surface into two beams, an optical element that applies a lateral shift to one of these two beams, and an optical element that superimposes both beams to form interference fringes. an image sensor that observes the interference fringes;
A shearing interferometer characterized by comprising: a rotation mechanism for rotating the optical element in two orthogonal directions for imparting a lateral shift to one of the two light beams.
JP60114337A 1985-05-29 1985-05-29 Shearing interferometer Pending JPS61272607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60114337A JPS61272607A (en) 1985-05-29 1985-05-29 Shearing interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60114337A JPS61272607A (en) 1985-05-29 1985-05-29 Shearing interferometer

Publications (1)

Publication Number Publication Date
JPS61272607A true JPS61272607A (en) 1986-12-02

Family

ID=14635259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60114337A Pending JPS61272607A (en) 1985-05-29 1985-05-29 Shearing interferometer

Country Status (1)

Country Link
JP (1) JPS61272607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218802A (en) * 1987-03-06 1988-09-12 Ricoh Co Ltd Fringe scanning type shearing interference measuring apparatus
JPH02128107A (en) * 1988-11-07 1990-05-16 Ricoh Co Ltd Rotation of wave face for shearing interference measurement
JP2006516737A (en) * 2003-01-28 2006-07-06 オラキシオン Full-area optical measurement of surface characteristics of panels, substrates, and wafers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218802A (en) * 1987-03-06 1988-09-12 Ricoh Co Ltd Fringe scanning type shearing interference measuring apparatus
JPH02128107A (en) * 1988-11-07 1990-05-16 Ricoh Co Ltd Rotation of wave face for shearing interference measurement
JP2006516737A (en) * 2003-01-28 2006-07-06 オラキシオン Full-area optical measurement of surface characteristics of panels, substrates, and wafers

Similar Documents

Publication Publication Date Title
US4340306A (en) Optical system for surface topography measurement
US4387994A (en) Optical system for surface topography measurement
US4875777A (en) Off-axis high accuracy structured light profiler
EP2930461A1 (en) Three-dimensional shape measuring device, method for acquiring hologram image, and method for measuring three-dimensional shape
US6097477A (en) Laser speckle strain and deformation sensor using linear array image cross-correlation method for specifically arranged triple-beam triple-camera configuration
US11313794B2 (en) Hybrid 3D inspection system
An Industrial applications of speckle techniques
US4643576A (en) Fringe scanning shearing interferometer
Engel 3D optical measurement techniques
JP2002310897A (en) High speed optical retardation generating method and its high speed optical retardation generator by movement of translucent body in optical coherence tomography
JP2005160694A (en) Intraocular distance measuring apparatus by multiple wavefront optical coherence
CN109341571A (en) A kind of dual wavelength synchronizes the surface figure measuring device and method of interference
JPS61272607A (en) Shearing interferometer
US11248899B2 (en) Method and apparatus for deriving a topography of an object surface
JP2002116010A (en) Three-dimensional shape measuring method and device
Tiziani High-precision optical measurement methods
JP3670821B2 (en) Refractive index distribution measuring device
TW202129222A (en) Hybrid 3d inspection system
JP2004205478A (en) Three-dimensional coordinate measuring method
JPH08159724A (en) Rotary surface measuring instrument
Matsumoto et al. Moire topography for three-dimensional profile measurement using the interference fringes of a laser
JP2014202589A (en) Surface interval measurement device
JP3916991B2 (en) Indenter shape measuring instrument
JPH03156305A (en) Aspherical-shape measuring apparatus
JPH03276044A (en) Method and instrument for measuring radius of curvature of curved surface