JPS6126327Y2 - - Google Patents

Info

Publication number
JPS6126327Y2
JPS6126327Y2 JP13276981U JP13276981U JPS6126327Y2 JP S6126327 Y2 JPS6126327 Y2 JP S6126327Y2 JP 13276981 U JP13276981 U JP 13276981U JP 13276981 U JP13276981 U JP 13276981U JP S6126327 Y2 JPS6126327 Y2 JP S6126327Y2
Authority
JP
Japan
Prior art keywords
gas
furnace
section
sintering
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13276981U
Other languages
Japanese (ja)
Other versions
JPS5838747U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13276981U priority Critical patent/JPS5838747U/en
Publication of JPS5838747U publication Critical patent/JPS5838747U/en
Application granted granted Critical
Publication of JPS6126327Y2 publication Critical patent/JPS6126327Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は燃結炉とりわけ鉄系圧粉体の燃結炉に
関するものである。
[Detailed Description of the Invention] The present invention relates to a combustion furnace, particularly a combustion furnace for iron-based green compacts.

鉄系圧粉体を工業的規摸で燃結する場合、一般
的に予熱炉と燃結炉および冷却筒を炉芯管により
トンネル状に連続させ、プツシヤーなどにより圧
粉体を間欠点に送り込み、予熱炉でステアリン酸
亜鉛などのバインダを除去し、次いで燃結温度に
加熱し、冷却筒を通る間に冷却する手法が採られ
ている。
When combusting iron-based green compacts on an industrial scale, the preheating furnace, sintering furnace, and cooling tube are generally connected in a tunnel-like manner through a furnace core tube, and the green compacts are fed into the intermediate defects using a pusher or the like. , a method is adopted in which binders such as zinc stearate are removed in a preheating furnace, then heated to sintering temperature, and cooled while passing through a cooling tube.

このような鉄系圧粉体の燃結処理において重要
な点は雰囲気管理ことにカーボンポテンシヤルの
調整であり、この目的のため従来では炉外に触媒
炉を設置し、この触媒炉でブタンガスなどの炭化
水素系ガス(CmHn)にエアを混合して一種の不
完全燃焼させて吸熱形変成ガスを作り、これを予
熱ゾーン、燃結ゾーンおよび冷却ゾーンに供給し
ていた。
Important points in the combustion process of iron-based green compacts are atmosphere control and carbon potential adjustment.For this purpose, conventionally, a catalytic furnace was installed outside the furnace, and this catalytic furnace was used to combust butane gas, etc. Hydrocarbon gas (CmHn) was mixed with air and subjected to a type of incomplete combustion to create endothermic transformed gas, which was then supplied to the preheating zone, combustion zone, and cooling zone.

このような手段によれば、圧粉体のカーボン量
に見合つた雰囲気となるため、脱炭防止効果がよ
いメリツトが得られるが、最近のように燃結品の
高密度化、合金化、形状の多様化が進んだ場合に
製品に肌あれが生じ、しばしばクラツクや変形を
起すなどの良品前留りが低下するという問題があ
つた。
According to such a method, an atmosphere suitable for the amount of carbon in the green compact is created, which has the advantage of preventing decarburization. As the variety of products advances, products become rough, often causing cracks and deformation, leading to a decline in the number of good products.

本考案はこのような事情から研究を重ねて考案
されたもので、その目的とするところは比較的簡
単な構造で肌荒れと脱炭を効果的に防止して焼結
を行うことができる炉を提供することにある。
This invention was devised after repeated research in light of these circumstances, and its purpose is to create a furnace that has a relatively simple structure and can perform sintering while effectively preventing rough skin and decarburization. It is about providing.

この目的のため本考案者は焼結製品の肌荒れの
発生について検討を加えた。その結果、焼結製品
の肌荒れは、従来では脱ろう時における圧粉体の
昇温スピードが早すぎることやステアリン酸亜鉛
の急激な分解や脱ろうゾーンでの不完全な脱ろう
状態の焼結ゾーンへの持ち込みが主原因と考えら
れていたが、実は雰囲気ガスの組成とくに脱ろう
ゾーンの吸熱形雰囲気が主原因であることがわか
つた。すなわち脱ろうゾーンの吸熱形雰囲気中の
COが圧粉体と反応してCO→CO2+Cなる分解反
応を起し、しかもこの反応は500〜600℃の脱ろう
温度域で生じやすく、かつこの反応は圧粉体の成
分組成のNi、Fe、ZnOが触媒作用をはたすため
ますます顕著になるものである。
For this purpose, the present inventor investigated the occurrence of surface roughness in sintered products. As a result, the surface roughness of sintered products has conventionally been caused by the temperature rising speed of the green compact during dewaxing being too fast, rapid decomposition of zinc stearate, and sintering in an incomplete dewaxing state in the dewaxing zone. It was thought that the main cause was the introduction of heat into the dewaxing zone, but it turned out that the main cause was actually the composition of the atmospheric gas, especially the endothermic atmosphere in the dewaxing zone. In other words, in the endothermic atmosphere of the dewaxing zone,
CO reacts with the green compact to cause a decomposition reaction of CO→CO 2 +C. Moreover, this reaction tends to occur in the dewaxing temperature range of 500 to 600°C, and this reaction is caused by the Ni , Fe, and ZnO play a catalytic role, which is becoming increasingly prominent.

〓〓〓〓
そこで、本考案は、焼結部と冷却部の雰囲気を
吸熱形ガス雰囲気にして脱炭防止を図ると共に、
脱ろう部の雰囲気を発熱形ガス雰囲気と吸熱形ガ
ス雰囲気の混合雰囲気に構成して脱ろう促進と
COの分解防止により肌荒れ防止を図るように
し、しかもそれら焼結部用雰囲気と脱ろう部用雰
囲気を単一の変成炉にて生成供給するようにした
ものである。
〓〓〓〓
Therefore, the present invention aims to prevent decarburization by creating an endothermic gas atmosphere in the sintering section and cooling section, and
The atmosphere in the dewaxing section is configured to be a mixed atmosphere of exothermic gas atmosphere and endothermic gas atmosphere to promote dewaxing.
This system aims to prevent skin roughness by preventing the decomposition of CO, and moreover, the atmosphere for the sintering section and the atmosphere for the dewaxing section are generated and supplied by a single shift furnace.

以下本考案を添付図面に基いて説明する。 The present invention will be explained below with reference to the accompanying drawings.

第1図と第2図は本考案に係る焼結炉の一実施
例を示すもので、1は予熱炉(脱ろう炉)で耐火
物炉体11の内側に炉芯管12が貫設され、炉芯
管12のまわりにはヒータ13が対設されてお
り、炉芯管12にはフレームカーテン14を備え
る入口部15が延設されている。2は焼結炉であ
り、本実施例ではコンベア式連続炉としているた
め耐火物炉体16の内側に前記炉芯管12と連通
する炉芯管12′が内挿され、その外周域にヒー
タ13′が設けられている。3は前記焼結炉3に
連続した冷却部であり、水冷ジヤケツトによる2
重筒として構成され、その端部にはフレームカー
テン14′を有する出口部ないし置換室17が設
けられている。
1 and 2 show an embodiment of the sintering furnace according to the present invention, and 1 is a preheating furnace (dewaxing furnace) in which a furnace core tube 12 is inserted through the inside of a refractory furnace body 11. A heater 13 is provided around the furnace core tube 12, and an inlet portion 15 having a frame curtain 14 extends from the furnace core tube 12. Reference numeral 2 denotes a sintering furnace, and in this embodiment, it is a conveyor-type continuous furnace, so a furnace core tube 12' communicating with the furnace core tube 12 is inserted inside the refractory furnace body 16, and a heater is installed in the outer peripheral area of the furnace core tube 12'. 13' is provided. 3 is a cooling section that is continuous with the sintering furnace 3, and is equipped with a water-cooled jacket.
It is constructed as a double cylinder, at the end of which an outlet or replacement chamber 17 with a frame curtain 14' is provided.

上記のような構造は従来の焼結炉と同様である
が、本考案はまず冷却部3の後部寄りの位置にガ
ス導入部5を接続すると共に、予熱炉1と焼結炉
2のあいだの炉芯管部分にもガス導入部4を接続
する。そして、炉外の適所に変成炉6を設け、こ
の変成炉6に炭化水素系ガスG1とエアの混合ガ
スを完全燃焼させるガスバーナ7を内挿した燃焼
部8を耐火囲壁8′により形成すると共に、Niな
どの触媒を充填した触媒筒9を前記燃焼部8を貫
くようにして設け、燃焼部8の一部に設けたガス
取出し口9′に配管18を接続すると共に、この
配管18にガス流量安定装置19とガス冷却器1
0を介在させ、さらにこれより先の配管を制御弁
20を介して前記予熱炉1と焼結炉2のあいだに
設けたガス導入部4と接続する。
The above structure is the same as that of the conventional sintering furnace, but the present invention first connects the gas introduction part 5 to a position near the rear of the cooling part 3, and also connects the gas introduction part 5 between the preheating furnace 1 and the sintering furnace 2. A gas introduction section 4 is also connected to the furnace core tube section. Then, a shift furnace 6 is installed at a suitable location outside the furnace, and a combustion section 8 is formed by a fireproof surrounding wall 8', in which a gas burner 7 for completely burning a mixture of hydrocarbon gas G1 and air is inserted. At the same time, a catalyst tube 9 filled with a catalyst such as Ni is provided so as to pass through the combustion section 8, and a pipe 18 is connected to a gas outlet 9' provided in a part of the combustion section 8. Gas flow stabilizer 19 and gas cooler 1
0 interposed therebetween, and the piping beyond this is connected via a control valve 20 to a gas introduction section 4 provided between the preheating furnace 1 and the sintering furnace 2.

また、前記触媒筒9の入口側に炭化水素系ガス
(CmHn)もしくはこれに水分ないし水素ガスを
添加したエンリツチ用ガスG3の供給配管21を
接続すると共に、触媒筒9の出口側を主配管22
により前記冷却部3のガス導入部5と接続し、さ
らに前記供給配管21と配管18におけるガス冷
却器10より前方適所を制御弁25を備えた分岐
配管23で接続している。
In addition, a supply pipe 21 for enrichment gas G 3 , which is hydrocarbon gas (CmHn) or water or hydrogen gas added thereto, is connected to the inlet side of the catalyst cylinder 9, and a main pipe is connected to the outlet side of the catalyst cylinder 9. 22
It is connected to the gas introduction section 5 of the cooling section 3, and is further connected to the supply pipe 21 at a suitable position in front of the gas cooler 10 in the pipe 18 by a branch pipe 23 equipped with a control valve 25.

なお、ガス冷却器10には冷凍機や除湿機など
を付属させてもよく、あるいは図示のように配管
18にバイパス管18′を付設し、非脱水ままで
ガス導入部4に導けるようにしてもよい。また必
要に応じ予熱炉1と焼結炉2のあいだにガス量コ
ントロール用排気部24を設けてもよい。
Note that the gas cooler 10 may be attached with a refrigerator, a dehumidifier, etc., or a bypass pipe 18' may be attached to the piping 18 as shown in the figure, so that the gas can be guided to the gas introduction part 4 without dehydration. Good too. Further, if necessary, an exhaust part 24 for gas amount control may be provided between the preheating furnace 1 and the sintering furnace 2.

本考案による焼結炉は上記のような構成からな
るので、鉄系圧粉体を焼結するにあたつては、ト
レイなどに圧粉体を装填してコンベアベルトある
いはプシヤーなどの送り手段により入口部15か
ら装入する一方、変成炉6のガスバーナ7により
炭化水素系ガスG1とエアとの混合ガスを燃焼部
8で完全燃焼させるものであり、原料ガスがブタ
ンガスの場合、燃焼部8には2C4H10+13O2
49N2→8CO2+10H2O+49N2の反応が生じる。こ
の完全燃焼ガスG2はガス取出し口9′、配管18
を通り、ガス流量安定装置19で定量ずつ送給さ
れるように調整されたのち、ガス冷却器10で冷
却されることにより脱水されるかあるいはバイパ
ス管18′を通つて非脱水のまま送られ、いずれ
の場合も発熱形雰囲気ガスとして予熱炉1と焼結
炉2のあいだのガス導入部4を通して炉芯管中に
連続供給される。
Since the sintering furnace according to the present invention has the above-mentioned configuration, when sintering iron-based powder compacts, the powder compacts are loaded onto a tray or the like and transported by a conveyor belt or pusher or other feeding means. While charging from the inlet section 15, the mixed gas of hydrocarbon gas G1 and air is completely combusted in the combustion section 8 by the gas burner 7 of the shift furnace 6. When the raw material gas is butane gas, the combustion section 8 is 2C 4 H 10 +13O 2 +
The reaction 49N 2 →8CO 2 +10H 2 O + 49N 2 occurs. This complete combustion gas G 2 is sent to the gas outlet 9' and to the pipe 18.
The gas is adjusted to be fed in fixed quantities by the gas flow rate stabilizer 19, and then dehydrated by being cooled by the gas cooler 10, or sent undehydrated through the bypass pipe 18'. In either case, the exothermic atmospheric gas is continuously supplied into the furnace core tube through the gas introduction section 4 between the preheating furnace 1 and the sintering furnace 2.

このとき完全燃焼ガスは制御弁21,25によ
り所要割合ずつ(たとえば半分ずつ)に分配さ
れ、一方はさきのようにガス導入部4から予熱炉
1と焼結炉2のあいだのゾーンに供給され、他方
は分岐配管22を通して触媒筒9の入口側に送入
され、その手前で必要に応じてエンリツチされた
のち触媒中を通過して変成される。この変成時の
熱源はさきに述べた燃焼炉8におけるガス完全燃
焼熱であるため合理的であり、かくして変成され
た吸熱形ガスG4は主配管22を通して冷却部3
のガス導入部5に連続供給される。
At this time, the complete combustion gas is distributed into required proportions (for example, in half) by the control valves 21 and 25, and one is supplied from the gas introduction part 4 to the zone between the preheating furnace 1 and the sintering furnace 2 as before. The other one is sent to the inlet side of the catalyst cylinder 9 through the branch pipe 22, enriched as necessary before that, and then passed through the catalyst to be transformed. It is reasonable that the heat source during this metamorphosis is the heat of complete combustion of the gas in the combustion furnace 8 mentioned earlier, and the endothermic gas G4 thus metamorphosed is passed through the main pipe 22 to the cooling section 3.
The gas is continuously supplied to the gas introduction section 5 of.

そして、冷却部3のガス導入部5に供給された
吸熱形雰囲気ガスG4は、入口部15におけるフ
レームカーテン14による吸引作用で冷却部3か
ら焼結炉2に向かつて流れ、また同吸引作用によ
り予熱炉1と焼結炉2のあいだのガス導入部4か
ら供給された完全燃焼ガス(発熱形雰囲気ガス)
G2も焼結炉2には流入せず、予熱炉1の出口側
から入口側へ向かう流れとなり、これにより予熱
〓〓〓〓
炉1の炉芯管12の内部は吸熱形雰囲気ガスと発
熱形雰囲気ガスとの混合ガス組成となり、この混
合ガス組成中を圧粉体は連続又は間欠的に移送さ
れながら外部のヒータ13により加熱されて脱ろ
うが行われる。
The endothermic atmospheric gas G 4 supplied to the gas introduction section 5 of the cooling section 3 flows from the cooling section 3 toward the sintering furnace 2 due to the suction effect of the frame curtain 14 at the inlet section 15, and also due to the suction effect The complete combustion gas (exothermic atmospheric gas) supplied from the gas introduction section 4 between the preheating furnace 1 and the sintering furnace 2
G 2 also does not flow into the sintering furnace 2, but flows from the outlet side to the inlet side of the preheating furnace 1, thereby preheating.
The inside of the furnace core tube 12 of the furnace 1 has a mixed gas composition of an endothermic atmospheric gas and an exothermic atmospheric gas, and the green compact is continuously or intermittently transferred through this mixed gas composition and heated by an external heater 13. The wax is then removed.

従来では脱ろう雰囲気がCOを多量に含む吸熱
形ガス雰囲気で行われるため炭素析出反応が生
じ、しかもこの脱ろうゾーンが500〜600℃の温度
域であるため、上記反応が非常に生じやすかつた
ものであるが、本考案では、前述の如くこの脱ろ
うゾーンに炭化水素系ガスと空気の混合ガスを完
全燃焼させた発熱形ガスを供給し、これを吸熱形
雰囲気と混合することにより吸熱形雰囲気中の
CO2分やH2O分を増加させているため、炭素折出
反応がうまく抑止される。そのため圧粉体が高密
度なものあるいはNi,Cuなどの触媒作用を生じ
やすい合金成分を含むものであつても、これを効
果的に脱ろうすることが可能になつて肌荒れが防
止され、また吸熱形雰囲気を適量含むことから脱
炭も生じない。
Conventionally, the dewaxing atmosphere is an endothermic gas atmosphere containing a large amount of CO, which causes a carbon precipitation reaction, and since this dewaxing zone is in the temperature range of 500 to 600°C, the above reaction is very likely to occur. However, in the present invention, as mentioned above, the dewaxing zone is supplied with an exothermic gas made by completely combusting a mixture of hydrocarbon gas and air, and this is mixed with an endothermic atmosphere to generate an endothermic atmosphere. in the shape of the atmosphere
Since the CO 2 and H 2 O contents are increased, the carbon precipitation reaction is successfully suppressed. Therefore, even if the green compact is high-density or contains alloy components such as Ni and Cu that are likely to cause catalytic action, it is possible to effectively remove wax, preventing rough skin, and Since it contains an appropriate amount of endothermic atmosphere, decarburization does not occur.

次いで圧粉体は焼結炉2に送られ、ここで所定
の焼結温度に加熱されて焼結したのち冷却部3に
おいて冷却される。このときそれらゾーンの雰囲
気は吸熱形であるため脱炭反応が適切に防止さ
れ、カーボンポテンシヤルが良好に調整された製
品となつて出口部17から取出される。
Next, the green compact is sent to a sintering furnace 2, where it is heated to a predetermined sintering temperature and sintered, and then cooled in a cooling section 3. At this time, since the atmosphere in these zones is endothermic, the decarburization reaction is appropriately prevented, and a product with well-adjusted carbon potential is taken out from the outlet section 17.

以上説明した本考案によるときには、予熱炉と
焼結炉2のあいだおよび冷却部3にそれぞれガス
導入部4,5を設け、炉外には炭化水素系ガスと
空気を完全燃焼させるガスバーナ7を内挿した燃
焼部8と、この燃焼部8を貫く触媒筒9を備えた
変成炉6を設置し、燃焼部8のガス取出し口9′
をガス冷却器10を介して前記触媒筒9の入口側
に導き、触媒筒9の出口側を冷却部3のガス導入
部5と接続して吸熱形雰囲気ガスを冷却部3およ
び焼結炉2に供給するようになし、さらに前記燃
焼部8のガス取出し口9′をガス冷却器10を通
して予熱炉1と焼結炉2のあいだのガス導入部4
に接続し、このガス導入部4を通して完全燃焼ガ
ス(発熱形雰囲気ガス)を供給し、脱ろう雰囲気
を吸熱形ガスと発熱形ガスの混合気で構成させる
ようにしたので、冷却部3へ供給した吸熱形ガス
により焼結工程と冷却工程における脱炭防止を図
ることができると共に、脱ろう工程が発熱形ガス
と吸熱形ガスの混合気で行われるため、高密度焼
結や合金焼結などで問題となつていたCO分解反
応を効果的に防止でき、肌荒れを生じさせずまた
脱炭を起させず迅速に脱ろうを行うことができ、
品位品質の良好な高密度焼結品や合金焼結品を生
産できる。しかも、前記のように脱ろうゾーンと
焼結ゾーンの雰囲気を異にするにもかかわらず雰
囲気生成装置が単一の変成炉で足りるため簡易安
価に実施できるというすぐれた効果が得られる。
According to the present invention described above, gas introduction parts 4 and 5 are provided between the preheating furnace and the sintering furnace 2 and in the cooling part 3, respectively, and a gas burner 7 for completely burning hydrocarbon gas and air is installed outside the furnace. A shift furnace 6 equipped with a combustion section 8 and a catalyst cylinder 9 passing through the combustion section 8 is installed, and a gas outlet 9' of the combustion section 8 is installed.
is guided to the inlet side of the catalyst tube 9 via the gas cooler 10, and the outlet side of the catalyst tube 9 is connected to the gas introduction section 5 of the cooling section 3 to supply endothermic atmospheric gas to the cooling section 3 and the sintering furnace 2. Furthermore, the gas outlet 9' of the combustion section 8 is connected to the gas introduction section 4 between the preheating furnace 1 and the sintering furnace 2 through the gas cooler 10.
The complete combustion gas (exothermic atmosphere gas) is supplied through this gas introduction part 4, and the dewaxing atmosphere is made up of a mixture of endothermic gas and exothermic gas, so that it is supplied to the cooling part 3. This endothermic gas can prevent decarburization during the sintering and cooling processes, and since the dewaxing process is performed with a mixture of exothermic and endothermic gas, it can be used for high-density sintering, alloy sintering, etc. It is possible to effectively prevent the CO decomposition reaction that has been a problem in the past, and it is possible to quickly dewax without causing skin roughness or decarburization.
It is possible to produce high-density sintered products and alloy sintered products with good quality. Moreover, even though the atmospheres in the dewaxing zone and the sintering zone are different as described above, a single shift furnace is sufficient as the atmosphere generating device, so an excellent effect can be obtained in that the process can be carried out simply and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る焼結炉の一実施例を示す
断面図、第2図は第1図−線にそう断面図で
ある。 1……予熱炉(脱ろう炉)、2……焼結炉、3
……冷却部、4,5……ガス導入部、6……変成
炉、7……ガスバーナ、8……燃焼部、9……触
媒筒、9′……ガス取出し口、10……ガス冷却
器。 〓〓〓〓
FIG. 1 is a sectional view showing an embodiment of a sintering furnace according to the present invention, and FIG. 2 is a sectional view taken along the line shown in FIG. 1. 1...Preheating furnace (dewaxing furnace), 2...Sintering furnace, 3
... Cooling section, 4, 5 ... Gas introduction section, 6 ... Converter furnace, 7 ... Gas burner, 8 ... Combustion section, 9 ... Catalyst cylinder, 9' ... Gas outlet, 10 ... Gas cooling vessel. 〓〓〓〓

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 予熱炉1と焼結炉2と冷却部3をトンネル状に
連設すると共に、予熱炉1と焼結炉2のあいだお
よび冷却部3の適所にそれぞれガス導入部4,5
を設け、炉外には、炭化水素系ガスと空気を完全
燃焼させるガスバーナ7を内挿した燃焼部8と、
この燃焼部8を貫く触媒筒9を備えた変成炉6を
設置し、燃焼部8のガス取出し口9′を冷却器1
0を介して前記触媒筒9の入口側に導き、触媒筒
出口側を前記冷却部3の導入部5と接続して吸熱
形雰囲気ガスを供給するようにする一方、前記燃
焼部8のガス取出し口9′を冷却器10を通して
予熱炉1と焼結炉2のあいだのガス導入部4に接
続し、このガス導入部4には発熱形雰囲気ガスを
供給するようにしたことを特徴とする燃結炉。
The preheating furnace 1, the sintering furnace 2, and the cooling section 3 are connected in a tunnel-like manner, and gas introduction sections 4, 5 are provided between the preheating furnace 1 and the sintering furnace 2 and at appropriate locations in the cooling section 3, respectively.
A combustion section 8 is provided outside the furnace, in which a gas burner 7 is inserted to completely burn hydrocarbon gas and air.
A shift furnace 6 equipped with a catalyst tube 9 passing through the combustion section 8 is installed, and a gas outlet 9' of the combustion section 8 is connected to a cooler 1.
0 to the inlet side of the catalyst tube 9, and the outlet side of the catalyst tube is connected to the introduction section 5 of the cooling section 3 to supply endothermic atmospheric gas. The inlet 9' is connected to a gas inlet 4 between the preheating furnace 1 and the sintering furnace 2 through a cooler 10, and the gas inlet 4 is supplied with exothermic atmospheric gas. Furnace.
JP13276981U 1981-09-07 1981-09-07 sintering furnace Granted JPS5838747U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13276981U JPS5838747U (en) 1981-09-07 1981-09-07 sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13276981U JPS5838747U (en) 1981-09-07 1981-09-07 sintering furnace

Publications (2)

Publication Number Publication Date
JPS5838747U JPS5838747U (en) 1983-03-14
JPS6126327Y2 true JPS6126327Y2 (en) 1986-08-07

Family

ID=29926282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13276981U Granted JPS5838747U (en) 1981-09-07 1981-09-07 sintering furnace

Country Status (1)

Country Link
JP (1) JPS5838747U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215627A (en) * 2008-03-12 2009-09-24 Mitsubishi Materials Techno Corp Dewaxing device and continuous sintering furnace

Also Published As

Publication number Publication date
JPS5838747U (en) 1983-03-14

Similar Documents

Publication Publication Date Title
CS225806B1 (en) The manufacturing process of the steel
JPS59193267A (en) Production and apparatus for setting chemically controlled atomosphere for metal treatment
GB1446660A (en) Process for reducing iron oxide to metallic sponge iron with liquid or solid fuels
KR850001212B1 (en) Recovering non-volatile metals from dust containing metal oxides
KR820001808B1 (en) Process for sintering powder metal parts
GB941635A (en) Methods and apparatus for regeneration of granular activated carbon
JPS6126327Y2 (en)
EP1469086A4 (en) Process for producing molten iron
GB1008938A (en) Process for roasting by fluidization, more particularly for magnetizing roasting
ES8105395A1 (en) Method and apparatus for the secondary gaseous reduction of metal ores
GB1111608A (en) Improvements in or relating to the manufacture of steel
US4462792A (en) Reheating metal bodies with recovered blast-furnace energy
UA7727A1 (en) METHOD FOR PRODUCING OF HOT BRIQUETTES WITHOUT BINDING AGENT FROM IRONCONTAINING pyrophorus fine MATERIALS AND PLANT FOR REALIZATION THE SAME
US2107980A (en) Method for preparing iron and steel
US1447071A (en) Process of agglomerating mixtures of fine ore and fuel in shaft furnaces
JPS6352085B2 (en)
JP2007211302A (en) Finish heat treatment method for iron powder and finish heat treatment device
JPS55158213A (en) Pefining method of chromium containing steel
US2587900A (en) Heat-treatment of metals
GB1309725A (en) Blackening method
GB1090826A (en) Method of smelting iron ore
JP2006009138A (en) Finish heat treatment method for iron powder and device therefor
GB1269841A (en) Method of and apparatus for reducing iron oxide to metallic iron
JPS6364482B2 (en)
SU538027A1 (en) Method for reducing metal oxides in a rotary kiln