JPS61264157A - Material for permanent magnet - Google Patents

Material for permanent magnet

Info

Publication number
JPS61264157A
JPS61264157A JP60106676A JP10667685A JPS61264157A JP S61264157 A JPS61264157 A JP S61264157A JP 60106676 A JP60106676 A JP 60106676A JP 10667685 A JP10667685 A JP 10667685A JP S61264157 A JPS61264157 A JP S61264157A
Authority
JP
Japan
Prior art keywords
permanent magnet
atomic
less
phase
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60106676A
Other languages
Japanese (ja)
Other versions
JPH0560241B2 (en
Inventor
Hitoshi Yamamoto
日登志 山本
Masato Sagawa
佐川 真人
Setsuo Fujimura
藤村 節夫
Yutaka Matsuura
裕 松浦
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60106676A priority Critical patent/JPS61264157A/en
Publication of JPS61264157A publication Critical patent/JPS61264157A/en
Publication of JPH0560241B2 publication Critical patent/JPH0560241B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prevent deterioration in magnetic characteristics attendant upon the grinding work of a sintered magnetic body by forming a vapor deposition phase consisting of body-centered cubic phase mainly composed of Nd on the surface, to be ground, of Fe-B-rare earth element-type thin permanent magnet material having a specific composition. CONSTITUTION:The sintered magnet body having a composition mainly composed of, by atom, 10-30% R (>=1 element among Nd, Pr, Dy, Ho, Tb, or further, La, Ce, Sm, Gd, Er, Eu, Tm, Yb, La and Y), 2-28% B, and 65-80% Fe is formed, which has a main phase consisting of tetragonal cubic phase and is <=2.5cm<3> in volume or <=5.0mm in thickness. The vapor deposition layer of rare earth element mainly composed of Nd is formed by adhesion on the surface, to be ground, of the above sintered magnet body, which is subjected to two-stage aging treatment to allow the vapor deposition layer consisting of body-centered cubic phase to adhere to the above. In this way, the crystal groups in the primary worked surface layer are provided with coercive force, so that deterioration in magnetic properties caused by grinding work can be prevented.

Description

【発明の詳細な説明】 利用産業分野 この発明は、焼結永久磁石表面の研削加工等に伴なう磁
石特性の劣化を防止したFa−B−R系永久磁石に係り
、特に、体積が2.5cn?以下あるいは厚みが5.0
mm以下の小物あるいは薄物用永久磁石材料に関する。
Detailed Description of the Invention Field of Application This invention relates to an Fa-BR permanent magnet that prevents deterioration of magnetic properties due to grinding of the surface of a sintered permanent magnet. .5cn? Less than or equal to 5.0 thick
It relates to permanent magnet materials for small or thin objects of mm or less.

背景技術 現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石でおる。
BACKGROUND ART Current typical permanent magnet materials include alnico, hard ferrite, and rare earth cobalt magnets.

この希土類コバルト磁石は、磁気特性が格段にすぐれて
いるため、多種用途に利用されているが、主成分のSm
、Coは共に資源的に不足し、かつ高価であり、今後長
期間にわたって、安定して多量に供給されることは困難
でおる。
This rare earth cobalt magnet has extremely excellent magnetic properties and is used for a variety of purposes, but the main component is S.
, Co are both in short supply and expensive, and it will be difficult to stably supply them in large quantities for a long period of time.

そのため、磁気特性がすぐれ、かつ安価で、さらに資源
的に豊富で今後の安定供給が可能な組成元素からなる永
久磁石材料が切望されてきた。
Therefore, there has been a strong desire for a permanent magnet material that has excellent magnetic properties, is inexpensive, and is composed of constituent elements that are abundant in resources and can be stably supplied in the future.

本出願人は先に、高価な論やらを含有しない新しい高性
能永久1石としてFe−B−R系(RはYを含む希土類
元素のうち少なくとも1種)永久磁石を提案した(特開
昭59−46008号、特開昭59−64733号、特
開昭59−89401号、特開昭59−132104号
)。
The present applicant previously proposed a Fe-BR-based permanent magnet (R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive materials (Japanese Patent Application Laid-Open No. 59-46008, JP-A-59-64733, JP-A-59-89401, JP-A-59-132104).

この永久磁石は、Rとして陶や円を中心とする資源的に
豊富な軽希土類を用い、Feを主成分として25MGO
a以上の極めて高いエネルギー積を示す、すぐれた永久
!a石である。
This permanent magnet uses resource-rich light rare earth materials such as ceramics and circles as R, and uses 25MGO with Fe as the main component.
Excellent permanent, showing an extremely high energy product of more than a! It is a stone.

最近、磁気回路の高性能化、小形化に伴ない、Fs−B
−R系永久磁石材料が益々注目され、さらに、体積が2
.5cJ1?以下あるいは厚みが5.0mm以下の小物
おるいは薄物用Fθ−B−R系永久磁石材料が要望され
てきた。
Recently, with the improvement in performance and miniaturization of magnetic circuits, Fs-B
-R-based permanent magnet materials are attracting more and more attention, and the volume is 2
.. 5cJ1? There has been a demand for Fθ-BR-based permanent magnet materials for small or thin items with a thickness of 5.0 mm or less.

かかる用途の永久磁石材料を製造するには、成形焼結し
た小物あるいは極薄物の焼結磁石体は、その表面の凹凸
や歪みを除去するため、あるいは表面酸化層を除去する
ため、さらには磁気回路に組込むために、磁石体の全面
あるいは所要表面を切削加工する必要がおり、加工には
外周刃切断機。
In order to manufacture permanent magnet materials for such uses, small or ultra-thin sintered magnets must be processed to remove surface irregularities and distortions, or to remove surface oxidation layers, and to remove magnetic In order to incorporate it into the circuit, it is necessary to cut the entire surface or the required surface of the magnet, and a peripheral blade cutting machine is used for the processing.

内周刃切断機2表面研削機、センタレスグラインダー、
ラッピングマシン等が使用される。
Internal blade cutting machine 2 surface grinding machine, centerless grinder,
A wrapping machine etc. are used.

しかしながら、上記製画にてFe−B−R系永久磁石材
料を研削加工すると、例えば、厚み20mmより1mm
〜10mm製品厚みに加工すると、第2図の曲線すに示
す如く、各磁気特性が劣化する問題があった。
However, when grinding the Fe-B-R permanent magnet material in the above drawing, for example, the thickness is 1 mm from 20 mm.
When processed to a product thickness of ~10 mm, there was a problem that various magnetic properties deteriorated, as shown by the curves in FIG.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、特に小物あるいは極薄物用の焼
結磁石体の切削加工に伴なう磁気特性の劣化を防止した
永久磁石材料を目的としている。
Purpose of the Invention This invention is a new permanent magnet material mainly composed of rare earth elements, boron, and iron, which prevents the deterioration of magnetic properties caused by cutting of sintered magnet bodies for small or ultra-thin objects. Intended for magnetic materials.

発明の構成と効果 発明者らは、FEI−B−R系永久vii石材料の保磁
力について種々検討した結果、前記磁石体の保磁力の大
小は、結晶粒内よりも粒界構造の差異に基因しており、
研摩された焼結磁石表面を、Kerr効果を用いた光学
顕微鏡で、磁区の反転@横を詳細に調べると、磁石体表
面の磁化反転が磁石体内部の保磁力の172以下の非常
に低い磁界で起り、焼結磁石体の加工された表面第1層
の結晶群の保磁力が低い理由は、高保磁力を出現するた
めに必要な最適の体心立方相が存在しないためでおるこ
とを知見した。
Structure and effect of the invention As a result of various studies on the coercive force of the FEI-B-R permanent stone material, the inventors found that the magnitude of the coercive force of the magnet body is due to differences in the grain boundary structure rather than within the crystal grains. It is the underlying cause,
When the surface of a polished sintered magnet is examined in detail for magnetic domain reversal @ lateral using an optical microscope using the Kerr effect, it is found that the magnetization reversal on the magnet surface occurs in a very low magnetic field below the coercive force of 172 inside the magnet. It was discovered that the reason why the coercive force of the crystal group in the first layer on the processed surface of the sintered magnet body is low is because the optimal body-centered cubic phase necessary for the appearance of high coercive force does not exist. did.

発明者が始めて発見した高保磁力を出現させる体心立方
相を、加工された焼結磁石体表面の結晶群上に、最適の
厚みでかつ特殊な体心立方相構造を有する粒界相として
設けることは、通常の方法では容易ではないが、厚み1
証以下のNdを主成分とする体心立方相の蒸着層を形成
することにより、Fe−B−R系永久磁石材料の保磁力
並びに減磁曲線の角型性を改善向上させ得ることを知見
し、この発明を完成したものでおる。
The body-centered cubic phase that exhibits high coercive force, which was first discovered by the inventor, is provided as a grain boundary phase with an optimal thickness and a special body-centered cubic phase structure on the crystal group on the surface of the processed sintered magnet. This is not easy to do using normal methods, but if the thickness is 1
It was discovered that the coercive force and squareness of the demagnetization curve of Fe-B-R permanent magnet materials can be improved by forming a body-centered cubic phase vapor deposited layer containing Nd as the main component. However, this invention has been completed.

すなわち、この発明は、 R(RはNd、 Pr、 Dy、 Ho、 Tbのうち
少なくとも1種あるいはざらに、La、 C8,Sm、
 Cd、 Er、 Eu、丁m。
That is, this invention provides R (R is at least one of Nd, Pr, Dy, Ho, Tb, or in general, La, C8, Sm,
Cd, Er, Eu, Dingm.

Yb、 La、 Yのうち少なくとも1種からなる)1
0%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる体積が2.5aj以下あるいは厚みが5.
0mm以下の焼結磁石体の被研削加工面に、Ndを主成
分とする体心立方相からなる蒸着層を有することを特徴
する永久磁石材料である。
consisting of at least one of Yb, La, Y)1
The main components are 0% to 30 atomic%, B2 atomic% to 28 atomic%, and Fe65 atomic% to 80 atomic%, and the main phase is a tetragonal phase, and the volume is 2.5aj or less or the thickness is 5.
This permanent magnet material is characterized by having a deposited layer of a body-centered cubic phase containing Nd as a main component on the ground surface of a sintered magnet body of 0 mm or less.

ざらに詳述すれば、上記の焼結磁石体の被研削加工面に
、陶あるいはNdを主成分とし、残部はNdを除きYを
含む希土類元素のうち少なくとも1種からなる蒸着層を
被着形成後、700℃〜i ooo℃及び650℃〜4
50℃の2段の時効処理を施して、体心立方相からなる
蒸着層を被着させ、該加工表面第1層の結晶群に保磁力
を付与し、研削加工による磁気特性の劣化を防止したこ
とを特徴する永久磁石材料である。
More specifically, on the surface to be ground of the sintered magnet body described above, a vapor deposited layer is deposited on the surface to be ground of the above-mentioned sintered magnet body, the main component being ceramic or Nd, and the remainder being at least one rare earth element including Y, excluding Nd. After formation, 700°C to i ooo°C and 650°C to 4
A two-stage aging treatment at 50°C is applied to deposit a deposited layer consisting of a body-centered cubic phase, which imparts coercive force to the crystal group of the first layer on the processed surface and prevents deterioration of magnetic properties due to grinding. It is a permanent magnetic material with the following characteristics.

また、この発明の永久磁石材料は平均結晶粒径が1〜8
0加の範囲にある正方品系の結晶構造を有する化合物を
主相とし、体積比で1%〜50%の非磁性相(酸化物相
を除く)を含むことを特徴とする。
Further, the permanent magnet material of this invention has an average crystal grain size of 1 to 8.
It is characterized by having a compound having a tetragonal crystal structure in the range of 0 as the main phase, and containing a nonmagnetic phase (excluding the oxide phase) in a volume ratio of 1% to 50%.

したがって、この発明の永久磁石材料は、Rとして陶あ
るいはざらに門を中心とする資源的に豊富な軽希土類を
主に用い、Fe、B、R,を主成分とすることにより、
25MGO,以上の極めて高いエネルギー積並びに、高
残留磁束密度、高保磁力を有し、かつ研削加工による磁
気特性の劣化を防止したFe −B −R系永久磁石材
料を安価に得ることができる。
Therefore, the permanent magnet material of the present invention mainly uses light rare earths, which are rich in resources such as ceramics or zaranimon, as R, and has Fe, B, and R as the main components.
A Fe-B-R permanent magnet material having an extremely high energy product of 25 MGO or more, high residual magnetic flux density, and high coercive force, and preventing deterioration of magnetic properties due to grinding can be obtained at a low cost.

この発明において、焼結磁石体の被研削加工表面に、N
dを主成分とする体心立方相の蒸着層を被着させるには
、真空蒸着、スパッタリング等の薄膜形成方法が適宜選
定利用できる。また、蒸着層の厚みは、1mを越えると
該蒸着層の剥離あるいは機械的強度の低下を招来し、か
つ体心立方相を形成しないため好ましくなく、1ρ以下
の厚みとし、最も好ましくは0.5項以下の層厚みであ
る。
In this invention, N is added to the surface of the sintered magnet body to be ground.
In order to deposit a body-centered cubic phase vapor deposition layer containing d as a main component, thin film forming methods such as vacuum vapor deposition and sputtering can be appropriately selected and utilized. Further, if the thickness of the vapor deposited layer exceeds 1 m, it is not preferable because it may cause peeling of the vapor deposited layer or decrease in mechanical strength, and it will not form a body-centered cubic phase. The layer thickness is 5 terms or less.

永久磁石の成分限定理由 この発明の永久磁石に用いる希土類元素Rは、組成の1
0原子%〜30原子%を占めるが、m、 Pr。
Reason for limiting the composition of permanent magnet The rare earth element R used in the permanent magnet of this invention has a composition of 1
occupies 0 atomic % to 30 atomic %, m, Pr.

き、)to、Tbのうち少なくとも1種、あるいはさら
に、La、 Ce、 Sm、 Ctr、 Er、 Eu
、 Tm、 Yb、ム、Yのうち少なくとも1種を含む
ものが好ましい。
)to, at least one of Tb, or in addition, La, Ce, Sm, Ctr, Er, Eu
, Tm, Yb, M, and Y are preferred.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (Mitushmetal, Didim, etc.) can be used for reasons such as availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、新規な上記系永久磁石材料における、必須元素で
あって、10原子%未満では、結晶構造がα−鉄と同一
構造の立方晶組織となるため、高磁気特性、特に高保磁
力が得られず、30原子%を越えると、Rリッチな非磁
性相が多くなり、残留磁束密度(Sr)が低下して、す
ぐれた特性の永久磁石が得られない。よって、希土類元
素は、10原子%〜30原子%の範囲とする。
R is an essential element in the new above-mentioned permanent magnet material, and if it is less than 10 atomic %, the crystal structure becomes a cubic structure that is the same as α-iron, so high magnetic properties, especially high coercive force, can be obtained. If it exceeds 30 atomic %, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Sr) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element is in the range of 10 atomic % to 30 atomic %.

Bは、この発明による永久磁石材料における、必須元素
であって、2原子%未満では、菱面体構造が主相となり
、高い保磁力(iHC)は得られず、28原子%を越え
ると、Bリッチな非磁性相が多くなり、残留磁束密度(
Br)が低下するため、すぐれた永久磁石が得られない
。よって、Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the permanent magnet material according to the present invention, and if it is less than 2 atomic %, the rhombohedral structure becomes the main phase and high coercive force (iHC) cannot be obtained, and if it exceeds 28 atomic %, B The rich nonmagnetic phase increases, and the residual magnetic flux density (
Br) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 2 atomic % to 28 atomic %.

Feは、新規な上記系永久磁石において、必須元素であ
り、65原子%未満では残留磁束密度(Sr)が低下し
、80原子%を越えると、高い保磁力が得られないので
、Feは65原子%〜80原子%の含有とする。
Fe is an essential element in the new above-mentioned permanent magnet.If it is less than 65 at%, the residual magnetic flux density (Sr) decreases, and if it exceeds 80 at%, high coercive force cannot be obtained. The content is from atomic % to 80 atomic %.

また、この発明による永久磁石材料において、FBの一
部を巳で置換することは、得られる磁石の磁気特性を損
うことなく、温度特性を改善することができるが、G置
換量がFaの20%を越えると、逆に磁気特性が劣化す
るため、好ましくない。■の置換量がFBと6の合計量
で5原子%〜15原子%の場合は、(Sr)は置換しな
い場合に比較して増加するため、高磁束密度を得るため
には好ましい。
In addition, in the permanent magnet material according to the present invention, replacing a part of FB with Sn can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet, but the amount of G substitution is smaller than that of Fa. If it exceeds 20%, the magnetic properties will deteriorate, which is not preferable. When the amount of substitution (2) is 5 to 15 atom % in the total amount of FB and 6, (Sr) increases compared to the case where no substitution is made, which is preferable in order to obtain a high magnetic flux density.

また、この発明による永久磁石は、R,B、Feの他、
工業的生産上不可避的不純物の存在を許容できるが、B
の一部を4.0原子%以下のC,3,5原子%以下のP
、2.5原子%以下のS、3.5原子%以下のへのうち
少なくとも1種、合計量で4.0原子%以下で置換する
ことにより、永久磁石の製造性改善、低価格化が可能で
ある。
In addition to R, B, and Fe, the permanent magnet according to the present invention also includes
Although the presence of unavoidable impurities in industrial production can be tolerated, B
4.0 atomic% or less of C, 3.5 atomic% or less of P
, 2.5 at% or less of S, 3.5 at% or less of It is possible.

また、下記添加元素のうち少なくとも1種は、RB  
Fa系永久磁石に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。しかし、保磁力改善のための
添加に伴ない残留磁束密度(Br)の低下を招来するの
で、従来のハードフェライト磁石の残留磁束密度と同等
以上となる範囲での添加が望ましい。
In addition, at least one of the following additional elements is RB
It can be added to Fa-based permanent magnets because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets.

9.5原子%以下のA1.4.5原子%以下のTi、9
.5原子%以下のV、8.5原子%以下のCr。
A1 of 9.5 atom% or less; Ti of 4.5 atom% or less, 9
.. V at 5 atomic % or less, Cr at 8.5 atomic % or less.

8.0原子%以下のHn、5.0原子%以下のBi、9
.5原子%以下のNb、9.5原子%以下の丁a、9.
5原子%以下の)IQ、  9.5原子%以下のり、2
.5原子%以下のsb、1原子%以下の60.3.5原
子%以下のSn、  5.5原子%以下のZr。
Hn of 8.0 atom% or less, Bi of 5.0 atom% or less, 9
.. 5 at % or less Nb, 9.5 at % or less Ding a, 9.
5 at% or less) IQ, 9.5 at% or less glue, 2
.. 5 at % or less sb, 1 at % or less 60.3.5 at % or less Sn, 5.5 at % or less Zr.

9.0原子%以下のNi、  9.0原子%以下の5i
11.1原子%以下のzn、5.5原子%以下のHf。
9.0 at% or less Ni, 9.0 at% or less 5i
Zn of 11.1 atomic % or less, Hf of 5.5 atomic % or less.

のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。
At least one of these elements is added and contained; however, when two or more types are contained, the maximum content is less than or equal to the atomic percent of the element having the maximum value among the added elements.
It becomes possible to increase the coercive force of permanent magnets.

結晶相は主相が正方品であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠でおる。
It is essential that the main phase of the crystalline phase be tetragonal in order to produce a sintered permanent magnet having superior magnetic properties than a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

この発明による永久磁石は、 保磁力iHc≧1 kOa、残留磁束密度Br> 4k
G、を示し、最大エネルギー積(BH)maxは、最も
好ましい組成範囲では、(BH)maX≧108GOa
を示し、最大値は25)IGOθ以上に達する。
The permanent magnet according to the present invention has a coercive force iHc≧1 kOa and a residual magnetic flux density Br>4k.
G, and the maximum energy product (BH)max is (BH)max≧108GOa in the most preferable composition range.
The maximum value reaches 25) IGOθ or more.

また、この発明永久磁石用合金粉末のRの主成分がその
50%以上を陶及び円を主とする軽希土類金属が占める
場合で、R12原子%〜20原子%、B4原子%〜24
原子%、F874原子%〜80原子%、を主成分とする
とき、(BH)max 35HGOe以上のすぐれた磁
気特性を示し、特に軽希土類金属が陶の場合には、その
最大値が42)IGOs以上に達する。
In addition, in the case where the main component of R in the alloy powder for permanent magnets of this invention is light rare earth metals mainly composed of ceramic and yen, R12 atomic % to 20 atomic % and B4 atomic % to 24 atomic %.
When the main component is (BH)max 35HGOe or more, especially when the light rare earth metal is ceramic, the maximum value is 42) IGOs. reach more than that.

実施例 実■北ロー 出発原料として、純度99゜9%の電解鉄、フェロボロ
ン合金、純度99.7%以上のNdを使用し、これらを
配合後高周波溶解し、その後水冷銅鋳型に鋳造し、15
.5Nd 7.5 B 77Feなる組成の鋳塊を得た
Example ■ As starting materials for Northern Row, electrolytic iron with a purity of 99.9%, ferroboron alloy, and Nd with a purity of 99.7% or more are used. After mixing these, they are high-frequency melted, and then cast in a water-cooled copper mold. 15
.. An ingot having a composition of 5Nd 7.5B 77Fe was obtained.

その後このインゴットを、スタンプミルにより粗粉砕し
、次にボールミルにより微粉砕し、平均粒度3.OAl
mの微粉末を得た。
Thereafter, this ingot was coarsely ground using a stamp mill, and then finely ground using a ball mill, with an average particle size of 3. OAl
A fine powder of m was obtained.

この微粉末を金型に挿入し、20 kOaの磁界中で配
向し、磁界に平行方向に、1.5 t4の圧力で成形し
た。
This fine powder was inserted into a mold, oriented in a magnetic field of 20 kOa, and molded at a pressure of 1.5 t4 in a direction parallel to the magnetic field.

得られた成形体を、11()0℃、1時間、 Ar雰囲
気中、の条件で焼結し、長さ201TllTI×幅10
+nmX厚み10m1T1寸法の焼結体を得た。
The obtained molded body was sintered under the conditions of 11()0°C for 1 hour in an Ar atmosphere, and the length was 201TllTI×width 10
A sintered body with dimensions of +nm x thickness 10m1T1 was obtained.

そして焼結体より、長さ2.75 mmX幅0.7mm
X厚み0.71TllT1寸法の試験片に切出したのち
、真空度2X10″″4 Torrの石英管内に、陶金
属と共に挿入し、i ooo℃、5時間加熱して、試料
全面に、100人〜2000人のNd薄膜層を被着させ
た。
And from the sintered body, length 2.75 mm x width 0.7 mm
After cutting into a test piece with dimensions of X thickness 0.71TllT1, it was inserted into a quartz tube with a vacuum degree of 2X10''''4 Torr together with a ceramic metal, heated at 100°C for 5 hours, and the whole surface of the sample was exposed to 100 to 2000 A thin layer of Nd was deposited.

ざらにAr中での800℃、 1時間と630℃、1.
5時間の2段時効処理を施して、被研削加工面に体心立
方相を形成した永久磁石を作製した。
Roughly 800°C in Ar for 1 hour and 630°C, 1.
A two-stage aging treatment for 5 hours was performed to produce a permanent magnet in which a body-centered cubic phase was formed on the surface to be ground.

また、上記の試験片をNd薄膜層を被着することなく直
ちに時効処理した比較試験片を作製した。
In addition, a comparative test piece was prepared by immediately aging the above test piece without applying the Nd thin film layer.

得られた各永久磁石材料の減磁曲線を第1図に示し、ま
た、Br、  iHc及び(BH)maxの値を、振動
試料型磁力計(VSH)を用いて測定して第1表にその
結果を示す。曲線aはNd薄膜層を有する本発明永久磁
石で、曲線すは比較例永久磁石の場合である。
The demagnetization curves of each of the obtained permanent magnet materials are shown in Figure 1, and the values of Br, iHc and (BH)max were measured using a vibrating sample magnetometer (VSH) and are shown in Table 1. The results are shown below. Curve a is for the permanent magnet of the present invention having a Nd thin film layer, and curve 2 is for the comparative permanent magnet.

第1表 実施例2 出発原料として、純度99.9%の電解鉄、フェロボロ
ン合金、純度99.7%以上のNdを使用し、これらを
配合後高周波溶解し、その後水冷銅鋳型に鋳造し、15
.5M7.5877Faなる組成の鋳塊を得た。
Table 1 Example 2 Electrolytic iron with a purity of 99.9%, ferroboron alloy, and Nd with a purity of 99.7% or more were used as starting materials, and after blending these, they were high-frequency melted, and then cast in a water-cooled copper mold. 15
.. An ingot having a composition of 5M7.5877Fa was obtained.

その後このインゴットを、スタンプミルにより粗粉砕し
、次にボールミルにより微粉砕し、平均粒度3.0μm
の微粉末を得た。
Thereafter, this ingot was coarsely pulverized using a stamp mill, and then finely pulverized using a ball mill to obtain an average particle size of 3.0 μm.
A fine powder was obtained.

この微粉末を金型に挿入し、20 koeの磁界中で配
向し、磁界に平行方向に、1.5tJの圧力で成形した
This fine powder was inserted into a mold, oriented in a magnetic field of 20 koe, and molded at a pressure of 1.5 tJ in a direction parallel to the magnetic field.

得られた成形体を、1100℃、1時間、 Ar雰囲気
中、の条件で焼結し、長さ20mmX幅10mmX厚み
10mm寸法の焼結体を得た。
The obtained molded body was sintered at 1100° C. for 1 hour in an Ar atmosphere to obtain a sintered body having dimensions of 20 mm in length, 10 mm in width, and 10 mm in thickness.

そして焼結体より、長ざ20mmX幅5mmX厚み10
mm寸法の試験片に切出して厚みを暫時減少させた種々
の試験片を得たのち、真空度2xlO−4Torrの石
英管内に、陶金属と共に挿入し、100G’C,5時間
加熱して、試料全面に、100人〜2000人の陶薄膜
層を被着させた。
And from the sintered body, length 20mm x width 5mm x thickness 10
After obtaining various test pieces whose thickness was temporarily reduced by cutting them into mm-sized test pieces, they were inserted into a quartz tube with a vacuum degree of 2xlO-4 Torr together with a ceramic metal, and heated at 100 G'C for 5 hours. A ceramic thin film layer of 100 to 2000 layers was applied over the entire surface.

さらにAt中での800’C,1時間と630″C,1
,5時間の2段時効処理を施して、被研削加工面に体心
立方相を形成したこの発明による永久磁石を作製した。
Furthermore, 800'C, 1 hour and 630''C, 1 hour in At
A permanent magnet according to the present invention in which a body-centered cubic phase was formed on the surface to be ground was produced by subjecting it to two-stage aging treatment for 5 hours.

また、上記の種々厚みのの試験片をNdn膜層を設ける
ことなく直ちに時効処理した比較試験片を作製した。
Comparative test pieces were also prepared by immediately aging the above test pieces having various thicknesses without providing an Ndn film layer.

得られた各永久磁石材料の3r、1l−IC及び(BH
)max値を、振動試料型磁力計(VSH)を用いて測
定して第2図にその結果を示す。曲線aはNd薄膜層を
有する本発明永久磁石で、曲線すは比較例永久磁石の場
合である。
3r, 1l-IC and (BH
)max value was measured using a vibrating sample magnetometer (VSH), and the results are shown in FIG. Curve a is for the permanent magnet of the present invention having a Nd thin film layer, and curve 2 is for the comparative permanent magnet.

第1図、第1表及び第2図の結果から明らかなように、
Ndを主成分とする体心立方相からなる蒸着層が、研削
加工面の磁気特性劣化防止に極めて有効であり、特に、
製品厚みが薄いものほど、その効果が著しいことが分る
As is clear from the results in Figure 1, Table 1, and Figure 2,
A deposited layer consisting of a body-centered cubic phase mainly composed of Nd is extremely effective in preventing deterioration of the magnetic properties of the ground surface, and in particular,
It can be seen that the thinner the product, the more remarkable the effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は永久磁石材料の減磁曲線を示す図である。第2
図は永久磁石材料試験片厚みと3r。 iHc及び(BH)maXどの関係を示すグラフである
。 出願人  住友特殊金属株式会社 代理人  押  1) 良  久曜駅 第1図 −H(KOe) 第2図 厚 さくIEB) 1頁の続き 箔 明 者  広  沢     哲  大阪府三島郡
島本町江ノ社山崎製作所内
FIG. 1 is a diagram showing a demagnetization curve of a permanent magnet material. Second
The figure shows the thickness of a permanent magnet material specimen and 3r. It is a graph showing the relationship between iHc and (BH)maX. Applicant Sumitomo Special Metals Co., Ltd. Agent Press 1) Good Hisayo Station Figure 1-H (KOe) Figure 2 Thickness IEB) 1 page continuation foil Akira Tetsu Hirozawa Enosha, Shimahonmachi, Mishima-gun, Osaka Prefecture Inside Yamazaki Factory

Claims (1)

【特許請求の範囲】 1 R(RはNd、Pr、Dy、Ho、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Cd、
Er、Eu、Tm、Yb、La、Yのうち少なくとも1
種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる体積が2.5cm^3以下あるいは厚みが
5.0mm以下の焼結磁石体の被研削加工面に、Ndを
主成分とする体心立方相からなる蒸着層を有することを
特徴する永久磁石材料。
[Claims] 1 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Cd,
At least one of Er, Eu, Tm, Yb, La, Y
The main components are 10% to 30 atomic% (consisting of seeds), 28 atomic% to B2 atomic%, and 65 atomic% to 80 atomic% Fe, and the main phase is a tetragonal phase with a volume of 2.5 cm^3 or less or a thickness of A permanent magnet material characterized by having a deposited layer of a body-centered cubic phase containing Nd as a main component on a surface to be ground of a sintered magnet body of 5.0 mm or less.
JP60106676A 1985-05-17 1985-05-17 Material for permanent magnet Granted JPS61264157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60106676A JPS61264157A (en) 1985-05-17 1985-05-17 Material for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60106676A JPS61264157A (en) 1985-05-17 1985-05-17 Material for permanent magnet

Publications (2)

Publication Number Publication Date
JPS61264157A true JPS61264157A (en) 1986-11-22
JPH0560241B2 JPH0560241B2 (en) 1993-09-01

Family

ID=14439669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60106676A Granted JPS61264157A (en) 1985-05-17 1985-05-17 Material for permanent magnet

Country Status (1)

Country Link
JP (1) JPS61264157A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
US8303732B2 (en) 2009-02-02 2012-11-06 Hitachi, Ltd. Rare earth magnet
CN105489369A (en) * 2015-12-29 2016-04-13 浙江东阳东磁稀土有限公司 Method for increasing coercive force of neodymium iron boron magnet
JP2022508370A (en) * 2018-12-29 2022-01-19 三環瓦克華(北京)磁性器件有限公司 Plating equipment and plating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
US8303732B2 (en) 2009-02-02 2012-11-06 Hitachi, Ltd. Rare earth magnet
CN105489369A (en) * 2015-12-29 2016-04-13 浙江东阳东磁稀土有限公司 Method for increasing coercive force of neodymium iron boron magnet
JP2022508370A (en) * 2018-12-29 2022-01-19 三環瓦克華(北京)磁性器件有限公司 Plating equipment and plating method
US11920236B2 (en) 2018-12-29 2024-03-05 Sanvac (Beijing) Magnetics Co., Ltd. Coating machine and coating method

Also Published As

Publication number Publication date
JPH0560241B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
JPS6274048A (en) Permanent magnet material and its production
JPS62192566A (en) Permanent magnet material and its production
WO2021249159A1 (en) Heavy rare earth alloy, neodymium-iron-boron permanent magnet material, raw material, and preparation method
JPH0510806B2 (en)
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JPS62188745A (en) Permanent magnet material and its production
JPS6217149A (en) Manufacture of sintered permanent magnet material
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPS61264157A (en) Material for permanent magnet
JPH0561345B2 (en)
JPH07272929A (en) Rare earth element-fe-b-thin film permanent magnet
JPS61159708A (en) Permanent magnet
JPS62120002A (en) Permanent magnet with excellent corrosion resistance
JPS61281850A (en) Permanent magnet material
TW202142708A (en) Anisotropic rare-earth sintered magnet and method for producing same
JPH068488B2 (en) Permanent magnet alloy
CN1132399A (en) Double-phase rare-earth-iron-boron magnetic powder and its prepn. method
JPS61264106A (en) Working method for permanent magnet material
JPH03170643A (en) Alloy for permanent magnet
JPH045739B2 (en)
JPS6247455A (en) Permanent magnet material having high performance
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH04293206A (en) Pare earth elements-fe-b based anisotropic permanent magnet
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JPS62170455A (en) Permanent magnet alloy

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term