JPS6126703A - Production of amorphous metallic compact - Google Patents

Production of amorphous metallic compact

Info

Publication number
JPS6126703A
JPS6126703A JP14442684A JP14442684A JPS6126703A JP S6126703 A JPS6126703 A JP S6126703A JP 14442684 A JP14442684 A JP 14442684A JP 14442684 A JP14442684 A JP 14442684A JP S6126703 A JPS6126703 A JP S6126703A
Authority
JP
Japan
Prior art keywords
amorphous metal
powder
pressurizing
metal powder
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14442684A
Other languages
Japanese (ja)
Other versions
JPH055881B2 (en
Inventor
Yukio Toda
戸田 幸生
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP14442684A priority Critical patent/JPS6126703A/en
Publication of JPS6126703A publication Critical patent/JPS6126703A/en
Publication of JPH055881B2 publication Critical patent/JPH055881B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a defectless amorphous metallic compact having high density without cracks, etc. by pressurizing and compressing the amorphous metallic powder packed into the space in an anvil by a pressurizing chip which closes the aperture of the above-mentioned space while applying ultrasonic oscillation to said powder. CONSTITUTION:The amorphous alloy powder is packed into the space 2 in the anvil 1 having the aperture and is pressurized and compressed by a pressurizing chip 3 attached to the top end of a pressurizing rod 4 while the ultrasonic oscillation energy generated by an ultrasonic oscillation generator 5 connected to the rod 4 is transmitted via the chip 3 to the above-mentioned amorphous metallic powder. The above-mentioned metallic powder is thus consolidated and bound and the defectless amorphous metallic compact having high density without defects such as cracks is obtd.

Description

【発明の詳細な説明】 (イ)発明の技術分野 この発明は、非晶質金属粉末を加圧成形して非晶質金属
成形体を得る非晶質金属成形体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for producing an amorphous metal molded body by press-molding an amorphous metal powder to obtain an amorphous metal molded body.

(ロ)従来技術と問題点 非晶質金属はその磁気的特性、機械的特性あるいは化学
的特性が結晶質金属に比べて特異であシ、近時、エンソ
ニフリング材料としてその有用性に興味がもたれてきて
いる。
(b) Prior art and problems Amorphous metals have unique magnetic, mechanical, or chemical properties compared to crystalline metals, and recently there has been interest in their usefulness as ensonifring materials. is leaning.

この糧の非晶質金属は一般には金属溶湯を高温の状態か
ら急冷凝固させる方法で製造されている関係で、その形
態はフィラメント状、極薄のストリップ状あるいはりモ
ノ状として提供され、これらを接着して積層することで
、例えば磁気コアー等として実用に供されている。
This amorphous metal is generally produced by rapidly cooling and solidifying molten metal from a high temperature state, and it comes in the form of filaments, ultra-thin strips, or glue. By adhering and laminating them, they are put to practical use, for example, as magnetic cores.

非晶質金属を粉末の形態で製造し、これを固着して目的
の形状に成形して利用することも提案されている。従来
、この非晶質金属粉末の成形加工法として爆薬法や衝撃
銃法あるいは温間プレス法等の方法が提案されているが
、爆薬法や温間プレス法は、量産性については優れては
いるものの得られる成形体に多量の空洞が存在し高密度
の成形体が得られ難く、また、衝撃銃法は、量産性に難
があるとともに成形体にクラックを生じ易く、いずれも
実用的な技術とはなっていない。
It has also been proposed that amorphous metal be produced in the form of powder, then fixed and molded into a desired shape for use. Conventionally, methods such as the explosive method, impact gun method, and warm press method have been proposed as methods for forming this amorphous metal powder, but the explosive method and warm press method are not superior in terms of mass production. However, the molded product obtained by the impact gun method has many cavities, making it difficult to obtain a high-density molded product, and the impact gun method has difficulty in mass production and tends to cause cracks in the molded product, making it impractical. It has not become a technology.

(ハ)発明の目的 そこで本発明の目的は上記従来の問題点を除去する高密
度で且つ健全な非晶質金属成形体の製造方法を提供する
ことを目的としてなされたものである。
(c) Object of the Invention Therefore, an object of the present invention is to provide a method for manufacturing a high-density and sound amorphous metal molded body that eliminates the above-mentioned conventional problems.

に)発明の構成及び効果 本発明では、アンビル内空間と加圧チップとの間に収容
された非晶質金属粉末に超音波振動を伝達させながら該
加圧チップにより該非晶質金属粉末を加圧圧縮して固結
成形することにより非晶質金属成形体とする方法を採用
する。
B) Structure and effect of the invention In the present invention, the amorphous metal powder is applied by the pressurizing tip while transmitting ultrasonic vibration to the amorphous metal powder housed between the anvil inner space and the pressurizing tip. A method is adopted in which an amorphous metal molded body is formed by compression and solidification.

非晶質金属粉末は一般に金属溶湯を高温の状態で微細な
融滴に分散させて高速冷却させることによって得られる
もので、その粉末粒の表面は平滑でなく複雑な凹凸をも
った形状を呈している。
Amorphous metal powder is generally obtained by dispersing molten metal into fine molten droplets at high temperatures and cooling them at high speed, and the surface of the powder particles is not smooth but has a complex uneven shape. ing.

それ故、この種の非晶質金属粉末を単に加圧圧縮、する
のみでは成形体に多量の空孔の存在は避は得す、また、
十分な結合強度を得ることは不可能である。
Therefore, if this type of amorphous metal powder is simply compressed under pressure, the presence of a large number of pores in the compact cannot be avoided.
It is not possible to obtain sufficient bond strength.

本発明では、非晶質金属粉末を加圧圧縮する過程で、該
非晶質金属粉末に超音波振動を伝達し、非晶質金属粉末
粒に振動エネルギーを付与している。したがって、粉末
粒子の充填密度が向上し、また、加圧圧縮の過程におい
ては圧縮力の作用に加えて振動エネルギーが加重される
ために、粉末粒子の圧縮変形と粒子間の滑シ移動現象が
同時に且つ効果的に生起され、非晶質金属粉末表面の酸
化皮膜が破壊除去されて清浄で且つ活性に富んだ非晶質
金属の基質同士が圧接され、粉末間の固着結合がなされ
、クラック等の欠陥を含まない高密度で健全な成形体を
得ることができる。
In the present invention, in the process of compressing the amorphous metal powder under pressure, ultrasonic vibrations are transmitted to the amorphous metal powder to impart vibrational energy to the amorphous metal powder particles. Therefore, the packing density of the powder particles is improved, and in the process of pressurization, vibration energy is added in addition to the action of the compression force, so that the compressive deformation of the powder particles and the sliding movement phenomenon between particles are reduced. Simultaneously and effectively, the oxide film on the surface of the amorphous metal powder is destroyed and removed, the clean and highly active amorphous metal substrates are pressed together, and a fixed bond is formed between the powders, causing cracks, etc. It is possible to obtain a high-density, healthy molded product that does not contain any defects.

(実施例1) Co68.P42Bllの組成を有する粒径74〜14
9μmの非晶質金属粉末を準備し、これを開口を有する
アンビル1内の空間2に充填する。粉末を加圧する加圧
チップ3は加圧ロッド4の先端に設けられ、該加圧ロッ
ド4には超音波振動発生装置5が連結されていて超音波
振動エネルギーを前記加圧チップ2を介してアンビル内
の粉末に伝達するようにしである。(第1図参照)上記
の装置を用いて、超音波振動発生装置に振動数15 k
Hz テ出力1700〜35000超音波振動を発生さ
せこれを加圧口、ラド4および加圧チップ3を介してア
ンビル内の非晶質金属粉末に伝達しながら圧縮荷重70
〜i 20 psxで1〜3秒間加圧した。なお、望ま
しくは300 ps1以上の高荷重で予備加工を行う。
(Example 1) Co68. Particle size 74-14 with composition P42Bll
An amorphous metal powder of 9 μm is prepared and filled into a space 2 in an anvil 1 having an opening. A pressure tip 3 for pressurizing powder is provided at the tip of a pressure rod 4, and an ultrasonic vibration generator 5 is connected to the pressure rod 4 to transmit ultrasonic vibration energy through the pressure tip 2. This is to ensure that the powder is transferred to the anvil. (See Figure 1) Using the above device, a vibration frequency of 15 k was applied to the ultrasonic vibration generator.
A compressive load of 70 Hz is generated while transmitting ultrasonic vibrations to the amorphous metal powder in the anvil through the pressurizing port, RAD 4 and pressurizing tip 3.
Pressure was applied at ~i 20 psx for 1-3 seconds. Note that the preliminary processing is preferably performed under a high load of 300 ps1 or more.

第2図に、得られた成形体の顕微鏡組織写真(x150
)を示す。
Figure 2 shows a microscopic structure photograph (x150
) is shown.

得られた成形体のビッカース硬度はHマフ50〜850
であシ、同一組成の非晶賞金tvgン材の硬度(Hマフ
00〜850)と同程度の硬度を示した。
The Vickers hardness of the obtained molded product is H Muff 50-850.
The hardness was comparable to that of the amorphous tvgn material with the same composition (H muff 00-850).

比較のために、前記実施例におけると同一組成および粒
度構成の非晶質金属粉末を用い、同一装置および条件で
、但し、超音波振動を作用させないで、非晶質金属粉末
を成形した。
For comparison, an amorphous metal powder having the same composition and particle size structure as in the above example was used, and the amorphous metal powder was molded using the same equipment and conditions, but without applying ultrasonic vibration.

第3図に、得られた成形体の顕微鏡組織写真(X150
)を示す。
Fig. 3 shows a microscopic structure photograph (X150
) is shown.

得られた成形体のビッカース硬度はHマ150〜300
であシ、同一組成の°非晶質金属すがン材の示す硬度(
Hマフ00〜850)に比べて格段に低い値を示してい
る。
The Vickers hardness of the obtained molded product is Hma 150 to 300.
The hardness of amorphous metal sash materials with the same composition (
H muff 00-850) shows a much lower value.

また、第2−3図よル明らかな如く、前記実施例により
得られた成形体(第2図)には空洞は殆んど認められな
かったが、比較例により得られた成形体(第3図)には
多量の空洞が存在している。
Furthermore, as is clear from Figures 2-3, almost no cavities were observed in the molded body obtained in the example (Figure 2), but the molded body obtained in the comparative example (Fig. Figure 3) has a large number of cavities.

(実施例2) 実施例1で使用したと同じ装置を使い、組成FA7o 
P □s Ct Crlo % N lt s stt
 B 15 N FILt s Cr A o B t
 2 NFnHCotsSLa Btg 、N1asZ
rst (原子チ)粒径74〜149μmの非晶質粉末
についても同様の実験を行なった結果、殆んど欠陥の無
い非晶質金属粉末成形体を得ることができた。
(Example 2) Using the same equipment as used in Example 1, composition FA7o
P □s Ct Crlo % N lt s stt
B 15 N FILt s Cr A o B t
2 NFnHCotsSLa Btg, N1asZ
Similar experiments were conducted using amorphous powder having a grain size of 74 to 149 μm, and as a result, an amorphous metal powder compact with almost no defects could be obtained.

(実施例3) 実施例1で使用したと同じ装置のアンビル部に加熱装置
を取り付けた装置を使い、組成FA 4.* COs 
s、5stx s B 11 (原子チ)、粒径74〜
1494mの非晶質金属粉末について、結晶化温度(T
x℃)(結晶化温度:TX=518℃)以下の温度で予
備加熱後同様の加圧振動を付与することにより更に健全
な成形体を得ることができた。予熱温度は望ましくは(
Tx−50)℃以下で、さらに望ましくはCTx−10
0)〜(Tx−200)’Cである。
(Example 3) Using the same device as used in Example 1 with a heating device attached to the anvil part, composition FA 4. *COs
s, 5stx s B 11 (atomic chi), particle size 74~
For the amorphous metal powder of 1494m, the crystallization temperature (T
By preheating at a temperature lower than x°C (crystallization temperature: TX = 518°C) and applying the same pressurized vibration, a more sound molded body could be obtained. The preheating temperature is preferably (
Tx-50)℃ or less, more preferably CTx-10
0) to (Tx-200)'C.

なお、前記の実施例においては、粒径74〜14−9μ
mの非晶質金属粉末を成形する例を示したが、本発明で
は非晶質金属粉末に結合促進剤として粒径0.1μm以
下の超微金属粉末を適当量(1〜5重量%)混合して成
形することにより成形体の結合強度を更に向上させるこ
ともでき、また、適当量の水ガクスやエポキシ樹脂等の
[fi絶縁性材料あるいは高電気抵抗材料、高硬度材料
等の第2相を配合して成形することにより成形体の電磁
気特性あるいは機械的特性を改善する手段とすることも
できる。
In addition, in the above examples, the particle size was 74 to 14-9μ.
In the present invention, an appropriate amount (1 to 5% by weight) of ultrafine metal powder with a particle size of 0.1 μm or less is added to the amorphous metal powder as a bonding promoter. By mixing and molding, it is possible to further improve the bonding strength of the molded body, and it is also possible to further improve the bonding strength of the molded body. By blending phases and molding, it is also possible to improve the electromagnetic properties or mechanical properties of the molded product.

以上の通シで、本発明は非晶質金属粉末を原材料として
使用し、欠陥の無い非晶質金属粉末成形体を得ることを
可能とする工業的方法を提供するものであシ、非晶質金
属の用途拡大を可能にするものであシその工業的価値は
大である。
In summary, the present invention provides an industrial method that uses amorphous metal powder as a raw material and makes it possible to obtain a defect-free amorphous metal powder compact. It makes it possible to expand the uses of quality metals and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示すための成形装置の説明
図。 第2図は、本発明方法にょシ得られた非晶質金属成形体
の組織を示す。 第3図は、比較の方法にょシ得られた非晶質金属成形体
の組織を示す。 図中:1・・・アンビル 2・・・アンビル内空間 3・・・加圧チップ 4・・・加圧ロット“ 5・・・超音波振動発生装置
FIG. 1 is an explanatory diagram of a molding apparatus for showing an embodiment of the present invention. FIG. 2 shows the structure of an amorphous metal compact obtained by the method of the present invention. FIG. 3 shows the structure of an amorphous metal compact obtained by the comparative method. In the diagram: 1...Anvil 2...Anvil interior space 3...Pressure tip 4...Pressure lot" 5...Ultrasonic vibration generator

Claims (1)

【特許請求の範囲】 1)開口を有するアンビル内空間と該開口を塞ぐ加圧チ
ップとの間に収容された非晶質金属粉末に超音波振動を
伝達させながら該加圧チップにより加圧圧縮して該非晶
質金属粉末を固結成形することを特徴とする非晶質金属
成形体の製造方法。 2)非晶質金属粉末への超音波振動の伝達が加圧チップ
を介してなされることを特徴とする特許請求の範囲第1
項記載の非晶質金属成形体の製造方法。
[Scope of Claims] 1) Pressurization and compression by the pressure tip while transmitting ultrasonic vibrations to the amorphous metal powder housed between the anvil interior space having an opening and the pressure tip that closes the opening. A method for producing an amorphous metal molded body, which comprises solidifying and molding the amorphous metal powder. 2) Claim 1, characterized in that the ultrasonic vibration is transmitted to the amorphous metal powder via a pressurizing tip.
A method for producing an amorphous metal molded body as described in 2.
JP14442684A 1984-07-13 1984-07-13 Production of amorphous metallic compact Granted JPS6126703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14442684A JPS6126703A (en) 1984-07-13 1984-07-13 Production of amorphous metallic compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14442684A JPS6126703A (en) 1984-07-13 1984-07-13 Production of amorphous metallic compact

Publications (2)

Publication Number Publication Date
JPS6126703A true JPS6126703A (en) 1986-02-06
JPH055881B2 JPH055881B2 (en) 1993-01-25

Family

ID=15361911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14442684A Granted JPS6126703A (en) 1984-07-13 1984-07-13 Production of amorphous metallic compact

Country Status (1)

Country Link
JP (1) JPS6126703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380887A (en) * 2018-03-20 2018-08-10 深圳大学 A kind of ultrasonic vibration sintering method and device
WO2018187900A1 (en) * 2017-04-10 2018-10-18 Shenzhen University System and method for fabrication of bulk nanocrystal alloy
CN111531175A (en) * 2020-05-09 2020-08-14 苏州大学 Powder slurry ultrasonic field assisted embossing forming microstructure device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187900A1 (en) * 2017-04-10 2018-10-18 Shenzhen University System and method for fabrication of bulk nanocrystal alloy
CN108698125A (en) * 2017-04-10 2018-10-23 深圳大学 The system and method for manufacturing bulk nanocrystalline alloy
CN108380887A (en) * 2018-03-20 2018-08-10 深圳大学 A kind of ultrasonic vibration sintering method and device
CN111531175A (en) * 2020-05-09 2020-08-14 苏州大学 Powder slurry ultrasonic field assisted embossing forming microstructure device

Also Published As

Publication number Publication date
JPH055881B2 (en) 1993-01-25

Similar Documents

Publication Publication Date Title
US4758405A (en) Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat resistant aluminum alloy
CA2221979A1 (en) Pressed body of amorphous magnetically soft alloy powder and process for producing same
CN110976845A (en) Powder modification method for eliminating thermal cracks of 7075 aluminum alloy formed by laser 3D printing
JP2001073062A (en) Production of amorphous soft magnetic alloy powder molded body
JPS6126703A (en) Production of amorphous metallic compact
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
JPH11256202A (en) Production of amorphous soft magnetic alloy powder molded body
JPS62287002A (en) Powder molding method
JPS59157201A (en) Manufacture of molded body of zinc-aluminum alloy powder
JP2860427B2 (en) Method for producing sintered body made of amorphous alloy powder
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
JP3288571B2 (en) Method for producing bulk compact of amorphous alloy powder
JPH01283330A (en) Manufacture of aluminum-based composite member
JPH04144966A (en) Whisker complex cubic boron nitride sintered compact and production thereof
JPH10152705A (en) Production of bulk compacted body of amorphous alloy powder
JPS6146531B2 (en)
JPS6144109A (en) Forming of warm powder
JPS63286548A (en) Fine diamond grain-dispersed body and its production
JPS6141506A (en) Pressure molding method of powdered body
JPH0499206A (en) Manufacture of metal powder compact material
JPS5864302A (en) Producton of powder metallurgical parts
JPS63255333A (en) Aluminum alloy/potassium titanate whisker composite material by powder metallurgical method
JPH02267201A (en) Method for pretreating aluminum alloy powder
JPH01306507A (en) Manufacture of plate-like material