JPS61265886A - Semiconductor laser and drive thereof - Google Patents

Semiconductor laser and drive thereof

Info

Publication number
JPS61265886A
JPS61265886A JP60108510A JP10851085A JPS61265886A JP S61265886 A JPS61265886 A JP S61265886A JP 60108510 A JP60108510 A JP 60108510A JP 10851085 A JP10851085 A JP 10851085A JP S61265886 A JPS61265886 A JP S61265886A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
current
emitting part
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60108510A
Other languages
Japanese (ja)
Inventor
Yuzo Ono
小野 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60108510A priority Critical patent/JPS61265886A/en
Publication of JPS61265886A publication Critical patent/JPS61265886A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06835Stabilising during pulse modulation or generation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

PURPOSE:To stabilize the oscillation wavelength of a semiconductor laser without necessiating a particular outdoor temperature control unit even when a temperature change occurs in the outdoor environment by a method wherein another conducting electrode, which leads out the junction voltage of the junction part, is provided adjacent to the light-emitting part independent of the conducting electrode, which feeds driving current to the light-emitting part. CONSTITUTION:Two diodes: the diode of a light-emitting part 12 and the diode of a detecting part 13, are constituted on one chip. A terminal 4 is the driving terminal for the diode 12 of the light-emitting part and makes the diode 12 of the light-emitting part drive through a pulse-modulating circuit 15 and an offset and bias control circuit 16. Low current of several mA or thereabouts is always being passed to the detecting part 13 through a detecting circuit 17. The detecting part terminal voltage is compared with the reference voltage in the detecting circuit 17 and in case the detecting part terminal voltage is higher than the reference voltage (equivalent to the time when the temperature of the detecting part is lower than the reference temperature), the offset current and bias current of the light-emitting part 12 are increased through the offset and bias control circuit 16 so that the detecting part terminal voltage drops to the reference voltage.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体レーザ及び半導体レーザの駆動方法
に関し、特にレーザビームプリンタ、レーザファクシミ
リ、光ディスク等の光情報機器の光源として用いるのに
適した半導体レーザ及びその駆動方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a semiconductor laser and a method for driving the semiconductor laser, and is particularly suitable for use as a light source for optical information equipment such as a laser beam printer, a laser facsimile, and an optical disk. The present invention relates to a semiconductor laser and its driving method.

(従来の技術) 従来の屈折型、反射型の光学素子に対して、回折型の光
学素子は複製が容易で安価に量産できることから産業上
利用され始めている。例えば、スーパーマーケットのバ
ーコード読取装置やレーザビームプリンタに用いられて
いるホログラフィ・7クレーザスキヤナをあげることが
できる。レーザビームプリンタのレーザスキャナに用い
た一例として、岩岡秀人、塩沢隆広著の電子通信学会発
行の電子通信学会技術研究会報告第84巻第193号(
1984年11月19日発行)の25〜32頁記載の論
文「直線・無収差ホログラム・スキャナ」(論文番号0
QE84−86)がある。回折型の光学素子を用いると
、光源であるレーザの波長が変化すると、光学素子の出
力光の方向が変わってしまう。上にあげたレーザビーム
プリンタのレーザスキャナの例では、走査線の位置変動
を生じる。半導体レーザの発振波長は、活性石の屈折率
の温度変化、及び活性石のバンドギャップの温度変化に
よって生じる。前者は0.5〜0.8人/にのゆるやか
な変化であるが、後者は2〜5人/にと大きく、又、縦
モードの3〜8人のとびを生じる。そこで、上にあげた
論文では、半導体レーザのバイアス電流と、パルスのデ
ユーティ比を制御して、発光時と非発光時とにかかわら
ず消費電力を一定にすることにより、半導体レーザの温
度を安定化し、発振波長を安定化する方法が述べられて
いる。
(Prior Art) In contrast to conventional refractive and reflective optical elements, diffractive optical elements are beginning to be used industrially because they are easier to replicate and can be mass-produced at low cost. For example, there are holographic scanners used in supermarket barcode readers and laser beam printers. As an example of a laser scanner used in a laser beam printer, Hideto Iwaoka and Takahiro Shiozawa, IEICE Technical Study Group Report Vol. 84, No. 193, published by IEICE,
Published on November 19, 1984), pages 25-32 of the paper ``Linear, aberration-free hologram scanner'' (paper number 0).
QE84-86). When a diffractive optical element is used, when the wavelength of the laser that is the light source changes, the direction of the output light of the optical element changes. The example of a laser scanner in a laser beam printer given above produces variations in the position of the scan line. The oscillation wavelength of a semiconductor laser is caused by a temperature change in the refractive index of the activated stone and a temperature change in the band gap of the activated stone. The former is a gradual change of 0.5 to 0.8 people/person, but the latter is large, 2 to 5 people/person, and also causes a jump of 3 to 8 people/person in the vertical mode. Therefore, in the paper mentioned above, the temperature of the semiconductor laser is stabilized by controlling the bias current of the semiconductor laser and the duty ratio of the pulse to keep the power consumption constant regardless of whether it is emitting light or not. A method for stabilizing the oscillation wavelength is described.

第2図は従来の半導体レーザ駆動方法における半導体レ
ーザの駆動電流波形を示す図である。本図に示すように
、この駆動方法は、T、が本来の発光時間であるが、T
、の内を高速変調する方法である。半導体レーザの非発
光時には、バイアス電流Ibを流している。Itkは発
振閾値電流である。半導体レーザの動作電圧■。、はほ
ぼ一定であるから、発光時(パルス幅T、)と非発光時
の消費電力との差は P、−D−¥、、 −I、、−V、、 −I、    
   (1)となる。ここに10.は半導体レーザの動
作電流、Dは高速変調時の変調のデユーティ比である。
FIG. 2 is a diagram showing a driving current waveform of a semiconductor laser in a conventional semiconductor laser driving method. As shown in this figure, in this driving method, T is the original light emission time, but T
, is a method of high-speed modulation of . When the semiconductor laser is not emitting light, a bias current Ib is passed through the semiconductor laser. Itk is the oscillation threshold current. Operating voltage of semiconductor laser■. , is almost constant, so the difference between the power consumption when emitting light (pulse width T,) and when not emitting light is P, -D-\,, -I,, -V,, -I,
(1) becomes. Here 10. is the operating current of the semiconductor laser, and D is the modulation duty ratio during high-speed modulation.

(1)式で、D−1,、−I、と選ぶと、発光時と非発
光時との消費電力が等しくなり、半導体レーザの温度が
安定化きれ、一定した発振波長のレーザ光が得られる。
In equation (1), if D-1, -I is selected, the power consumption during light emission and non-emission times becomes equal, the temperature of the semiconductor laser is stabilized, and laser light with a constant oscillation wavelength is obtained. It will be done.

(発明が解決しようとする問題点) 上述の従来の技術には、次のような問題点がある。前掲
の論文に開示されている定電力駆動では、半導体レーザ
の周囲温度の変化に対しては対応できず、結局、半導体
レーザをペルチェ素子で温度制御することが必要となる
。ペルチェ素子の熱容量は半導体レーザよりもはるかに
大きいから、熱的時定数が大きく、温度制御の時定数も
大きく、応答が遅い、又、ペルチェ素子を制御するため
に熱電対等の温度検出素子を用いるが、その熱容量も大
きく、又、取付は位置によって、熱伝導による時間遅れ
を生じる問題がある。さらに、最大の問題点は、ペルチ
ェ素子に搭載することで、半導体レーザ本来の小形軽量
性が失なわれ、半導体レーザが体積的に非常に大きくな
ってしまうことである。
(Problems to be Solved by the Invention) The above-mentioned conventional techniques have the following problems. The constant power drive disclosed in the above-mentioned paper cannot cope with changes in the ambient temperature of the semiconductor laser, and as a result, it becomes necessary to control the temperature of the semiconductor laser using a Peltier element. Since the heat capacity of the Peltier element is much larger than that of a semiconductor laser, the thermal time constant is large, the time constant of temperature control is also large, and the response is slow. Also, a temperature detection element such as a thermocouple is used to control the Peltier element. However, its heat capacity is large, and there is a problem that depending on the mounting position, a time delay may occur due to heat conduction. Furthermore, the biggest problem is that when mounted on a Peltier element, the original compactness and lightness of the semiconductor laser is lost, and the semiconductor laser becomes extremely large in volume.

そこで、本願発明の目的は、外部環境に温度変化があっ
ても、格別の外部温度制御装置を要せず、発振波長を安
定化できる半導体レーザ及びその駆動方法の提供にある
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor laser and a method for driving the same, which can stabilize the oscillation wavelength without requiring a special external temperature control device even if there is a temperature change in the external environment.

(問題点を解決するための手段) 前述の問題点を解決するために本願の第1の発明が提供
する半導体レーザは、発光部へ駆動電流を供給する通電
電極とは独立に、接合部の接合電圧を取り出す別の通電
電極が前記発光部に隣接して設けてあることを特徴とす
る。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the semiconductor laser provided by the first invention of the present application has a structure in which the semiconductor laser of the junction part is It is characterized in that another current-carrying electrode for extracting the junction voltage is provided adjacent to the light emitting part.

また、前述の問題点を解決するために本願の第2の発明
が提供する手段は、パルス発光をする半導体レーザの駆
動方法であって、前記半導体レーザの非発光時にはバイ
アス電流I、を流し、発光時にはデユーティ比りのパル
ス電流で高速変調し、このパルス電流の波高値を10.
とじオフセット値を10.とするとき、D・1.#+(
1−D)・Ioa−1.がほぼ零になり、前記半導体レ
ーザの接合部の接合電圧が一定になるように前記バイア
ス電流工、と前記オフセット電流工0.とを制御するこ
とを特徴とする。
Further, in order to solve the above-mentioned problem, the second invention of the present application provides a method for driving a semiconductor laser that emits pulsed light, the method comprising: passing a bias current I when the semiconductor laser is not emitting light; During light emission, high-speed modulation is performed with a pulse current equal to the duty ratio, and the peak value of this pulse current is set to 10.
Set the binding offset value to 10. When D.1. #+(
1-D)・Ioa-1. The bias current generator and the offset current generator are adjusted such that the voltage becomes approximately zero and the junction voltage at the junction of the semiconductor laser becomes constant. It is characterized by controlling.

(作用) 本発明の作用・原理は次の通りである。前述の従来の駆
動方法では、発光パルス内を高速変調するときに、電流
値を0とLpとの間で変調したが、本発明の方法では、
第3図に示すように、オフセット電流Iaiと1゜、と
の間で変調している。従って、発光時の消費電力P、は
、 PI−D−V、、−I、、+(1−D)V、、−1,、
(2)となる。この電力P、はもちろん非発光時の消費
電力 p、−V、、・L                 
 (s )と等しくなければならないが、オフセット電
流Laとバイアス電流I、とを同時番こ制御すること番
こより、P x −P sの条件を保ったまま、消費電
力を変え得る。この可変電力による半導体レーザの発熱
をヒータとして用いて、周囲温度の変化による半導体レ
ーザの発振波長の温度変化を補償する。
(Operation) The operation and principle of the present invention are as follows. In the conventional driving method described above, the current value was modulated between 0 and Lp when performing high-speed modulation within the light emission pulse, but in the method of the present invention, the current value is modulated between 0 and Lp.
As shown in FIG. 3, the offset current Iai is modulated between 1°. Therefore, the power consumption P when emitting light is PI-D-V,, -I,, +(1-D)V,, -1,,
(2) becomes. This power P, of course, the power consumption when not emitting light p, -V, ・L
(s), but by simultaneously controlling the offset current La and the bias current I, it is possible to change the power consumption while maintaining the condition of Px-Ps. The heat generated by the semiconductor laser due to the variable power is used as a heater to compensate for temperature changes in the oscillation wavelength of the semiconductor laser due to changes in ambient temperature.

又、本願の第1の発明では、熱電対に代わる温度検出素
子として、P−n接合の接合電圧の温度変化を利用する
。この接合電圧を取り出すために、発光部に隣接して、
接合電圧を独立に検出するための電極を設け、この部分
を温度センサとして用いる。そして、上記温度センサ出
力で上記発光部の発熱を制御し、半導体レーザの温度を
一定にし、発振波長を安定化するのが本発明の基本作用
である。半導体レーザの発振波長が駆動電力による発熱
で変化することはよく知られた現象である。そのデータ
の一例が古瀬孝雄著の応用物理学会光学懇話会発行の1
光学」誌第13巻第2号(1984年4月発行)の11
8〜124頁掲載の論文「半導体レーザの電気的使用法
」に解説されている。1−以下の駆動パルスでも波長変
動を生じることが知られている。このことは、半導体レ
ーザの接合部に高速応答のヒータ機能を持たせられるこ
とを意味している。又、 AlGaAs系の半導体レー
ザを発振スレショールド以下の低電流で駆動していると
きの端子電圧の温度変化は、約−1mV/ ”C程度で
ある。そこで半導体レーザの接合部に発光部とは独立の
電極を設けて低電流を流しておけば、小形軽量で高速応
答の温度センサ機能を持たせられる。
Further, in the first invention of the present application, a temperature change in the junction voltage of a P-n junction is used as a temperature detection element in place of a thermocouple. In order to extract this junction voltage, a
An electrode is provided to independently detect the junction voltage, and this part is used as a temperature sensor. The basic function of the present invention is to control the heat generation of the light emitting section using the output of the temperature sensor, to keep the temperature of the semiconductor laser constant, and to stabilize the oscillation wavelength. It is a well-known phenomenon that the oscillation wavelength of a semiconductor laser changes due to heat generated by driving power. An example of such data is 1, written by Takao Furuse and published by the Optics Conference of the Japan Society of Applied Physics.
11 of "Optics" Magazine Vol. 13 No. 2 (published April 1984)
This is explained in the article "Electrical Uses of Semiconductor Lasers" on pages 8-124. It is known that even a drive pulse of 1- or less causes wavelength fluctuation. This means that the junction of the semiconductor laser can have a fast-response heater function. Furthermore, when an AlGaAs semiconductor laser is driven with a low current below the oscillation threshold, the temperature change in the terminal voltage is approximately -1 mV/''C. By providing independent electrodes and passing a low current through them, it is possible to provide a small, lightweight, and fast-response temperature sensor function.

(実施例) 次に、本発明の実施例について図面を参照して説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の半導体レーザの一実施例を示す断面図
である。検出部電極10を除くと、通常の半導体レーザ
と同じ基本構造である。GaAlAs可視半導体レーザ
は、基本的には第1図に示すようにn−GaAs基板2
上にクラッド層3、活性層4、クラッド層5、キャップ
層6、絶RNI7、発光部電極8、基板電極1で構成き
れている。発光部9については、発振横モードを安定化
するための種々の形の利得導波路構造、光導波路構造が
とられている。第1図には屈折率導波路構造を持つもの
を例として示している。本実施例は、このような基本構
造の半導体レーザの同一チップ上に、発光部9に隣接し
て検出部電極10を付加した構造を特徴としている。検
出部電極10は、発光部9と熱的に結合されている。検
出部電極10には数鯖程度の低電流を流しておくことで
、電極下のp−n接合(クラッドJf!J5と活性M4
で構成移れるp−n接合)の温度変化を端子電圧の変化
としてとらえる温度センサとして作用する。通常の半導
体レーザのチップ幅(第1図に示す断面図の幅)は10
0〜300ρであるから、発光部9に対して検出部電極
10は、50〜100P@に隣接して製作でき、熱的結
合もよく、熱的時定数も小きくできる。第1図の実施例
では検出部電極10に絶縁層7による電流狭窄構造を適
用した例を示したが、キャップ層6へのべた付電極でも
本願の第1の発明は実現できる。
FIG. 1 is a sectional view showing an embodiment of the semiconductor laser of the present invention. Except for the detection electrode 10, the basic structure is the same as that of a normal semiconductor laser. A GaAlAs visible semiconductor laser basically consists of an n-GaAs substrate 2 as shown in FIG.
It is composed of a cladding layer 3, an active layer 4, a cladding layer 5, a cap layer 6, an absolute RNI 7, a light emitting part electrode 8, and a substrate electrode 1 on top. The light emitting section 9 has various types of gain waveguide structures and optical waveguide structures for stabilizing the oscillation transverse mode. FIG. 1 shows an example having a refractive index waveguide structure. This embodiment is characterized by a structure in which a detection part electrode 10 is added adjacent to the light emitting part 9 on the same chip of the semiconductor laser having such a basic structure. The detection part electrode 10 is thermally coupled to the light emitting part 9. By flowing a low current of several degrees through the detection electrode 10, the p-n junction (clad Jf! J5 and active M4
It acts as a temperature sensor that detects temperature changes at the p-n junction (which can be configured as a change in terminal voltage) as changes in terminal voltage. The chip width of a typical semiconductor laser (width in the cross-sectional view shown in Figure 1) is 10
Since it is 0 to 300 ρ, the detection part electrode 10 can be manufactured adjacent to the light emitting part 9 by 50 to 100 P@, the thermal coupling is good, and the thermal time constant can be made small. In the embodiment shown in FIG. 1, an example is shown in which a current confinement structure using an insulating layer 7 is applied to the detection part electrode 10, but the first invention of the present application can also be realized with a sticky electrode applied to the cap layer 6.

第4図は、本願の第1の発明の第1図実施例に本願の第
2の発明の実施例を適用して駆動する駆動回路の構成を
示すブロック図である。符号11で示す部分が第1図実
施例の半導体レーザチ・ノブで、発光部12、検出部1
3の2個のダイオードが1つのチップ上に構成されてい
る。端子14は、発光部ダイオード12の駆動端子で、
パルス変調回路15とオフセット・バイアス制御回路1
6とを介して発光部ダイオード12を駆動する。検出部
13には、検出回路17で常に数mA程度の低電流を流
している。検出回路17で検出部端子電圧を基準電圧と
比較し、検出部端子t[が基準電圧よりも高い場合(検
出部の温度が基準温度よりも低い場合に相当する)は、
検出部端子電圧が基準電圧になるようにオフセット・バ
イアス制御回路16を介して、発光部12のオフセット
電流、バイアス電流を増加させる。もちろん、オフセッ
ト電流、バイアス電流は、(2)、(3)式でP * 
−P sとなる条件下で制御される。逆に検出部端子電
圧が基準電圧よりも低い場合は、検出部端子電圧が基準
電圧になるようにオフセット・バイアス制御回路16を
介して、発光部12のオフセット電流、バイアス電流を
減少させる。本駆動方式により、外部環境に温度変化が
あっても、格別の外部温度制御装置を要せずに発光部1
2の温度が一定化きれ、発光部12の発振波長が安定化
される。
FIG. 4 is a block diagram showing the configuration of a drive circuit that drives the embodiment of the second invention of the present application by applying the embodiment of FIG. 1 of the first invention of the present application. The part indicated by reference numeral 11 is the semiconductor laser chinob of the embodiment in FIG.
Two diodes of 3 are constructed on one chip. The terminal 14 is a drive terminal for the light emitting diode 12,
Pulse modulation circuit 15 and offset/bias control circuit 1
The light emitting diode 12 is driven through the light emitting diode 6 and the light emitting diode 12. A detection circuit 17 always supplies a low current of about several mA to the detection section 13 . The detection circuit 17 compares the detection section terminal voltage with the reference voltage, and if the detection section terminal t[ is higher than the reference voltage (corresponds to the case where the temperature of the detection section is lower than the reference temperature),
The offset current and bias current of the light emitting section 12 are increased via the offset/bias control circuit 16 so that the detection section terminal voltage becomes the reference voltage. Of course, the offset current and bias current are expressed as P* in equations (2) and (3).
-Ps. Conversely, when the detection section terminal voltage is lower than the reference voltage, the offset current and bias current of the light emitting section 12 are decreased via the offset/bias control circuit 16 so that the detection section terminal voltage becomes the reference voltage. With this drive method, even if there is a temperature change in the external environment, the light emitting unit
2 becomes constant, and the oscillation wavelength of the light emitting section 12 is stabilized.

(発明の効果) 以上に説明したように、本願の第1及び第2の発明によ
れば、外部環境に温度変化があっても、格別の外部温度
制御装置を要せず発振波長を安定化できる半導体レーザ
及び半導体レーザの駆動方法を提供できる。本願発明の
半導体レーザ及びその駆動方法を用いることにより、半
導体レーザのチップ内温度が一定化され、回折型光学素
子の光源に使用できる安定した発振波長のレーザ光が得
られる。又、本願発明の半導体レーザを用いた光源や本
願発明の駆動方法を採用する光源は、従来のベルチェ素
子を用いた光源に比べ、著しく小型化でき、消費電力も
低減できた。
(Effects of the Invention) As explained above, according to the first and second inventions of the present application, even if there is a temperature change in the external environment, the oscillation wavelength can be stabilized without requiring a special external temperature control device. It is possible to provide a semiconductor laser and a method for driving the semiconductor laser. By using the semiconductor laser and its driving method of the present invention, the internal temperature of the semiconductor laser chip can be made constant, and laser light with a stable oscillation wavelength that can be used as a light source for a diffractive optical element can be obtained. Furthermore, the light source using the semiconductor laser of the present invention and the light source employing the driving method of the present invention can be significantly miniaturized and have lower power consumption than light sources using conventional Bertier elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願の第1の発明の一実施例を示す断面図・第
2図は従来の半導体レーザの駆動方法における駆動電流
波形を示す図、第3図は本願の第2の発明の一実施例に
おける駆動電流波形を示す図、第4図は第1図実施例に
本願の第2の発明の前記実施例を適用して駆動する駆動
回路の構成を示すブロック図である。 1・・・基板電極、2・・・n−GaAs基板、3・・
・クラッド層、4・・・活性層、5・・・クラッド層、
6・・・キャップ層、7・・・絶縁層、8・・・発光部
電極、9・・・発光部、10・・・検出部電極、11・
・・半導体レーザ、12・・・発光部、13・・・検出
部、14・・・駆動端子、15・・・ハJl/スi11
回路、16・・・オフセット・バイアス制御回路、17
・・・検出回路、I a p・・・発売時電流波高値、
Ilk・・・発振閾値電流、11・・・非発光時バイア
ス電流、10.・・・オフセット電流、T、・・・発光
パルス幅。 代理人弁理士  本 庄 伸 介 第1図 第2図 時間 第3図 晴P− 第4図
FIG. 1 is a cross-sectional view showing an embodiment of the first invention of the present application, FIG. 2 is a diagram showing a drive current waveform in a conventional semiconductor laser driving method, and FIG. 3 is a cross-sectional view of an embodiment of the second invention of the present application. FIG. 4 is a diagram showing drive current waveforms in the embodiment. FIG. 4 is a block diagram showing the configuration of a drive circuit for driving by applying the embodiment of the second invention of the present application to the embodiment of FIG. 1... Substrate electrode, 2... n-GaAs substrate, 3...
- cladding layer, 4... active layer, 5... cladding layer,
6... Cap layer, 7... Insulating layer, 8... Light emitting part electrode, 9... Light emitting part, 10... Detecting part electrode, 11.
... Semiconductor laser, 12... Light emitting section, 13... Detection section, 14... Drive terminal, 15... C Jl/S i11
Circuit, 16... Offset/bias control circuit, 17
...detection circuit, I ap ... current peak value at the time of release,
Ilk...Oscillation threshold current, 11...Bias current during non-light emission, 10. ...offset current, T, ...light emission pulse width. Representative Patent Attorney Shinsuke Honjo Figure 1 Figure 2 Time Figure 3 HaruP- Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)発光部へ駆動電流を供給する通電電極とは独立に
、接合部の接合電圧を取り出す別の通電電極が前記発光
部に隣接して設けてあることを特徴とする半導体レーザ
(1) A semiconductor laser characterized in that, independently of the current-carrying electrode that supplies a driving current to the light-emitting part, another current-carrying electrode that takes out the junction voltage of the junction part is provided adjacent to the light-emitting part.
(2)パルス発光をする半導体レーザの駆動方法におい
て、前記半導体レーザの非発光時にはバイアス電流I_
bを流し、発光時にはデューティ比Dのパルス電流で高
速変調し、このパルス電流の波高値をI_o_pとしオ
フセット値をI_o_aとするとき、D・I_o_p+
(1−D)・I_o_a−I_bがほぼ零になり、前記
半導体レーザの接合部の接合電圧が一定になるように前
記バイアス電流I_bと前記オフセット電流I_o_a
とを制御することを特徴とする半導体レーザの駆動方法
(2) In a method of driving a semiconductor laser that emits pulsed light, when the semiconductor laser does not emit light, a bias current I_
b, and when emitting light, it is modulated at high speed with a pulse current with a duty ratio D, and when the peak value of this pulse current is I_o_p and the offset value is I_o_a, D・I_o_p+
(1-D) The bias current I_b and the offset current I_o_a are adjusted so that I_o_a−I_b becomes almost zero and the junction voltage at the junction of the semiconductor laser becomes constant.
A method for driving a semiconductor laser, the method comprising: controlling a semiconductor laser;
JP60108510A 1985-05-20 1985-05-20 Semiconductor laser and drive thereof Pending JPS61265886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60108510A JPS61265886A (en) 1985-05-20 1985-05-20 Semiconductor laser and drive thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60108510A JPS61265886A (en) 1985-05-20 1985-05-20 Semiconductor laser and drive thereof

Publications (1)

Publication Number Publication Date
JPS61265886A true JPS61265886A (en) 1986-11-25

Family

ID=14486608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60108510A Pending JPS61265886A (en) 1985-05-20 1985-05-20 Semiconductor laser and drive thereof

Country Status (1)

Country Link
JP (1) JPS61265886A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460931A (en) * 1990-06-26 1992-02-26 Matsushita Electric Ind Co Ltd Optical pickup
JP2001326418A (en) * 2000-05-16 2001-11-22 Yokogawa Electric Corp Semiconductor laser beam source and modulation method therefor
JP2005244242A (en) * 2004-02-25 2005-09-08 Osram Opto Semiconductors Gmbh Apparatus provided with at least one beam radiation semiconductor device, and method of stabilizing operating temperature of the beam radiation semiconductor device
WO2006000957A2 (en) * 2004-06-22 2006-01-05 Arima Devices Corporation A laser diode drive arrangement
JP2006054272A (en) * 2004-08-11 2006-02-23 Opnext Japan Inc Semiconductor optical element, laser module and optical transmitter/receiver
US7376162B2 (en) 2002-09-30 2008-05-20 Fujifilm Corporation Method for stabilizing optical output of semiconductor laser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460931A (en) * 1990-06-26 1992-02-26 Matsushita Electric Ind Co Ltd Optical pickup
JP2001326418A (en) * 2000-05-16 2001-11-22 Yokogawa Electric Corp Semiconductor laser beam source and modulation method therefor
US7376162B2 (en) 2002-09-30 2008-05-20 Fujifilm Corporation Method for stabilizing optical output of semiconductor laser
JP2005244242A (en) * 2004-02-25 2005-09-08 Osram Opto Semiconductors Gmbh Apparatus provided with at least one beam radiation semiconductor device, and method of stabilizing operating temperature of the beam radiation semiconductor device
WO2006000957A2 (en) * 2004-06-22 2006-01-05 Arima Devices Corporation A laser diode drive arrangement
WO2006000957A3 (en) * 2004-06-22 2006-04-06 Koninkl Philips Electronics Nv A laser diode drive arrangement
JP2006054272A (en) * 2004-08-11 2006-02-23 Opnext Japan Inc Semiconductor optical element, laser module and optical transmitter/receiver
JP4625661B2 (en) * 2004-08-11 2011-02-02 日本オプネクスト株式会社 Semiconductor optical device, laser module, and optical transceiver

Similar Documents

Publication Publication Date Title
ATE452445T1 (en) NITRIDE SEMICONDUCTOR LASER ELEMENT
EP1753105A2 (en) Laser diode
US20080111142A1 (en) Semiconductor light emitting device and method of manufacturing it
US6301279B1 (en) Semiconductor diode lasers with thermal sensor control of the active region temperature
Al-Muhanna et al. 14.3 W quasicontinuous wave front-facet power from broad-waveguide Al-free 970 nm diode lasers
JPS61265886A (en) Semiconductor laser and drive thereof
CN105914581B (en) Surface-emitting type semiconductor laser and surface-emitting type semiconductor laser array
EP0583128B1 (en) Semiconductor laser with integrated phototransistor for dynamic power stabilization
US5345459A (en) Method of reducing the thermally-induced shift in the emission wavelength of laser diodes
Scott et al. Modeling the current to light characteristics of index‐guided vertical‐cavity surface‐emitting lasers
JPS61265885A (en) Semiconductor laser and drive thereof
KR100300239B1 (en) Semiconductor light emitting device and communication apparatus using an optical fiber
JPH04229681A (en) Semiconductor laser equipped with semiconductor laser for compensation use; its driving method
JPS6197988A (en) Phase combined linear laser array
Minakuchi et al. High-power, 790 nm, eight-beam AlGaAs laser array with a monitoring photodiode
Johnson et al. High output power 670nm VCSELs
JPH07106548A (en) Semiconductor light source device and driving method therefor
US20020003769A1 (en) Near-field optical head
Welch et al. High power single mode laser diodes
KR100708084B1 (en) Driving circuit of vertical cavity surface emitting laser diode
KR0113733Y1 (en) Optical out detect apparatus of surface optical laser
JP2538451Y2 (en) Semiconductor laser device
Gunshor et al. Blue-green laser-diode technology moves ahead March 1, 1996 Increasing the operating lifetimes and decreasing the emission wavelength of II-VI semiconductor devices will enable their use in high-density optical recording.
Lippincott et al. Finite element analysis of thermal transients in multi-stripe laser diode arrays
JPS61247083A (en) Semiconductor laser