JPS61263155A - Solid-state image pickup device and manufacture thereof - Google Patents

Solid-state image pickup device and manufacture thereof

Info

Publication number
JPS61263155A
JPS61263155A JP60104319A JP10431985A JPS61263155A JP S61263155 A JPS61263155 A JP S61263155A JP 60104319 A JP60104319 A JP 60104319A JP 10431985 A JP10431985 A JP 10431985A JP S61263155 A JPS61263155 A JP S61263155A
Authority
JP
Japan
Prior art keywords
solid
groove
region
semiconductor substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60104319A
Other languages
Japanese (ja)
Other versions
JPH0521350B2 (en
Inventor
Nobuo Suzuki
伸夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60104319A priority Critical patent/JPS61263155A/en
Publication of JPS61263155A publication Critical patent/JPS61263155A/en
Publication of JPH0521350B2 publication Critical patent/JPH0521350B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To prevent the generation of the nonuniformity of sensitivity due to striation, etc. by forming a groove into a picture-element isolation region on a semiconductor substrate and burying a transfer electrode for a reading section into the groove. CONSTITUTION:Grooves are shaped to sections corresponding to picture-element isolation regions 3 in the surface of an N-type semiconductor substrate 4. First transfer electrodes 11 and second transfer electrodes 12 consisting of a semiconductor such as polysilicon are isolated mutually and formed in an insulating layer 10, and take a shape that they are buried into the grooves in the picture- element isolation regions 3. The insulating layer 10 is protruded slightly in the picture-element isolation regions 3, and the extent of the irregularities of the surface of the insulating layer 10 is reduced. Accordingly, the dispersion of the large difference of the conversion of patterns due to positions of optical shielding layers 13 is also eliminated, and the generation of a certain nonuniformity of sensitivity in an image pickup resulting from non-coating with the optical shielding layers 13 of one parts of the first and second transfer electrodes 11, 12 can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は固体R像装置およびその製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a solid-state R image device and a method for manufacturing the same.

〔発明の技術的11Mとその問題点〕 従来の縦形オーバフロードレイン構造を有するインタラ
イン転送方式のCCD (Charge Couple
dDevice)固体m像装置を第3図に示す。第3図
(a)は固体撮像装置の平面図、第3図(b)はそのA
−A’線断面図である、固体搬像装置は入射した光によ
り信号電荷が生成され、蓄積される感光画素部1と蓄積
された信号電荷が読み出される読出部2とから構成され
る。第3図(b)の断面図は、1個の感光画素部1およ
びこの感光画素部1に隣接する画素分離領域3の断面を
示す。例えばN型シリコン基板からなる半導体基板4表
面に不純物濃度が低く接合が浅い第1のPウェル領域5
と不純物濃度が比較的高く接合が深い第2のPウェル領
域6とが形成されている。第1のPウェル領域5表面に
は感光画素部1に対応してN 不純物領域7が形成され
、第2のPウェル領域6表面には画素分離領域3に対応
してチャンネルストッパとしてのP+不純物領域9が形
成され、また読出部2に対応して埋め込みチャンネルと
してのN 不純物領域(図示せず)およびチャンネルス
トッパとしてのP+不純物領域(図示せず)が形成され
ている。接合の深さを異にした第1および第2のPウェ
ル領域5.6を有する縦形オーバフロードレイン構造に
より強い光が入射して感光画素部1のN+不純物領域7
に過剰電荷が発生した場合、この過剰電荷が第1および
第2のPウェル領域5゜6のパンチスルー電圧の差によ
って読出部2に流れ込むことなく、半導体基板4の厚み
方向に流れ込むようになっている。また半導体基板4上
には絶縁層10が形成され、この絶縁層1oの内部には
第1の転送電極11および第2の転送電極12が設けら
れている。この第2の転送電極12は第1の転送電極1
1と対になって感光画素部1のN+不純物領域7に蓄積
された信号電荷を読み出す読出部を形成している。これ
ら第1および第2の転送電極11.12の上方の絶縁1
10上には例えばA1層からなる光シールド層が形成さ
れ、感光画素部1以外の部分に光が入射しないようにな
っている。また感光画素部1にN+不純物領域7上の絶
縁層10上にはそれぞれ所定の色フィルタ(図示せず)
が設けられている。
[Technical 11M of the invention and its problems] CCD (Charge Couple) using an interline transfer method having a conventional vertical overflow drain structure
dDevice) A solid-state m-image device is shown in FIG. FIG. 3(a) is a plan view of the solid-state imaging device, and FIG. 3(b) is its A.
The solid-state image transfer device shown in the cross-sectional view taken along the line -A' includes a photosensitive pixel section 1 in which signal charges are generated and accumulated by incident light, and a readout section 2 from which the accumulated signal charges are read out. The cross-sectional view of FIG. 3(b) shows a cross section of one photosensitive pixel portion 1 and the pixel isolation region 3 adjacent to this photosensitive pixel portion 1. For example, a first P well region 5 with a low impurity concentration and a shallow junction is formed on the surface of a semiconductor substrate 4 made of an N-type silicon substrate.
A second P well region 6 having a relatively high impurity concentration and a deep junction is formed. An N impurity region 7 is formed on the surface of the first P well region 5 corresponding to the photosensitive pixel portion 1, and a P+ impurity region 7 as a channel stopper is formed on the surface of the second P well region 6 corresponding to the pixel isolation region 3. A region 9 is formed, and an N 2 impurity region (not shown) as a buried channel and a P+ impurity region (not shown) as a channel stopper are formed corresponding to the readout section 2 . Due to the vertical overflow drain structure having the first and second P well regions 5.6 with different junction depths, strong light enters the N+ impurity region 7 of the photosensitive pixel portion 1.
When excess charge is generated in the semiconductor substrate 4, this excess charge does not flow into the readout section 2 but flows into the thickness direction of the semiconductor substrate 4 due to the difference in punch-through voltage between the first and second P well regions 5.6. ing. Further, an insulating layer 10 is formed on the semiconductor substrate 4, and a first transfer electrode 11 and a second transfer electrode 12 are provided inside the insulating layer 1o. This second transfer electrode 12 is the first transfer electrode 1
1 forms a readout section for reading out signal charges accumulated in the N+ impurity region 7 of the photosensitive pixel section 1. Insulation 1 above these first and second transfer electrodes 11.12
A light shield layer made of, for example, an A1 layer is formed on the photosensitive pixel portion 10 to prevent light from entering the portion other than the photosensitive pixel portion 1 . Further, predetermined color filters (not shown) are provided on the insulating layer 10 on the N+ impurity region 7 in the photosensitive pixel portion 1, respectively.
is provided.

次に上記の従来の固体撮像装置の製造方法を第4図に示
す。例えばN型シリコン基板から成る半導体基板4表面
に不純物濃度が低く接合の浅い第1のPウェル領域5と
不純物濃度が比較的高く接合の深い第2のPウェル領1
116とを形成し、この第1のPウェル領域5表面に感
光画素部としてのN+不純物領域7を形成する(第4図
(a))。また第2のPウェル領bX6表面には埋め込
みチVンネルとしてのN+不純物領域(図示せず)およ
び感光画素部1を分離するためのチャンネルストッパと
してのP+不純物領域9を形成する(第4図(b))。
Next, FIG. 4 shows a method of manufacturing the above-mentioned conventional solid-state imaging device. For example, on the surface of a semiconductor substrate 4 made of an N-type silicon substrate, there is a first P-well region 5 with a low impurity concentration and a shallow junction, and a second P-well region 1 with a relatively high impurity concentration and a deep junction.
116, and an N+ impurity region 7 as a photosensitive pixel portion is formed on the surface of the first P well region 5 (FIG. 4(a)). Further, on the surface of the second P well region bX6, an N+ impurity region (not shown) as a buried channel and a P+ impurity region 9 as a channel stopper for separating the photosensitive pixel portion 1 are formed (see FIG. 4). (b)).

半導体基板4上の全面に絶縁層1oを形成し、この絶縁
層10上の第2のPウェル領域6に対応する所定の場所
に例えばポリシリコンから成る第1の転送電極11を形
成する(第4図(C))。この第1の転送電極11の表
面を酸化して酸化膜10を形成した後、この酸化膜10
上の第2のPウェル領域6に対応する所定の場所に第2
の転送電極12を形成する(第4図(d))。さらに第
2の転送電極12上に絶a!r110を形成し、第1の
転送電極11および第2の転送電極12が共に絶縁層1
0によって覆われた状態にする。ししてこの絶縁層10
上の所定の場所に例えばA1層から成る光シールド層1
3を形成して第1の転送電極11および第2の転送電極
12の上方を完全に覆う(第4図(e))。最後にレジ
スト材料に近い材質からなるフィルタ材料を全面に塗布
し、パターニングを行い、感光画素部としてのN+領域
7上の絶縁層10上にそれぞれ所定の色の色フィルタを
形成する。
An insulating layer 1o is formed on the entire surface of the semiconductor substrate 4, and a first transfer electrode 11 made of polysilicon, for example, is formed at a predetermined location corresponding to the second P well region 6 on this insulating layer 10 (first Figure 4 (C)). After oxidizing the surface of this first transfer electrode 11 to form an oxide film 10, this oxide film 10 is
A second P well region 6 is located at a predetermined location corresponding to the second
A transfer electrode 12 is formed (FIG. 4(d)). Furthermore, there is an absolute aa! on the second transfer electrode 12! r110, and both the first transfer electrode 11 and the second transfer electrode 12 are connected to the insulating layer 1.
Covered by 0. This insulating layer 10
A light shield layer 1 made of, for example, an A1 layer is placed at a predetermined location on the top.
3 to completely cover the upper part of the first transfer electrode 11 and the second transfer electrode 12 (FIG. 4(e)). Finally, a filter material made of a material similar to the resist material is applied over the entire surface and patterned to form color filters of predetermined colors on the insulating layer 10 on the N+ region 7 serving as the photosensitive pixel portion.

ところで、画素分離領域3は本来感光画素部と感光画素
部とを分離するための領域であり、集積度が向上してさ
た場合、設計上できるだけその面積を小さくすることが
望ましい。また従来の固体撮像装置の場合、この領域に
おいて第1および第2の転送電極11.12が重なりあ
って存在しているために、第4図(+3)に示されるよ
うに非常に大きな凹凸形状になっている。このように非
常に狭い面積の中で凹凸の激しい形状に色フィルタを形
成した場合には半導体基板4上に塗布されたフィルタ材
料の厚ざむらに起因するストリエーション現象が発生し
、このストリエーション現象が発生した固体搬像装置に
よる撮像は画面に縞状のむらが現れるという問題があっ
た。このストリエーション現象とは半導体基板上にレジ
スト材料を回転塗布する際にレジスト材料が完全に均一
に塗布されず、半導体基板上にレジスト材料の放射状の
g!厚むらができる現象である。
Incidentally, the pixel separation region 3 is originally a region for separating the photosensitive pixel portion from the photosensitive pixel portion, and as the degree of integration increases, it is desirable to reduce its area as much as possible in terms of design. Furthermore, in the case of a conventional solid-state imaging device, since the first and second transfer electrodes 11 and 12 overlap each other in this region, the uneven shape is extremely large as shown in FIG. 4 (+3). It has become. When a color filter is formed in a highly uneven shape in a very narrow area like this, a striation phenomenon occurs due to the uneven thickness of the filter material applied on the semiconductor substrate 4. Imaging by a solid-state imaging device in which this occurs has a problem in that striped unevenness appears on the screen. This striation phenomenon refers to the fact that when a resist material is spin coated onto a semiconductor substrate, the resist material is not completely evenly coated, resulting in radial g! This is a phenomenon that causes uneven thickness.

また光シールドW113の形成においても、狭い面積の
中で凹凸の激しい形状であるため、AIを全面に蒸着し
、エツチングにより所定のパターニングを行う際に、場
所場所によってパターン変換差が大きくばらつき、転送
電極の一部が光シールドli!213によって覆われな
い事態が発生し、このことに起因して撮像における一種
の感度むらが起こるという問題もあった。
In addition, when forming the optical shield W113, since the shape is extremely uneven in a small area, when AI is deposited on the entire surface and a predetermined pattern is performed by etching, the pattern conversion difference varies greatly depending on the location, and the transfer Part of the electrode is a light shield! 213, which causes a kind of sensitivity unevenness in imaging.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、ストリエ
ーションなどによる感度むらが生じないようにした固体
撮像装置およびその製造方法を提供することを目的とす
る。
The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to provide a solid-state imaging device and a method for manufacturing the same, which prevent unevenness in sensitivity due to striations or the like from occurring.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明による固体撮像装置は、
半導体基板と、この半導体基板上に配列され、入射した
光により生成した信号電荷を蓄積する感光画素部と、こ
の感光画素部に隣接して配列され、前記感光画素部に蓄
積された信号電荷を転送電極により転送して読み出す読
出部と、この読出部の転送電極が配線され、この感光画
素部を分離する画素分離領域とを有する固体搬像装置に
おいて、前記半導体基板上の前記画素分離領域に)清を
形成し、この溝内に前記読出部の転送電極を埋め込んだ
ことを特徴とする。
In order to achieve the above object, a solid-state imaging device according to the present invention includes:
a semiconductor substrate; a photosensitive pixel section arranged on the semiconductor substrate to accumulate signal charges generated by incident light; and a photosensitive pixel section arranged adjacent to the photosensitive pixel section to accumulate signal charges accumulated in the photosensitive pixel section. In a solid-state image device having a readout section that transfers and reads data using a transfer electrode, and a pixel isolation region to which the transfer electrode of the readout section is wired and isolates the photosensitive pixel section, the pixel isolation region on the semiconductor substrate is provided with a pixel isolation region. ), and the transfer electrodes of the reading section are embedded in the grooves.

また本発明による固体搬像装置の製造方法は、半導体基
板表面に接合の浅い第1の第1導電型ウェル領域と接合
の深い第2の第1導電型ウェル領域とを形成する第1の
工程と、前記第1の第1導電型ウェル領域表面に第2導
電型不純物を添加して感光画素部を形成する第2の工程
と、前記第2の第1導電型ウェル領域表面に第2導電型
不純物を添加して読出部の埋め込みチャンネルを形成す
る第3の工程と、前記第2の第1導電型ウェル領域表面
に第1導電型不純物を添加して画素分離領域のチャンネ
ルストッパを形成する第4の工程と、前記半導体基板上
の全面に絶縁層を形成する第5の工程と、前記埋め込み
チャンネルおよび前記チャンネルストッパ上の前記絶縁
層上に続出部の転送電極を形成する第6の工程とを有す
る固体撮像装置の製造方法において、前記第4の工程よ
り前に、前記半導体基板上の前記画素分離領域に溝を形
成する工程を有し、前記転送電極が前記画素分離領域に
おい又前記溝内に設けられることを特徴とする。この溝
を形成する工程は、前記第2の第1導電型ウェル領域表
面に第1導電型不純物を添加して画素分離領域のチャン
ネルストッパーを形成する。第4の工程より前のどの工
程においても実施されることができる。
Further, the method for manufacturing a solid-state image transfer device according to the present invention includes a first step of forming a first well region of the first conductivity type with a shallow junction and a second well region of the first conductivity type with a deep junction on the surface of a semiconductor substrate. a second step of adding a second conductivity type impurity to the surface of the first first conductivity type well region to form a photosensitive pixel portion; and adding a second conductivity type impurity to the surface of the second first conductivity type well region. a third step of adding type impurities to form a buried channel of the readout section; and adding a first conductivity type impurity to the surface of the second first conductivity type well region to form a channel stopper of the pixel isolation region. a fourth step, a fifth step of forming an insulating layer over the entire surface of the semiconductor substrate, and a sixth step of forming a continuous transfer electrode on the insulating layer on the buried channel and the channel stopper. The method for manufacturing a solid-state imaging device has a step of forming a groove in the pixel isolation region on the semiconductor substrate before the fourth step, and the transfer electrode is disposed in the pixel isolation region or in the pixel isolation region on the semiconductor substrate. It is characterized by being provided within the groove. In the step of forming this groove, a first conductivity type impurity is added to the surface of the second first conductivity type well region to form a channel stopper of the pixel isolation region. It can be performed at any step before the fourth step.

これにより画素分離領域における第1および第2の転送
電極および光シールド層が溝内ないしは溝の上方に設け
られることになり、画素分離領域における凸形状の程度
が小さくなるようにしたものである。
As a result, the first and second transfer electrodes and the optical shield layer in the pixel isolation region are provided in the groove or above the groove, thereby reducing the degree of convexity in the pixel isolation region.

(発明の実施例〕 本発明の一実施例による固体1(lJI装買の平面図を
第1図(a)に、そのA−A’線断面図を第1図(b)
にそれぞれ示す。入射した光により信号電荷が生成され
、蓄積される感光画素部1は格子状に多数配列され、蓄
積された信号電荷が読み出される読出部2は感光画素部
1に隣接して垂直ライン状に水平方向に交互に配列され
ている。また各感光画素部1は垂直方向に隣接する画素
弁Ii!領域3によって分離されている。第1図(b)
は1個の感光画素部1およびこの感光画素部1に垂直方
向に隣接する画素分離領域3の断面を示している。N型
半導体基板4表面の画素分子filir4域3に対応す
る部分に深さ6000人〜8000人程度の溝が形成さ
れている。また半導体基板4表面の感光画素部1に対応
する部分には不純物濃度が低く接合の浅い第1のPウェ
ル領域5が形成され、読出部2および溝が形成されてい
る画素分離領域3に対応する部分には不純物濃度が高く
接合の深い第2のPウェル領域6が形成されている。第
1のPウェル領域5表面には感光画素部1としてのN+
不純物領域7が形成され、第2のPウェル領域6表面の
読出部2に対応する部分には感光画素部1のN+不純物
領域7からの信号電荷を読み出すための埋め込みチャン
ネルとしてのN+不純物領域(図示せず)およびチャン
ネルストッパとしてのP+不純物領域(図示せず)が形
成され、また溝が形成されている画素分離領域3に対応
する部分にチャンネルストッパとしてのP+不純物領域
9が形成されている。また半導体基板4上には絶縁層1
0が形成され、この絶縁層10内部に例えばポリシリコ
ンから成る第1の転送電極11および第2の転送電極1
2が互いに分離されて形成されている。これらの第1お
よび第2の転送電極11゜12は画素分離領域3におい
て溝内に埋め込まれた形状と成っていることに特徴があ
る。第1および第2の転送電極11.12の上方の絶縁
層10上には例えばA1層から成る光シールド層13が
形成され、感光画素部1以外の部分に光が入射しないよ
うになっている。また感光画素部1のN+不純物領域7
上の絶縁層10上にはそれぞれ所定の色フィルタ(図示
せず)が設けられている。
(Embodiment of the Invention) A plan view of a solid body 1 (IJI equipment) according to an embodiment of the present invention is shown in FIG.
are shown respectively. A large number of photosensitive pixel sections 1, in which signal charges are generated and accumulated by incident light, are arranged in a grid pattern, and readout sections 2, from which the accumulated signal charges are read out, are arranged horizontally in vertical lines adjacent to the photosensitive pixel sections 1. arranged in alternating directions. Furthermore, each photosensitive pixel portion 1 has vertically adjacent pixel valves Ii! Separated by region 3. Figure 1(b)
1 shows a cross section of one photosensitive pixel portion 1 and a pixel isolation region 3 vertically adjacent to this photosensitive pixel portion 1. FIG. A groove having a depth of approximately 6,000 to 8,000 grooves is formed in a portion of the surface of the N-type semiconductor substrate 4 corresponding to the region 3 of the pixel molecule filir4. In addition, a first P-well region 5 with a low impurity concentration and a shallow junction is formed in a portion of the surface of the semiconductor substrate 4 corresponding to the photosensitive pixel portion 1, and corresponds to the readout portion 2 and the pixel isolation region 3 in which the groove is formed. A second P-well region 6 with a high impurity concentration and a deep junction is formed in the region where the semiconductor layer is formed. On the surface of the first P well region 5, an N+
An impurity region 7 is formed, and in a portion of the surface of the second P well region 6 corresponding to the readout section 2, an N+ impurity region ( (not shown) and a P+ impurity region (not shown) as a channel stopper are formed, and a P+ impurity region 9 as a channel stopper is formed in a portion corresponding to the pixel isolation region 3 where the groove is formed. . Further, an insulating layer 1 is provided on the semiconductor substrate 4.
0 is formed, and inside this insulating layer 10, a first transfer electrode 11 and a second transfer electrode 1 made of polysilicon, for example, are formed.
2 are formed separately from each other. These first and second transfer electrodes 11 and 12 are characterized in that they are embedded in trenches in the pixel isolation region 3. A light shield layer 13 made of, for example, an A1 layer is formed on the insulating layer 10 above the first and second transfer electrodes 11 and 12 to prevent light from entering areas other than the photosensitive pixel portion 1. . In addition, the N+ impurity region 7 of the photosensitive pixel portion 1
Predetermined color filters (not shown) are provided on the upper insulating layer 10, respectively.

このように本実施例によれば、画素分離領域において絶
縁層10内部に形成される第1および第2の転送電極1
1.12が半導体基板4表面に形成された溝内に埋め込
まれた形状となるため、この画素分離領域3における絶
縁層10の凸状の盛り上がりは比較的小さなものとなり
、従来の固体撮像装置と比較すると、その表面の凹凸の
程度は小さくなる。これによって光シールド層13の場
所場所によるパターン変換差の大きなばらつきもなくな
り、第1および第2の転送電極11.12の一部が光シ
ールド層13によって覆われないことに起因づるImに
おける一種の感度むらが起こることを防ぐことができる
。また表面の凹凸形状によるストリエーション現象も発
生しにくくなり、感光画素部1の色フィルタは均一な厚
さとなって色フィルタの厚さむらに起因する搬像画面に
おける縞状のむらの発生を防ぐことができる。
As described above, according to this embodiment, the first and second transfer electrodes 1 formed inside the insulating layer 10 in the pixel isolation region
1.12 is embedded in the groove formed on the surface of the semiconductor substrate 4, so the convex protrusion of the insulating layer 10 in the pixel isolation region 3 is relatively small, making it different from the conventional solid-state imaging device. By comparison, the degree of unevenness on the surface becomes smaller. This eliminates large variations in pattern conversion differences depending on the location of the optical shield layer 13, and eliminates a type of pattern conversion difference in Im caused by parts of the first and second transfer electrodes 11, 12 not being covered by the optical shield layer 13. It is possible to prevent uneven sensitivity from occurring. In addition, the striation phenomenon due to the uneven shape of the surface is less likely to occur, and the color filter of the photosensitive pixel portion 1 has a uniform thickness, thereby preventing the occurrence of striped unevenness on the image carrying screen due to uneven thickness of the color filter. I can do it.

次に本発明の一実施例による固体ill像装置の製造方
法を第2図を用いて説明する。N型半導体基板4表面に
不純物濃度が低く接合の浅い第1のPウェル領fill
!5と不純物濃度が比較的高く接合の深い第2のPウェ
ル領域6とを形成した復、第1のPウェル領i!!5表
面に感光画素部としてのN+不純物領域7を形成する〈
第2図(a))。次に第2のPウェル領16表面に埋め
込みデセンネルとしてのN+不純物領域を形成する(図
示せず)。そして第2のPウェル領域6表面の画素分離
領域13に対応する部分を例えばCD E (Chem
icalt+ry Etchingl法を用いて600
0人〜8000八程度エツチングして溝8を形成する(
第2図(b))。次にチャンネルストッパを形成するが
、画素分離領域13においては溝8の内側表面にチャン
ネルストッパとしてのP+不純物領域9が形成される(
第2図(C))。半導体基板4表面を酸化して絶縁R1
0を形成した後、この絶縁層10上の第2のPウェル領
域6に対応する所定の場所に例えばポリシリコンから成
る第1の転送電極11を形成するが、画素分離領IIi
!13においては溝内に埋め込まれた形状となる(第2
図(d))。
Next, a method of manufacturing a solid-state illumination device according to an embodiment of the present invention will be explained using FIG. A first P-well region fill with a low impurity concentration and a shallow junction is formed on the surface of the N-type semiconductor substrate 4.
! 5 and the second P well region 6 with relatively high impurity concentration and deep junction, the first P well region i! ! Form an N+ impurity region 7 as a photosensitive pixel portion on the surface of 5.
Figure 2(a)). Next, an N+ impurity region as a buried desennel is formed on the surface of the second P well region 16 (not shown). Then, a portion of the surface of the second P well region 6 corresponding to the pixel isolation region 13 is formed by, for example, CD E (Chem
600 using the icalt+ry Etchingl method
Etch approximately 0 to 8,000 to form grooves 8 (
Figure 2(b)). Next, a channel stopper is formed. In the pixel isolation region 13, a P+ impurity region 9 as a channel stopper is formed on the inner surface of the groove 8.
Figure 2 (C)). Oxidize the surface of the semiconductor substrate 4 to insulate R1
0, a first transfer electrode 11 made of polysilicon, for example, is formed at a predetermined location corresponding to the second P well region 6 on this insulating layer 10.
! 13, the shape is embedded in the groove (second
Figure (d)).

この第1の転送電極11表面を酸化して絶縁層10を形
成した後、この絶縁)X10上の第2のPウェル領域6
に対応する所定の場所にだおてばポリシリコンから成る
第2の転送電極12を形成するが画素分離領域13にお
いては溝内に埋め込まれた形状となる(第2図(e))
。この第2の転送電極12上に絶縁B10を形成すると
、第1および第2の転送電極11.12は互いに絶縁層
10によって分離されつつ、絶縁層10によって包み込
まれた状態となる。次にこの絶縁m10上の所定の場所
に例えばA1層から成る光シールド層13を形成し、第
1および第2の転送電極11゜12の上方を完全に覆い
、感光画素部1としてのN++純物領域7以外の部分に
光が入射しないようにする(第2図(「))。最侵にレ
ジスト材料に近い材質から成るフィルタ材料を全面に回
転塗布し、バターニングを行ない、感光画素部1として
のN+不不純頭領l117上絶縁層10上にそれぞれ所
定の色の色フィルタを形成する(図示せず)。
After oxidizing the surface of this first transfer electrode 11 to form an insulating layer 10, a second P well region 6 is formed on this insulating layer 10.
The second transfer electrode 12 made of polysilicon is formed by placing it in a predetermined location corresponding to the pixel isolation region 13 (FIG. 2(e)).
. When the insulation B10 is formed on the second transfer electrode 12, the first and second transfer electrodes 11.12 are separated from each other by the insulating layer 10 and are surrounded by the insulating layer 10. Next, a light shield layer 13 made of, for example, an A1 layer is formed at a predetermined location on this insulation m10, completely covering the upper parts of the first and second transfer electrodes 11 and 12, and forming an N++ pure layer as the photosensitive pixel section 1. Prevent light from entering areas other than the object area 7 (Fig. 2 ()). At the most invasive area, a filter material made of a material similar to the resist material is spin-coated over the entire surface, buttering is performed, and the photosensitive pixel area is Color filters of predetermined colors are formed on the insulating layer 10 over the N+ impurity head 1117 (not shown).

上記実施例において埋め込みチャンネルとしてのN++
純物領域を形成した後に行なわれた半導体基板4表面の
画素分離領域に対応する部分に溝8を形成ブる■程は、
チャンネルストッパとしてのP+不純物領域9の形成す
る前であればいつでもよい。例えば感光画素部1として
のN++純物領域7の形成後、埋め込みチャンネルとし
てのN++純物領域の形成前に行ってもよい。また第1
および第2のPウェル領域5.6の形成後、感光画素と
してのN+不不純頭領7の形成前に行ってもよい。さら
に第1および第2のPウェル領域5.6の形成前に行っ
てもよい。
N++ as an embedded channel in the above embodiment
The step of forming the groove 8 in the portion corresponding to the pixel isolation region on the surface of the semiconductor substrate 4 performed after forming the pure region is as follows.
Any time may be used as long as it is before the formation of P+ impurity region 9 as a channel stopper. For example, it may be performed after forming the N++ pure region 7 as the photosensitive pixel portion 1 and before forming the N++ pure region as the buried channel. Also the first
It may also be performed after the formation of the second P well region 5.6 and before the formation of the N+ impurity head region 7 as a photosensitive pixel. Furthermore, it may be performed before forming the first and second P well regions 5.6.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明によれば固体撮像装置の表面における
凹凸形状を軽減し、ストリエーションなどによる感度む
らを防止することができる。
As described above, according to the present invention, unevenness on the surface of a solid-state imaging device can be reduced, and sensitivity unevenness due to striations or the like can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による固体Il@装置を示す
平面図および断面図、第2図は本発明の一実施例による
固体R像装置の製造方法を示す工程図、第3図は従来の
固体撮像装置を示す平面図および断面図、第4図は従来
の固体撮像装置の製造方法を示す工程図である。 1・・・感光画素部、2・・・読出部、3・・・画素分
離領域、4・・・半導体基板、5,6・・・Pウェル領
域、7・・・N++純物領域、8・・・溝、9・・・P
+不純物領域、10・・・絶縁層、11.12・・・転
送電極、13・・・光シールド層。 出願人代理人  猪  股    清 第1図 第2図
FIG. 1 is a plan view and a sectional view showing a solid-state Il@ device according to an embodiment of the present invention, FIG. 2 is a process diagram showing a method of manufacturing a solid-state R image device according to an embodiment of the present invention, and FIG. FIG. 4 is a plan view and a sectional view showing a conventional solid-state imaging device, and a process diagram showing a method for manufacturing the conventional solid-state imaging device. DESCRIPTION OF SYMBOLS 1... Photosensitive pixel part, 2... Readout part, 3... Pixel isolation region, 4... Semiconductor substrate, 5, 6... P well region, 7... N++ pure region, 8 ...Groove, 9...P
+ impurity region, 10... insulating layer, 11.12... transfer electrode, 13... light shield layer. Applicant's agent Kiyoshi Inomata Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、半導体基板と、この半導体基板上に配列され、入射
した光により生成した信号電荷を蓄積する感光画素部と
、この感光画素部に隣接して配列され、前記感光画素部
に蓄積された信号電荷を転送電極により転送して読み出
す読出部と、この読出部の転送電極が配線され、この感
光画素部を分離する画素分離領域とを有する固体撮像装
置において、 前記半導体基板上の前記画素分離領域に溝を形成し、こ
の溝内に前記読出部の転送電極を埋め込んだことを特徴
とする固体撮像装置。 2、半導体基板表面に接合の浅い第1の第1導電型ウェ
ル領域と接合の深い第2の第1導電型ウェル領域とを形
成する第1の工程と、前記第1の第1導電型ウェル領域
表面に第2導電型不純物を添加して感光画素部を形成す
る第2の工程と、前記第2の第1導電型ウェル領域表面
に第2導電型不純物を添加して読出部の埋め込みチャン
ネルを形成する第3の工程と、前記第2の第1導電型ウ
ェル領域表面に第1導電型不純物を添加して画素分離領
域のチャンネルストッパを形成する第4の工程と、前記
半導体基板上の全面に絶縁層を形成する第5の工程と、
前記埋め込みチャンネルおよび前記チャンネルストッパ
上の前記絶縁層上に読出部の転送電極を形成する第6の
工程とを有する固体撮像装置の製造方法において、 前記第4の工程より前に、前記半導体基板上の前記画素
分離領域に溝を形成する工程を有し、前記転送電極が前
記画素分離領域において前記溝内に設けられることを特
徴とする固体撮像装置の製造方法。 3、特許請求の範囲第2項記載の方法において、前記溝
を形成する工程が前記第1の工程より前に実行されるこ
とを特徴とする固体撮像装置の製4、特許請求の範囲第
2項記載の方法において、前記溝を形成する工程が前記
第1の工程と、前記第2の工程との間に実行されること
を特徴とする固体撮像装置の製造方法。 5、特許請求の範囲第2項記載の方法において、前記溝
を形成する工程が、前記第2の工程と前記第3の工程と
の間に実行されることを特徴とする固体撮像装置の製造
方法。 6、特許請求の範囲第2項記載の方法において、前記溝
を工程が前記第3の工程と前記第4の工程との間に実行
されることを特徴とする固体撮像装置の製造方法。
[Scope of Claims] 1. A semiconductor substrate, a photosensitive pixel section arranged on the semiconductor substrate and accumulating signal charges generated by incident light, and a photosensitive pixel section arranged adjacent to the photosensitive pixel section, the photosensitive pixel section arranged on the semiconductor substrate and storing signal charges generated by incident light. In the solid-state imaging device, the solid-state imaging device includes a readout section that transfers and reads out signal charges accumulated in the semiconductor substrate using a transfer electrode, and a pixel isolation region to which the transfer electrode of the readout section is wired and isolates the photosensitive pixel section. A solid-state imaging device characterized in that a groove is formed in the upper pixel isolation region, and a transfer electrode of the readout section is embedded in the groove. 2. A first step of forming a first well region of the first conductivity type with a shallow junction and a second well region of the first conductivity type with a deep junction on the surface of the semiconductor substrate; a second step of adding a second conductivity type impurity to the surface of the region to form a photosensitive pixel portion; and a second step of doping a second conductivity type impurity to the surface of the second first conductivity type well region to form a buried channel of the readout portion. a fourth step of adding a first conductivity type impurity to the surface of the second first conductivity type well region to form a channel stopper of the pixel isolation region; a fifth step of forming an insulating layer over the entire surface;
a sixth step of forming a transfer electrode of a readout section on the buried channel and the insulating layer on the channel stopper; A method for manufacturing a solid-state imaging device, comprising the step of forming a groove in the pixel isolation region, and the transfer electrode is provided in the groove in the pixel isolation region. 3. Manufacturing a solid-state imaging device, characterized in that the step of forming the groove is performed before the first step in the method according to claim 2. 2. A method for manufacturing a solid-state imaging device according to item 1, wherein the step of forming the groove is performed between the first step and the second step. 5. Manufacturing a solid-state imaging device according to claim 2, wherein the step of forming the groove is performed between the second step and the third step. Method. 6. The method of manufacturing a solid-state imaging device according to claim 2, wherein the groove forming step is performed between the third step and the fourth step.
JP60104319A 1985-05-16 1985-05-16 Solid-state image pickup device and manufacture thereof Granted JPS61263155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60104319A JPS61263155A (en) 1985-05-16 1985-05-16 Solid-state image pickup device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60104319A JPS61263155A (en) 1985-05-16 1985-05-16 Solid-state image pickup device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61263155A true JPS61263155A (en) 1986-11-21
JPH0521350B2 JPH0521350B2 (en) 1993-03-24

Family

ID=14377612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60104319A Granted JPS61263155A (en) 1985-05-16 1985-05-16 Solid-state image pickup device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61263155A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142854A (en) * 1986-12-05 1988-06-15 Nec Corp Solid-state image sensing element and manufacture thereof
JPH01280354A (en) * 1988-05-06 1989-11-10 Nec Corp Solid-state image sensing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577979A (en) * 1980-06-17 1982-01-16 Fujitsu Ltd Solid-state image picking up device
JPS6086975A (en) * 1983-10-19 1985-05-16 Matsushita Electronics Corp Solid-state image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577979A (en) * 1980-06-17 1982-01-16 Fujitsu Ltd Solid-state image picking up device
JPS6086975A (en) * 1983-10-19 1985-05-16 Matsushita Electronics Corp Solid-state image pickup device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142854A (en) * 1986-12-05 1988-06-15 Nec Corp Solid-state image sensing element and manufacture thereof
JPH01280354A (en) * 1988-05-06 1989-11-10 Nec Corp Solid-state image sensing device

Also Published As

Publication number Publication date
JPH0521350B2 (en) 1993-03-24

Similar Documents

Publication Publication Date Title
KR100758321B1 (en) Image sensor with embedded photodiode region and fabrication method thereof
JPH0523505B2 (en)
CN101211940B (en) CMOS image sensor and method of manufacturing thereof
US5041392A (en) Method for making solid state image sensing device
JP2002057318A (en) Solid-state image sensing element and its manufacturing method
JPS61263155A (en) Solid-state image pickup device and manufacture thereof
JP2573582B2 (en) Method for manufacturing solid-state image sensor
JP2738679B2 (en) Solid-state imaging device
JPS63312669A (en) Solid-state image sensor
JPS6233453A (en) Solid-state image pickup device and manufacture thereof
JP2003318383A (en) Solid-state image sensor and method for manufacturing the same
JPS589363A (en) Solid state image pickup element
JPH03190272A (en) Solid-state camera device
JPH06163971A (en) Manufacture of solid-state image pickup device
JP2555888B2 (en) Method of manufacturing solid-state image sensor
JPH05315591A (en) Forming method of photoelectron readout part of ccd image sensor
JPH0424872B2 (en)
JP2786076B2 (en) Solid-state imaging device and manufacturing method thereof
JP2980196B2 (en) Solid-state imaging device
JP2877656B2 (en) Method for manufacturing solid-state imaging device
JPS62216262A (en) Solid-state image pickup device
JPH06224403A (en) Solid-state image pickup device and its manufacture
JPH06296008A (en) Manufacture of solid-state image pickup element
JPH04113674A (en) Solid state image sensor
JPS63136665A (en) Solid-state image sensing device and manufacture thereof