JPS61272379A - Cvd method for aluminum - Google Patents

Cvd method for aluminum

Info

Publication number
JPS61272379A
JPS61272379A JP11503085A JP11503085A JPS61272379A JP S61272379 A JPS61272379 A JP S61272379A JP 11503085 A JP11503085 A JP 11503085A JP 11503085 A JP11503085 A JP 11503085A JP S61272379 A JPS61272379 A JP S61272379A
Authority
JP
Japan
Prior art keywords
aluminum
substrate
plasma
cvd method
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11503085A
Other languages
Japanese (ja)
Inventor
Takayuki Oba
隆之 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11503085A priority Critical patent/JPS61272379A/en
Publication of JPS61272379A publication Critical patent/JPS61272379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable high quality Al wiring by previously subjecting the surface of a substrate to plasma etching in an NF3 atmosphere so as to increase the rate of growth of Al by a CVD method an to enhance the adhesion. CONSTITUTION:A substrate 13 is placed on one of electrodes 12 in a plasma CVD apparatus 11, NF314 is introduced into the apparatus 11 from the feed port 15 through a shower and plasma is generated under proper conditions to subject the surface of the substrate to plasma etching. After the etching is finished, the remaining NF3 in the apparatus 11 is perfectly exhausted from the exhaust port 17, the interior of the apparatus 11 is purged with hydrogen, and TIB bubbled with He is introduced into the apparatus 11 together with hydrogen to grow Al on the surface of the substrate 13 by a CVD method.

Description

【発明の詳細な説明】 [m要] 本発明は、CVD法により基板表面に、アルミニウムを
良好な被着で、然も成長速度を速く形成するものであっ
て、従来の蒸着やスパッタ法によるアルミニウムの成膜
では、例えば三次元デバイス等で段差のある部分にアル
ミニウムの配線をする際には、平坦に被着されないため
断線等の懸念のあり、即ちカバレッジ性が劣る。
[Detailed Description of the Invention] [Required] The present invention is for forming aluminum on the surface of a substrate with good adhesion and high growth rate by CVD method, which is different from conventional vapor deposition or sputtering method. When forming an aluminum film, for example, when wiring aluminum in a step part of a three-dimensional device, etc., there is a risk of wire breakage because the film is not evenly deposited, that is, the coverage is poor.

そのため一般にカバレージ性が優れているといはれるC
VD法を採用してアルミニウムを成膜すると、従来のC
VD法ではカバレージがよいが被着強度が劣るという不
都合がある。
Therefore, C is generally said to have excellent coverage.
When aluminum is deposited using the VD method, it is possible to
Although the VD method has good coverage, it has the disadvantage of poor adhesion strength.

本発明では、その改善の方法として、予め基板を三弗化
窒素でプラズマエツチングを行うことにより、優れた被
着強度を有するアルミニウムのCVD成長が行なうよう
にしたものである。
In the present invention, as a method for improving this, the substrate is plasma etched with nitrogen trifluoride in advance, thereby allowing CVD growth of aluminum having excellent adhesion strength.

C産業上の利用分野1 本発明は、アルミニウムのCVD方法に係り、特に半導
体基板の段差のある部分に優れたカバレンジを有するア
ルミニウムの配線に関するものである。
C. Industrial Application Field 1 The present invention relates to an aluminum CVD method, and more particularly to aluminum wiring having excellent coverage in stepped portions of a semiconductor substrate.

近時、半導体装置の高密度集積化が進み、素子の形状も
微細且つ緻密になり、従って素子の表面で行われるアル
ミニウムの配線も高精度になっているが、特に段差のあ
る基板表面にアルミニウムの配線を行う場合には、断線
の懸念や信頼性の向上の観点からカバレッジの優れた製
造方法が要望されている。
Recently, as semiconductor devices have become more densely integrated, the shape of the elements has become finer and more precise, and the aluminum wiring on the surface of the elements has also become more precise. When performing wiring, a manufacturing method with excellent coverage is desired from the viewpoint of concerns about disconnection and improvement of reliability.

[従来の技術] 第2図は、従来の蒸着又はスバフタ法により、アルミニ
ウムの配線を段差のある絶縁物の表面に行った断面図で
ある。
[Prior Art] FIG. 2 is a cross-sectional view of aluminum wiring formed on the surface of an insulator with steps by a conventional vapor deposition or suvafuta method.

高濃度の活性層が形成された基板lの表面に、絶縁膜2
として、例えば二酸化シリコン膜やPSGがあり、その
所定の位置にコンタクトホールのごとき段差を有する開
口部3が設けられていて、そのコンタクトホール部分を
含めて、その表面にポリシリコン膜4があって、その上
にアルミニウムの配線5がなされている。
An insulating film 2 is placed on the surface of the substrate l on which a highly concentrated active layer is formed.
For example, there is a silicon dioxide film or PSG, and an opening 3 having a step such as a contact hole is provided at a predetermined position, and a polysilicon film 4 is formed on the surface including the contact hole part. , and an aluminum wiring 5 is formed thereon.

通常、絶縁II!2の開口部3の深さが6000人程度
であると、蒸着されたアルミニウム配線の断面の形状は
、比較的平坦に被着され′、殆ど問題になることはない
が、開口部3の深さが、三次元デバイス等の場合の5〜
8plI程度になると、アルミニウムの配線の断面の形
状が、図に示すアルミニウムの配線のA部の位置で、ア
ルミニウムの厚みが薄くなりたり、不連続になって、断
線になるという不都合がある。
Normally, insulation II! If the depth of the opening 3 in the opening 2 is about 6000 mm, the cross-sectional shape of the deposited aluminum wiring will be relatively flat, and there will be little problem. 5~ in the case of three-dimensional devices, etc.
When it becomes about 8 plI, there is a problem that the cross-sectional shape of the aluminum wiring becomes thinner or becomes discontinuous, resulting in a disconnection at the position A of the aluminum wiring shown in the figure.

一方、アルミニウムを二酸化シリコン膜やシリコン膜面
に被着する方法として、CVD法により被着することも
試みられたが、この場合には、シリコン膜面や二酸化シ
リコン膜面に被着されたアルミニウムの接着性が劣り、
また成長速度も遅いという欠点があって、実用面で多大
の困難があった。
On the other hand, as a method of depositing aluminum on a silicon dioxide film or a silicon film surface, attempts have been made to deposit aluminum by the CVD method, but in this case, the aluminum deposited on a silicon film surface or a silicon dioxide film surface is has poor adhesion,
It also has the disadvantage of slow growth rate, which poses great difficulties in practical use.

[発明が解決しようとする問題点] 上記、従来のアルミニウムの配線を、段差のある絶縁膜
等の表面に、蒸着やスパツクにより行うと、ステップカ
バレッジ性が劣り、一方従来方法によりCVD法により
被着を行うと、被着強度が劣ると共に、成長速度が遅い
ということが問題点である。
[Problems to be Solved by the Invention] When the above-mentioned conventional aluminum wiring is formed by vapor deposition or spacing on the surface of an insulating film with steps, the step coverage is poor; When deposited, the problem is that the adhesion strength is poor and the growth rate is slow.

[問題点を解決するための手段] 第1図は、上記問題点を解決した本発明のCVDによる
アルミニウムの配線方法を示す断面図であって、その手
段は、基板の表面にアルミニウムをCVD法により成膜
する際に、CVDを行う前に、予め該絶縁物の表面を三
弗化窒素の雰囲気中でプラズマエツチングを行うて活性
化を行った後、・活性化された基板の表面にCVD法に
よりアルミニウムを成長をさせることにより、極めて被
着強度の大きく、且つ成長速度の大きいアルミニウムの
成長を行うことができる。
[Means for Solving the Problems] FIG. 1 is a sectional view showing an aluminum wiring method by CVD of the present invention that solves the above problems. When forming a film by CVD, the surface of the insulator is activated by plasma etching in an atmosphere of nitrogen trifluoride, and then the activated substrate surface is coated with CVD. By growing aluminum by this method, aluminum can be grown with extremely high adhesion strength and a high growth rate.

[作用] 本発明は、シリコン膜や、二酸化シリコン膜上にCVD
法によりアルミニウムを成長するものであって、通常、
シリコンの表面や二酸化シリコンの表面に、CVD法で
アルミニウムを成長する際は、二酸化シリコン膜上には
、アルミニウムが被着しにくい不活性化された強固な酸
化膜が存在して、その表面の膜のために、シリコン膜と
反応ガスとが反応しにくく、従って反応速度が著しく遅
く、また被着強度も弱くなるという欠点があるが、本発
明ではCVD成長を行うに先立って、シリコン膜の表面
を三弗化窒素でプラズマエツチングを行ない、それらの
膜の表面の活性化を行なうことにより、その後で行うC
VD成長の速度と被着性を著しく改善するものである。
[Function] The present invention can be applied by CVD on a silicon film or a silicon dioxide film.
It grows aluminum by a method, usually
When aluminum is grown on the surface of silicon or silicon dioxide using the CVD method, there is a strong inactivated oxide film on the silicon dioxide film that makes it difficult for aluminum to adhere to it. However, in the present invention, prior to CVD growth, the silicon film is By performing plasma etching on the surface with nitrogen trifluoride and activating the surface of these films, the subsequent C
This significantly improves VD growth speed and adhesion.

[実施例] 第1図は、本発明のアルミニウムを成膜するCVD装置
の断面図である。
[Example] FIG. 1 is a sectional view of a CVD apparatus for forming an aluminum film according to the present invention.

成長装置は例えば平行平板型のプラズマCVD装置11
を用い、電極12の一方に基板13を載置して、三弗化
窒素(NFa )14を供給孔15からシャワーによっ
てプラズマCVD装置内に導入する。
The growth device is, for example, a parallel plate type plasma CVD device 11.
A substrate 13 is placed on one of the electrodes 12, and nitrogen trifluoride (NFa) 14 is introduced into the plasma CVD apparatus through a supply hole 15 by showering.

プラズマCVD装置内における早弗化窒素の圧力を、約
0.3Torr程度にして、高周波電源16により、周
波数が13.75 M Hzの高周波出力によってプラ
ズマを発生させ、約3分間のプラズマエツチングを行う
もので、それにより基板の表面は約数十人程度のエツチ
ングがなされる。
The pressure of the fast nitrogen fluoride in the plasma CVD apparatus is set to about 0.3 Torr, and the high frequency power supply 16 generates plasma by high frequency output with a frequency of 13.75 MHz, and plasma etching is performed for about 3 minutes. As a result, the surface of the substrate is etched by approximately several dozen layers.

エツチングが終了した後、プラズマCVD装置内の三弗
化窒素を、排気孔17から全部排気し水素で内部をパー
ジし、次ぎに、ヘリウムでバブリングしたT I B 
A (Triisobutyl Aiuminum )
を水素ガスと共に、プラズマCVD装置内に導入して、
全体の圧力を5 Torr程度に制御して基板温度を約
300℃程度に加熱する。
After etching is completed, the nitrogen trifluoride in the plasma CVD apparatus is completely exhausted from the exhaust hole 17, the inside is purged with hydrogen, and then helium is bubbled into the TIB.
A (Triisobutyl Aiuminum)
is introduced into the plasma CVD apparatus together with hydrogen gas,
The overall pressure is controlled to about 5 Torr, and the substrate temperature is heated to about 300°C.

このようにして、基板表面にアルミニウムが成長される
が、成長速度は1000人/分とかなり高速度に成長が
なされ、この成長速度は、三弗化窒素のプラズマエツチ
ングを行なわない従来の成長速度である100人/分に
比較して、約10倍の成長速度であると共に、被着強度
が強く極めて優れた被着方法であることが判る。
In this way, aluminum is grown on the substrate surface at a fairly high growth rate of 1,000 people/min, which is higher than the conventional growth rate without nitrogen trifluoride plasma etching. It can be seen that the growth rate is about 10 times that of the 100 persons/min, and the adhesion strength is strong, making it an extremely excellent adhesion method.

[発明の効果] 以上、詳細に述べたように、本発明のCVD法によりア
ルミニウムの成長速度を速く且つ安定に成長させること
ができ、従って高品質のアルミニウムの配線を可能にす
るという、効果大なるものがある。
[Effects of the Invention] As described above in detail, the CVD method of the present invention has the great effect of increasing the growth rate of aluminum at a high and stable rate, and thus enabling high-quality aluminum wiring. There is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のアルミニウムを被着するためのCV
D装置の断面図、 第2図は、従来のアルミニウムの被着状態を示す断面図
、 図において、 11はプラズマCVD装置、 12は電極、       13は基板、14は三弗化
窒素     15は供給孔、16は高周波電源、  
  17は排気孔、をそれぞれ示している。
FIG. 1 shows the CV for depositing the aluminum of the present invention.
D is a cross-sectional view of the device. FIG. 2 is a cross-sectional view showing a conventional aluminum deposition state. In the figure, 11 is a plasma CVD device, 12 is an electrode, 13 is a substrate, 14 is nitrogen trifluoride, and 15 is a supply hole. , 16 is a high frequency power supply,
Reference numeral 17 indicates an exhaust hole.

Claims (1)

【特許請求の範囲】 基板(13)表面にCVD法によりアルミニウムを成膜
する際に、 予め該基板の表面を三弗化窒素の雰囲気中でプラズマエ
ッチングを行った後、 該基板の表面にCVD法によりアルミニウムを成長をさ
せることを特徴とするアルミニウムのCVD方法。
[Claims] When forming an aluminum film on the surface of the substrate (13) by the CVD method, the surface of the substrate is plasma etched in advance in an atmosphere of nitrogen trifluoride, and then the surface of the substrate is coated with the CVD method. An aluminum CVD method characterized by growing aluminum by a method.
JP11503085A 1985-05-27 1985-05-27 Cvd method for aluminum Pending JPS61272379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11503085A JPS61272379A (en) 1985-05-27 1985-05-27 Cvd method for aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11503085A JPS61272379A (en) 1985-05-27 1985-05-27 Cvd method for aluminum

Publications (1)

Publication Number Publication Date
JPS61272379A true JPS61272379A (en) 1986-12-02

Family

ID=14652478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11503085A Pending JPS61272379A (en) 1985-05-27 1985-05-27 Cvd method for aluminum

Country Status (1)

Country Link
JP (1) JPS61272379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242227A (en) * 2009-04-01 2010-10-28 Tocalo Co Ltd Member for loom and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147714A (en) * 1974-10-19 1976-04-23 Koichi Sasaki OSHIBOTAN SHIKIJIDOTANBUSHIITO
JPS52131470A (en) * 1976-04-28 1977-11-04 Hitachi Ltd Manufacture of semiconductor device
JPS54154291A (en) * 1978-05-25 1979-12-05 Itt Method of forming aliminum conductor path
JPS5980778A (en) * 1982-10-30 1984-05-10 Daikin Ind Ltd Etching method
JPS60200966A (en) * 1984-03-16 1985-10-11 ジ−ナス インコ−ポレイテツド Composite coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147714A (en) * 1974-10-19 1976-04-23 Koichi Sasaki OSHIBOTAN SHIKIJIDOTANBUSHIITO
JPS52131470A (en) * 1976-04-28 1977-11-04 Hitachi Ltd Manufacture of semiconductor device
JPS54154291A (en) * 1978-05-25 1979-12-05 Itt Method of forming aliminum conductor path
JPS5980778A (en) * 1982-10-30 1984-05-10 Daikin Ind Ltd Etching method
JPS60200966A (en) * 1984-03-16 1985-10-11 ジ−ナス インコ−ポレイテツド Composite coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242227A (en) * 2009-04-01 2010-10-28 Tocalo Co Ltd Member for loom and method for producing the same

Similar Documents

Publication Publication Date Title
US4404235A (en) Method for improving adhesion of metal film on a dielectric surface
JPH06151417A (en) Manufacture of semiconductor integrated circuit
JP2578192B2 (en) Method for manufacturing semiconductor device
US4777061A (en) Blanket tungsten deposition for dielectric
JPH04350167A (en) Production of high dielectric thin film
JPS61272379A (en) Cvd method for aluminum
JPS617622A (en) Manufacture of semiconductor device
US4671845A (en) Method for producing high quality germanium-germanium nitride interfaces for germanium semiconductors and device produced thereby
JP2978704B2 (en) Thin film formation method
JP2976442B2 (en) Method of forming insulating film
JPS6211227A (en) Manufacture of semiconductor device
JPS63177537A (en) Manufacture of semiconductor element
JP3002494B2 (en) Method for manufacturing semiconductor device
JPH021124A (en) Manufacture of dielectric film
JP2689985B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JPH02254741A (en) Manufacture of multilayer wiring
JPS62143430A (en) Plasma cvd process
JPH0689941A (en) Semiconductor device and its manufacture
JPH0638456B2 (en) Method for manufacturing semiconductor device
JPS6233768A (en) Selective growing method for tungsten film
CN118276224A (en) Silicon photofabrication process and silicon photodevice
JPH07130847A (en) Semiconductor device and its manufacture
JPS63248137A (en) Manufacture of semiconductor device
JPH06112159A (en) Manufacture of semiconductor device
JPH06260444A (en) Wiring structure and manufacture thereof