JPS61266559A - Corrosion and wear resistant sintered alloy - Google Patents

Corrosion and wear resistant sintered alloy

Info

Publication number
JPS61266559A
JPS61266559A JP10841285A JP10841285A JPS61266559A JP S61266559 A JPS61266559 A JP S61266559A JP 10841285 A JP10841285 A JP 10841285A JP 10841285 A JP10841285 A JP 10841285A JP S61266559 A JPS61266559 A JP S61266559A
Authority
JP
Japan
Prior art keywords
alloy
sintered
powder
rocker arm
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10841285A
Other languages
Japanese (ja)
Inventor
Akira Fujiki
章 藤木
Yoshihiro Marai
馬来 義弘
Makoto Kano
眞 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10841285A priority Critical patent/JPS61266559A/en
Publication of JPS61266559A publication Critical patent/JPS61266559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide corrosion and wear resistances and fitness, to make heat treatment and surface treatment practically unnecessary and to enable sintering at a low temp. by restricting the amounts of Cr, Ni, V, C, N, P and Mo in an iron alloy. CONSTITUTION:This sintered alloy has a composition consisting of, by weight, 3.0-15% Cr, 0.5-3.0% Ni, 0.01-2.0% V, 0.5-3.5% C, 0.02-0.3% N, 0.2-1.0% P, 0.1-10% Mo and the balance Fe with impurities or further contg. 0.1-10% W and/or 0.25-2.5% Cu. The alloy is especially suitable for use as a member of a rocker arm for an internal-combustion engine.

Description

【発明の詳細な説明】 [発明の目的] (M東上の利用分野) この発明は、耐食性および耐摩耗性に優れ、特に内燃機
関用のロッカーアーム部材として好適な鉄系の耐食拳耐
摩耗性焼結合金に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Field of Application of M Tojo) This invention provides an iron-based corrosion-resistant and wear-resistant material that has excellent corrosion resistance and wear resistance, and is particularly suitable as a rocker arm member for internal combustion engines. It relates to sintered alloys.

(従来の技術) 従来、内燃機関用ロッカーアーム部材(ロッカーアーム
チップ、カム等)としては、多くの場合、チル鋳物ある
いは焼結合金が用いられており、これらのうち焼結合金
としては、JISSKDII相当の組成をもつ鉄系合金
粉末(Fe−11〜13%Cr−0,8〜1.0%M 
o −0,2〜0.5%V−1,4〜1.6%C)に、
Fe−P系合金粉末と黒鉛粉末とを混合して成形台焼結
したものがある。また、このほかにも、このような鉄系
合金粉末に、Fe−P系合金粉末や黒鉛粉末を混合して
成形・焼結したものがある(例えば、特願昭57−11
8647号(特開昭59−9151号)、特願昭59−
7265号など)。
(Prior Art) Conventionally, chilled castings or sintered alloys have been used in many cases as rocker arm members (rocker arm tips, cams, etc.) for internal combustion engines. Iron-based alloy powder with a considerable composition (Fe-11~13%Cr-0,8~1.0%M
o -0,2-0.5%V-1,4-1.6%C),
There is a product in which Fe--P alloy powder and graphite powder are mixed and sintered on a molding table. In addition, there are other types of iron-based alloy powders mixed with Fe-P-based alloy powders and graphite powders, and then molded and sintered (for example, as disclosed in Japanese Patent Application No. 57-11).
No. 8647 (Japanese Unexamined Patent Publication No. 59-9151), Patent Application No. 59-
7265 etc.).

このような焼結合金は、主としてCrやMOによって耐
食性を付与し、また、Crのうちの一部を(Fe、Cr
)3cの形で、MOのうちの一部をMo2C,MoCの
形で、V(7)一部をv4C3の形でそれぞれ析出させ
て耐摩耗性を持たせ、さらに、Fe−P系合金の形で添
加したPの働きにより、Fe−Fe3 C−Fe5Fの
三元共晶からなるステダイトをマトリクス中に微細に分
散させて焼結体全体に硬さを持たせると共に密度を高め
、強度を上げることにより耐食性と共に耐摩耗性を兼ね
そなえた材料である。
Such sintered alloys have corrosion resistance mainly due to Cr and MO, and some of the Cr is (Fe, Cr).
) 3c, a part of MO is precipitated in the form of Mo2C, MoC, and a part of V(7) is precipitated in the form of v4C3 to provide wear resistance. Due to the action of P added in the form of P, steadite made of ternary eutectic Fe-Fe3C-Fe5F is finely dispersed in the matrix, giving hardness to the entire sintered body, increasing density, and increasing strength. This makes it a material that has both corrosion resistance and wear resistance.

(発明が解決しようとする問題点) しかしながら、このような従来の耐食・耐摩耗性焼結合
金にあっては、合金元素の大部分が炭化物として析出し
てしまうため、前記合金元素がマトリクス中へ十分固溶
せず、耐食性および耐摩耗性が不十分となり、特に排気
ガス還流(E、G、R,)システムを採用するディーゼ
ルエンジンなどのように、多量の酸性物質がエンジンオ
イル中に生成するようなエンジンの動弁系に用いる場合
は、腐食摩耗によってロッカーアーム部材の摩耗が加速
するという問題点があった。
(Problems to be Solved by the Invention) However, in such conventional corrosion-resistant and wear-resistant sintered alloys, most of the alloying elements precipitate as carbides. As a result, corrosion resistance and wear resistance are insufficient, and a large amount of acidic substances are generated in engine oil, especially in diesel engines that use exhaust gas recirculation (E, G, R,) systems. When used in the valve train of an engine like this, there is a problem in that the wear of the rocker arm member accelerates due to corrosive wear.

この発明は、このような従来の問題点に着目してなされ
たもので、Feマトリクス中に対酸耐食性を向上させる
金属元素および窒素を十分固溶させかつ必要量の炭化物
を析出させることにより、耐食性と耐摩耗性の両方共に
おいて優れた特性をもつ耐食Φ耐摩耗性焼結合金を提供
することを目的としている。
This invention was made by focusing on such conventional problems, and by sufficiently dissolving metal elements and nitrogen that improve acid corrosion resistance in the Fe matrix and precipitating the necessary amount of carbide, The purpose of this invention is to provide a corrosion-resistant Φ wear-resistant sintered alloy that has excellent properties in both corrosion resistance and wear resistance.

[発明の構成〕 (問題点を解決するための手段) この発明の第一発明による耐食e耐摩耗性焼結合金は、
重量%で、Cr:3.0〜15%、Ni:0.5〜3.
0%、V:0.01〜2.0%、C:0.5〜3.5%
、N:0.02〜0.3%、P:0.2〜1.0%、M
o:0.1〜10%、残部Feおよび不純物からなる組
成を有することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The corrosion-resistant and wear-resistant sintered alloy according to the first invention of the present invention has the following features:
In weight%, Cr: 3.0-15%, Ni: 0.5-3.
0%, V: 0.01-2.0%, C: 0.5-3.5%
, N: 0.02-0.3%, P: 0.2-1.0%, M
o: 0.1 to 10%, the balance being Fe and impurities.

また、この発明の第二発明による耐食・耐摩耗性焼結合
金は、重量%で、Cr:3.0〜15%、 Ni:0.
5〜3.0%、 V:0.01〜2  、 0 %、 
C:0.5〜3.5 %、 N :0.02〜0.3%
、 P:0.2〜1.0%、M o : O、L 〜1
0%、およびW:0.1 Ni。
Moreover, the corrosion-resistant and wear-resistant sintered alloy according to the second aspect of the present invention has, in weight percent, Cr: 3.0 to 15%, Ni: 0.
5-3.0%, V: 0.01-2, 0%,
C: 0.5-3.5%, N: 0.02-0.3%
, P: 0.2-1.0%, Mo: O, L ~1
0%, and W:0.1 Ni.

%、Cu:0.25〜2.5%のうちの1種または2種
を含み、残部Feおよび不純物からなる組成を有するこ
とを特徴としている。
%, Cu: 0.25 to 2.5%, and the remainder is Fe and impurities.

これらの発明による耐食・耐摩耗性焼結合金において、
Cは黒鉛粉末として、また、PはFe−P系合金粉末お
よび/またはCu−P系合金粉末のような形で合金粉末
中に添加して成形拳焼結することが特に好ましい、さら
に、粉末を7トマイズするために、合金溶湯の流動性を
高めるなどの目的でSiを1.0%まで含有しても良い
In the corrosion-resistant and wear-resistant sintered alloys according to these inventions,
It is particularly preferable that C is added in the form of graphite powder, and P is added in the form of Fe-P alloy powder and/or Cu-P alloy powder to the alloy powder and then sintered in the form of a powder. Si may be contained up to 1.0% for the purpose of increasing the fluidity of the molten alloy.

上記粉末の成形・焼結に際しては、例えば前記粉末を混
粉したのち5〜8tonf/cm’の圧力で成形し、得
られた成形体を1130〜1170℃の温度で30〜6
0分間還元あるいは不活性ガス雰囲気中もしくは真空雰
囲気中で焼結し、より望ましくは空孔率が20%以下で
ある焼結体とする。
When molding and sintering the above powder, for example, the powder is mixed and then molded at a pressure of 5 to 8 tonf/cm', and the resulting molded body is heated to a temperature of 1130 to 1170°C to
The sintered body is reduced for 0 minutes or sintered in an inert gas atmosphere or vacuum atmosphere, and more preferably the sintered body has a porosity of 20% or less.

前記の基本組成をもつ各合金成分(重量%)の役割とそ
の限定理由は次の通りである。
The role of each alloy component (wt%) having the above basic composition and the reason for its limitation are as follows.

Cr:3.0−15% CrはCと結合して複合炭化物を形成し、耐摩耗性の向
上に大いに役立つほか、基地中に多量に固溶して焼入性
を高めると共に耐食性を向上させる。そして、このよう
な効果を得るために3.0%以上添加しているが、あま
り含有量が多くなると他の添加元素とのかね合いにもよ
るがかえって脆化の傾向もみられ、粉末の成形性も悪く
なるおそれがでてくるので、上限を15%とした。
Cr: 3.0-15% Cr combines with C to form a composite carbide, which greatly helps improve wear resistance, and also dissolves in large amounts in the matrix to improve hardenability and corrosion resistance. . In order to achieve this effect, 3.0% or more is added, but if the content is too high, there is a tendency for it to become brittle, depending on the balance with other added elements, making it difficult to form the powder. Since there is a risk of poor performance, the upper limit was set at 15%.

Ntニー0.5〜3.0% Niは焼入性の向上に加えて結晶粒微細化の作用もあり
、靭性を高める効果が大きく、耐食性の向上の効果も犬
である。そして、このような効果を得るためには少なく
とも0.5%の添加を必要とする。しかし、多量になる
と残留オーステナイト量の急激な増大により靭性の低下
がみもれるので上限は3.0%とした。
Nt 0.5-3.0% In addition to improving hardenability, Ni also has the effect of refining crystal grains, has a large effect of increasing toughness, and is also effective in improving corrosion resistance. In order to obtain such an effect, it is necessary to add at least 0.5%. However, if the amount is too large, the toughness will deteriorate due to a sharp increase in the amount of retained austenite, so the upper limit was set at 3.0%.

V:0.01〜2.0% VはCと結合して硬くかつ固溶しにくいMC型炭化物を
生成するので、耐摩耗性の向上に効果がある。さらに、
結晶粒を微細化する結果、靭性の向上にも寄与する。こ
のような効果を得るためには少なくともo、oi%の添
加を必要とするが、2.0%を超えると上記炭化物の粗
大化ならびに量の増大による被削性の低下、靭性の低下
が現われるため、上限は2.0%とした。
V: 0.01 to 2.0% V combines with C to form MC type carbides that are hard and hard to dissolve in solid solution, and are therefore effective in improving wear resistance. moreover,
As a result of making the crystal grains finer, it also contributes to improving toughness. In order to obtain such an effect, it is necessary to add at least o, oi%, but if it exceeds 2.0%, the carbides become coarser and the amount increases, resulting in a decrease in machinability and toughness. Therefore, the upper limit was set at 2.0%.

C:0.5〜3.5% CはCr、Mo、Wと結合して硬い炭化物を生成し、耐
摩耗性を増大させると共に、基地に固溶してこれを強化
する。このCの適切な添加量は炭化物形成元素との関係
で異なるが、0.5%未満では生成する炭化物の量が不
足し、耐摩耗性が期待できず、3゜5%を超えると材料
が脆化するようになって所望の強度および靭性を確保す
ることが困難となるのでその含有量を0.5〜3.5%
とした。なお、Cは黒鉛粉末の形で添加される場合も含
まれる。
C: 0.5-3.5% C combines with Cr, Mo, and W to form hard carbides, increasing wear resistance, and solidly dissolving in the matrix to strengthen it. The appropriate amount of C added differs depending on the carbide-forming element, but if it is less than 0.5%, the amount of carbide generated will be insufficient and wear resistance cannot be expected, and if it exceeds 3.5%, the material will deteriorate. Since it becomes brittle and it becomes difficult to secure the desired strength and toughness, its content is reduced to 0.5 to 3.5%.
And so. Incidentally, the case where C is added in the form of graphite powder is also included.

N:0.02〜0.3% Nは窒化物を形成し、耐摩耗性を増大させると共に、マ
トリクス中に固溶して耐食性を高める。
N: 0.02 to 0.3% N forms nitrides and increases wear resistance, and is dissolved in the matrix to improve corrosion resistance.

そして、この効果は0.02%から認められる。This effect is recognized from 0.02%.

しかし、0.3%を超えると巨大な炭窒化物を生成し、
粉末の成形性を悪くするうえに脆化をもたらすので、N
の含有量は0.02〜0.3%の範囲に限定した。
However, when it exceeds 0.3%, huge carbonitrides are generated,
N
The content was limited to a range of 0.02 to 0.3%.

P:0.2〜1.0% PはFe、Cと結びついテFe3 C−Fe3 P−F
eの三元共晶であるステダイト相を形成して焼結体のか
たさを高め、耐摩耗性を向上させる。
P: 0.2~1.0% P combines with Fe and C to form TeFe3 C-Fe3 P-F
A steadite phase, which is a ternary eutectic of e, is formed to increase the hardness of the sintered body and improve its wear resistance.

しかし、Pの含有量が0.2%未満ではステダイト量が
十分でなく、1.0%超過となると液相が過剰に発生し
、焼結体の表面が荒れ、寸法精度が悪くなると同時に、
ステダイト相が異常成長し、摺動特性が悪化するので、
Pの含有量は0.2〜   ′1.0%の範囲に限定し
た。なお、PはFe−P系合金粉末および/またはCu
−P系合金粉末の形で添加される場合も含まれる。
However, if the P content is less than 0.2%, the amount of steadite will not be sufficient, and if it exceeds 1.0%, an excessive liquid phase will occur, the surface of the sintered body will become rough, and the dimensional accuracy will deteriorate.
As the steadite phase grows abnormally and the sliding properties deteriorate,
The P content was limited to a range of 0.2 to 1.0%. Note that P is Fe-P alloy powder and/or Cu
-It also includes cases where it is added in the form of P-based alloy powder.

Mo:O,1〜10% W:O,1〜10%、Cu:0.25〜2.5%のうち
の1種または2種 M o 、 W 、 Cuはいずれも基地の強化および
耐食性の向上に寄与する元素である。これらのうち、M
o、WはCと結合して微細なM2C型またはM、C型の
複合炭化物を形成し、かつ基地中に固溶して基地を強化
することにより耐摩耗性を向とし、耐食性をも向上させ
る。そして、特にM。
Mo: O, 1 to 10% W: O, 1 to 10%, Cu: 0.25 to 2.5%. Mo, W, and Cu all strengthen the base and improve corrosion resistance. It is an element that contributes to improvement. Among these, M
o and W combine with C to form fine M2C type or M, C type composite carbides, and solidly dissolve in the base to strengthen the base, thereby improving wear resistance and corrosion resistance. let And especially M.

は耐食性の向上効果が著しいので必須成分である。この
場合、M o 、 Wは0.1%程度であってもその効
果があるが、10%を超えて添加しても効果のより一層
の向上はみちれないので上記の範囲を選んだ。
is an essential component because it has a remarkable effect of improving corrosion resistance. In this case, although M o and W have the effect even if they are added in an amount of about 0.1%, the effect is not improved even if they are added in an amount exceeding 10%, so the above range was selected.

また、Cuは初期炭化物の析出を抑制することにより靭
性を高める働きがあり、さらに基地に固溶して耐食性を
向上させる。そして、この効果は0.25%以上の含有
量で得られる。しかし、2.5%を超えると、材料の表
層部に濃偏析して結晶粒界を脆化させるので、上記の範
囲とした。
Further, Cu has the function of increasing toughness by suppressing the precipitation of initial carbides, and further improves corrosion resistance by being dissolved in the matrix. This effect can be obtained with a content of 0.25% or more. However, if it exceeds 2.5%, it will segregate in the surface layer of the material and cause the grain boundaries to become brittle, so it was set in the above range.

そして、上記のW 、 CuはMoと共存することでよ
り一層効果を発揮する。
The above-mentioned W and Cu exhibit even greater effects when they coexist with Mo.

(実施例1) 原料として、−100メツシユ(100メツシユの篩を
通過する粒径)のFe−13%Cr−2,0%Ni−5
%M o −0、8%v−o、i%Nの噴霧合金粉末を
用い、この合金粉末に、黒鉛粉末2.5%と、Fe−2
7%P合金粉末2.5%とを加え、全重量に対して0.
75%のステアリン酸亜鉛を添加した後Vブレンダで2
0分間混合した0次に、得られた混合粉末を7tonf
/cm′!の圧力でロッカーアームチップの形状に圧粉
成形したのち、1150℃X60分間の条件で焼結して
、焼結合金よりなるロッカーアームチップを得た。
(Example 1) Fe-13%Cr-2.0%Ni-5 of -100 mesh (particle size that passes through a 100 mesh sieve) was used as a raw material.
%Mo-0, 8%vo, i%N spray alloy powder was used, and this alloy powder was mixed with 2.5% graphite powder and Fe-2
7%P alloy powder 2.5% and 0.5% based on the total weight.
2 in a V blender after adding 75% zinc stearate.
After mixing for 0 minutes, the obtained mixed powder was heated to 7 tonf.
/cm'! The powder was compacted into the shape of a rocker arm chip at a pressure of 1,150° C. for 60 minutes to obtain a rocker arm chip made of a sintered alloy.

(実施例2) 原料として、−100メツシユ(QFe  3.0%C
r−0,5%Nf−10%M o −2、0%V−0.
2%N−1.0%Pの噴霧合金粉末を用い、この合金粉
末に、黒鉛粉末2.5%を加え、全重量に対して0.7
5%のステアリン酸亜鉛を添加した後Vブレンダで30
分間混合した0次に、得られた混合粉末を6tonf/
cm2の圧力でロッカーアームチップの形状に圧粉成形
したのち、1140℃X60分間の条件で焼結して。
(Example 2) -100 mesh (QFe 3.0% C
r-0, 5%Nf-10%Mo-2, 0%V-0.
Using a spray alloy powder of 2%N-1.0%P, add 2.5% of graphite powder to this alloy powder, and add 0.7% of graphite powder to the total weight.
30 in a V blender after adding 5% zinc stearate.
Next, the obtained mixed powder was mixed at 6 tonf/
After compacting into the shape of a rocker arm chip under a pressure of cm2, it was sintered at 1140°C for 60 minutes.

焼結合金よりなるロッカーアームチップを得た。A rocker arm chip made of sintered alloy was obtained.

(実施例3) Jl)として、−100メツシユのFe−10%Cr−
1,5%Ni−2%M o −0、07%V−0.07
%Nの噴霧合金粉末を用い、この合金粉末に、黒鉛粉末
1.0%とFe−27%P合金粉末1.85%とを加え
、全重量に対して0.75%のステアリン酸亜鉛を添加
したvkvブレンダで35分間混合した0次に、得られ
た混合粉末を7tonf/cm2の圧力でロッカーアー
ムチップの形状に圧粉成形したのち、1160℃×60
分間の条件で焼結して、焼結合金よりなるロッカーアー
ムチップを得た。
(Example 3) -100 mesh Fe-10%Cr-
1,5%Ni-2%Mo-0,07%V-0.07
%N atomized alloy powder, to which was added 1.0% graphite powder and 1.85% Fe-27%P alloy powder, and 0.75% zinc stearate based on the total weight. Next, the obtained mixed powder was compacted into the shape of a rocker arm chip at a pressure of 7 tonf/cm2, and then heated at 1160°C x 60°C.
A rocker arm chip made of a sintered alloy was obtained by sintering for 1 minute.

(実施例4) 原料として、−1ooメ“ツシュのFe−15%Cr−
3,0%Ni−0,5%M o −0、01%V−0.
02%N−0.2%Pの噴霧合金粉末を用い、この合金
粉末に、黒鉛粉末3.5%を加え、全重量に対して0.
8%のステアリン酸亜鉛を添加した後Vブレンダで20
分間混合した0次に、得られた混合粉末を8tonf/
am’の圧力でロッカーアームチップの形状に圧粉成形
したのち、1140℃×60分間の条件で焼結して、焼
結合金よりなるロッカーアームチップを得た。
(Example 4) As a raw material, -1oo mesh Fe-15%Cr-
3,0%Ni-0,5%Mo-0, 01%V-0.
Using an atomized alloy powder of 0.02%N-0.2%P, 3.5% of graphite powder was added to this alloy powder, and 0.02% of the total weight was added.
20 in a V blender after adding 8% zinc stearate.
Next, the obtained mixed powder was mixed at 8 tonf/
After compacting into the shape of a rocker arm chip under a pressure of am', sintering was performed at 1140° C. for 60 minutes to obtain a rocker arm chip made of a sintered alloy.

(実施例5) 実施例4の合金粉末組成に、Wを10%添加した噴霧合
金粉末を作製し、この合金粉末を用いて以下実施例4と
同様にして焼結合金よりなるロッカーアームチップを得
た。
(Example 5) A sprayed alloy powder was prepared by adding 10% W to the alloy powder composition of Example 4, and using this alloy powder, a rocker arm tip made of a sintered alloy was manufactured in the same manner as in Example 4. Obtained.

(実施例6) 実施例4の合金粉末組成に、Cuを2.5%添加した噴
霧合金粉末を作製し、この合金粉末を用いて以下実施例
4と同様にして焼結合金よりなるロッカーアームチップ
を得た。
(Example 6) A sprayed alloy powder was prepared by adding 2.5% Cu to the alloy powder composition of Example 4, and using this alloy powder, a rocker arm made of a sintered alloy was manufactured in the same manner as in Example 4. Got a tip.

(実施例7) 実施例4の合金粉末組成に、Wを7%、Cuを1.5%
添加した噴霧合金粉末を作製し、この合金粉末を用いて
以下実施例4と同様にして焼結合金よりなるロッカーア
ームチップを得た。
(Example 7) Adding 7% W and 1.5% Cu to the alloy powder composition of Example 4.
The added sprayed alloy powder was prepared, and a rocker arm tip made of a sintered alloy was obtained in the same manner as in Example 4 using this alloy powder.

(比較例1) 原料として、−100メツシユのJISSKDII相当
(Fe−12%Cr−1%M o −〇、3%V−1,
5%C)の合金粉末を用い、この合金粉末に、黒鉛粉末
1.0%と、Fe−27%P合金粉末2.5%とを加え
、全重量に対して0.75%のステアリン酸亜鉛を添加
した後Vブレンダで20分間混合した6次に、得られた
混合粉末を7tonf/cm2の圧力でロッカーアーム
チップの形状に圧粉成形したのち、1140℃X60分
間の条件で焼結して、焼結合金よりなるロッカーアーム
チップを得た。
(Comparative Example 1) As raw materials, -100 mesh JISSKDII equivalent (Fe-12%Cr-1%Mo-〇, 3%V-1,
5% C) alloy powder, 1.0% graphite powder and 2.5% Fe-27%P alloy powder were added to this alloy powder, and 0.75% stearic acid was added to the total weight. After adding zinc, the mixture was mixed for 20 minutes using a V-blender.Next, the resulting mixed powder was compacted into the shape of a rocker arm chip at a pressure of 7 tonf/cm2, and then sintered at 1140°C for 60 minutes. As a result, a rocker arm chip made of sintered alloy was obtained.

(比較例2) Niの添加効果を確認するために、実施例1の組成から
Niを取り除いた組成の焼結合金よりなるロッカーアー
ムチップを実施例1と同一の条件で作製した。
(Comparative Example 2) In order to confirm the effect of adding Ni, a rocker arm chip made of a sintered alloy having a composition in which Ni was removed from the composition of Example 1 was produced under the same conditions as in Example 1.

(比較例3) Nの添加効果を確認するために、実施例1の組成からN
を取り除いた組成の焼結合金よりなるロッカーアームチ
ップを実施例1と同一の条件で作製した。
(Comparative Example 3) In order to confirm the effect of adding N, N was added from the composition of Example 1.
A rocker arm chip made of a sintered alloy having a composition from which .

(比較例4) 通常の合金チル鋳物材と比較するために、C:3.2%
、Si:2.1%、M n : 0 、7%。
(Comparative Example 4) In order to compare with normal alloy chill casting material, C: 3.2%
, Si: 2.1%, Mn: 0, 7%.

P:0.2%、Cr:0.5%、M o : 0 、2
%、残部Feおよび若干の不純物からなる組成の鋳物を
用い、この鋳物をチル硬化してロッカーアームチップを
作製した。
P: 0.2%, Cr: 0.5%, Mo: 0, 2
%, the balance was Fe, and some impurities were used, and this casting was chill-hardened to produce a rocker arm tip.

(耐久試験〉 上記実施例1〜7に示す本発明によるロッカーアームチ
ップと、比較例1〜4に示す比較のロッカーアームチッ
プとをそれぞれ供試材として第1表に示す条件で耐久試
験を行った。なお、この耐久試験では、第1表に示すよ
うに、E、G、R。
(Durability Test) A durability test was conducted using the rocker arm chips according to the present invention shown in Examples 1 to 7 above and the comparative rocker arm chips shown in Comparative Examples 1 to 4 as test materials under the conditions shown in Table 1. In this durability test, as shown in Table 1, E, G, and R.

(Exh、aust  Gas  Recircula
tion:排気ガス還流)を40%かけた。また、相手
材は自動車用エンジンのカム材として一般に用いられる
チル鋳物で、その組成は、C:3.2%、Sf:2.1
%、M n : 0 、7%、P:0.2%、Cr:0
.5%、M o : 0 、2%、残部Feおよび若干
の不純物からなるものであって、硬度はHRC55以上
である。この耐久試験の結果を第2表に示す。
(Exh, aust Gas Recircula
tion (exhaust gas reflux) was applied at 40%. The mating material is a chilled casting commonly used as a cam material for automobile engines, and its composition is C: 3.2%, Sf: 2.1.
%, Mn: 0, 7%, P: 0.2%, Cr: 0
.. 5%, Mo: 0, 2%, remainder Fe and some impurities, and has a hardness of HRC55 or higher. The results of this durability test are shown in Table 2.

第1表 第2表 第2表に示す結果より明らかなように、実施例1〜7の
場合はロッカーアームチップ摩耗量および相手材である
カム摩耗量のいずれも相当小さい値となっており、比較
例1〜4のものに比べてかなり優れていることがわかる
As is clear from the results shown in Table 1 and Table 2, in Examples 1 to 7, both the amount of wear on the rocker arm tip and the amount of wear on the cam, which is the mating material, are considerably small. It can be seen that the results are considerably superior to those of Comparative Examples 1 to 4.

[発明の効果] 以と説明してきたように、この発明の第一発明による耐
食・耐摩耗性焼結合金は、重量%でCr : 3 、 
0〜15%、Ni:0.5〜3.0%、V:0.01〜
2.0%、C:0.5〜3.5%、N:0.02〜0.
3%、P:0.2〜1.0%、Mo:0.1〜10%、
残部Feおよび不純物からなる組成を有するものであり
、またこの発明の第二発明による耐食・耐摩耗性焼結合
金は1重量%で、Cr:3.0〜15%、Ni:0.5
〜3.0%、V:0.01〜2.0%、C:0.5〜3
.5%、N:0.02〜0.3%、P:0.2〜1.0
%、Mo:0.1〜10%、および必要に応じ−t−W
:0.1〜10%、Cu:0.25〜2.5%のうちの
1種または2種を含み、残部Feおよび不純物からなる
組成を有するものであるから、対酸耐食性を高める金属
元素および窒素がマトリックス中に十分固溶し、かつ必
要量の炭化物が粗大化せずに分散しているため、耐食性
および耐摩耗性となじみ性とをあわせ持つ焼結合金であ
るという非常に優れた特性を有するものである。そして
、さらに、この発明による耐食・耐摩耗性鉄基焼結合金
は、成形および焼結工程共に何んら特別な装置ならびに
手法を必要とせず、従来の一般的な粉末冶金的手法を採
用して製造することによって、耐食性および耐摩耗性に
著しく優れた材料を得ることができ、基本的には熱処理
や表面処理等の後処理を必要とせず、現時点においては
高価なGoおよび希土類金属を含まないため、価格を低
くおさえることができ、かつ低い温度で焼結が可能であ
ることから省エネルギーにもなるなどの非常に優れた効
果がもたらされる。
[Effects of the Invention] As explained above, the corrosion-resistant and wear-resistant sintered alloy according to the first aspect of the present invention has Cr: 3,
0-15%, Ni: 0.5-3.0%, V: 0.01-
2.0%, C: 0.5-3.5%, N: 0.02-0.
3%, P: 0.2-1.0%, Mo: 0.1-10%,
The corrosion-resistant and wear-resistant sintered alloy according to the second aspect of the present invention has a composition with the balance consisting of Fe and impurities, and has a composition of 1% by weight, Cr: 3.0 to 15%, and Ni: 0.5%.
~3.0%, V: 0.01~2.0%, C: 0.5~3
.. 5%, N: 0.02-0.3%, P: 0.2-1.0
%, Mo: 0.1 to 10%, and -tW as necessary
:0.1 to 10%, Cu:0.25 to 2.5%, and the balance is Fe and impurities, so it is a metallic element that improves acid corrosion resistance. Nitrogen is sufficiently dissolved in the matrix, and the necessary amount of carbide is dispersed without coarsening, making it a sintered alloy with excellent corrosion resistance, wear resistance, and conformability. It has characteristics. Furthermore, the corrosion-resistant and wear-resistant iron-based sintered alloy according to the present invention does not require any special equipment or methods in both the forming and sintering processes, and can be produced using conventional general powder metallurgy methods. By manufacturing the material, it is possible to obtain a material with extremely excellent corrosion resistance and wear resistance. Basically, it does not require post-treatment such as heat treatment or surface treatment, and at present it does not contain expensive Go or rare earth metals. Since there is no carbon dioxide, the price can be kept low, and since sintering can be performed at a low temperature, very excellent effects such as energy saving can be brought about.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、Cr:3.0〜15%、 Ni:0.5〜3.0%、V:0.01〜2.0%、C
:0.5〜3.5%、N:0.02〜0.3%、P:0
.2〜1.0%、Mo:0.1〜10%、残部Feおよ
び不純物からなる組成を有することを特徴とする耐食・
耐摩耗性焼結合金。
(1) In weight%, Cr: 3.0-15%, Ni: 0.5-3.0%, V: 0.01-2.0%, C
:0.5~3.5%, N:0.02~0.3%, P:0
.. Corrosion-resistant material characterized by having a composition consisting of 2 to 1.0% Mo, 0.1 to 10% Mo, and the balance Fe and impurities.
Wear-resistant sintered alloy.
(2)重量%で、Cr:3.0〜15%、Ni:0.5
〜3.0%、V:0.01〜2.0%、C:0.5〜3
.5%、N:0.02〜0.3%、P:0.2〜1.0
%、Mo:0.1〜10%、およびW:0.1〜10%
、Cu:0.25〜2.5%のうちの1種または2種を
含み、残部Feおよび不純物からなる組成を有すること
を特徴とする耐食・耐摩耗性焼結合金。
(2) In weight%, Cr: 3.0 to 15%, Ni: 0.5
~3.0%, V: 0.01~2.0%, C: 0.5~3
.. 5%, N: 0.02-0.3%, P: 0.2-1.0
%, Mo: 0.1-10%, and W: 0.1-10%
, Cu: 0.25 to 2.5%, and the balance is Fe and impurities.
JP10841285A 1985-05-22 1985-05-22 Corrosion and wear resistant sintered alloy Pending JPS61266559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10841285A JPS61266559A (en) 1985-05-22 1985-05-22 Corrosion and wear resistant sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10841285A JPS61266559A (en) 1985-05-22 1985-05-22 Corrosion and wear resistant sintered alloy

Publications (1)

Publication Number Publication Date
JPS61266559A true JPS61266559A (en) 1986-11-26

Family

ID=14484098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10841285A Pending JPS61266559A (en) 1985-05-22 1985-05-22 Corrosion and wear resistant sintered alloy

Country Status (1)

Country Link
JP (1) JPS61266559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275742A (en) * 1988-04-26 1989-11-06 Komatsu Ltd Floating seal made of sintered alloy and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275742A (en) * 1988-04-26 1989-11-06 Komatsu Ltd Floating seal made of sintered alloy and its manufacture

Similar Documents

Publication Publication Date Title
US4268309A (en) Wear-resisting sintered alloy
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
JPS62211355A (en) Wear-resisting ferrous sintered alloy
JPH0350823B2 (en)
JPH0350824B2 (en)
JP3784926B2 (en) Ferrous sintered alloy for valve seat
JPS599152A (en) Wear-resistant sintered alloy
JPS6033344A (en) Wear resistance sintered alloy
JPS6342357A (en) Wear-resistant ferrous sintered alloy
JPWO2020050211A1 (en) Heat resistant sintered alloy material
JPS63297542A (en) Heat resistant wear resistant iron based sintered alloy
JPS63290249A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JPS61266559A (en) Corrosion and wear resistant sintered alloy
JPS6140001B2 (en)
JP2716575B2 (en) Manufacturing method of wear resistant iron-based sintered alloy
JPS61266557A (en) Corrosion and wear resistant sintered alloy
JP2877211B2 (en) Iron-based sintered alloy for valve seat
JP2001234305A (en) Sintered member
JP3440008B2 (en) Sintered member
JPS60255958A (en) Wear resistant sintered alloy
JPH0633184A (en) Production of sintered alloy for valve seat excellent in wear resistance
JP3257196B2 (en) Iron-based sintered alloy for sliding members with excellent strength and wear resistance
JP2683444B2 (en) Sintered alloy for valve mechanism of internal combustion engine
JP3187975B2 (en) Sintered alloy for sliding members with excellent scuffing and wear resistance
JPS599151A (en) Wear-resistant sintered alloy