JPS61261251A - Coding ceramic powder - Google Patents

Coding ceramic powder

Info

Publication number
JPS61261251A
JPS61261251A JP60101038A JP10103885A JPS61261251A JP S61261251 A JPS61261251 A JP S61261251A JP 60101038 A JP60101038 A JP 60101038A JP 10103885 A JP10103885 A JP 10103885A JP S61261251 A JPS61261251 A JP S61261251A
Authority
JP
Japan
Prior art keywords
ceramic powder
powder
alumina
shrinkage
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60101038A
Other languages
Japanese (ja)
Inventor
新井 保夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60101038A priority Critical patent/JPS61261251A/en
Publication of JPS61261251A publication Critical patent/JPS61261251A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス部品を製作する際、加工性を良好
にするセラミックス粉末に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic powder that improves workability when manufacturing ceramic parts.

し従来の技術〕 セラミックスは高温強度等、従来材質にない特徴を有す
ることから、新しい用途開発がさかんに、行なわれてい
る。これらのセラミックスは1m又は数種の酸化物、窒
化物、炭化物の微粉末を混合、混練処理後、所屹の形に
予備成形する。さらに各撫雰囲気ガス内又は真空雰囲気
において高温処理を行なうことによシ、予備成形品が1
0〜25パーセント収縮し、固まり種々の形状を造るこ
とが出来る。
[Prior Art] Since ceramics have characteristics such as high-temperature strength that are not found in conventional materials, new applications are being actively developed. These ceramics are prepared by mixing and kneading fine powders of 1 m or several kinds of oxides, nitrides, and carbides, and then preforming them into a desired shape. Furthermore, by performing high-temperature treatment in each ambient gas or vacuum atmosphere, the preformed product can be made into one piece.
It shrinks by 0-25% and can be made into various shapes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これらの方法では成形時の収縮割れの問
題、収縮率の問題で焼結後の加工代過多の問題等が残シ
、と五うの解−決が今後の1発に重要である。
However, with these methods, there remain problems such as shrinkage cracking during molding and excessive machining allowance after sintering due to shrinkage rate problems, and solving these five problems will be important in the future.

収縮率が小さくなれば、割れの問題、加工代を小さくす
ることが可能になる。
If the shrinkage rate is reduced, cracking problems and processing allowances can be reduced.

本発明の目的はセラミ、クスの焼結時の割れを防止する
ための焼結収縮の小さいセラミックス粉末を提供するも
のである。
An object of the present invention is to provide a ceramic powder with low sintering shrinkage to prevent cracking during sintering of ceramics and clay.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はセラミックスの収縮が、焼結の時に起こること
から、セラミックスの収縮を成形前に行なわせしめ、形
状作成のバインダーの役目として、低融点合金を用いる
事を特徴としている。
Since shrinkage of ceramics occurs during sintering, the present invention is characterized by causing shrinkage of ceramics before molding and using a low melting point alloy as a binder for shape creation.

しかしながら、この合金層がセラミックスに比して多す
ぎると成形後の性質が金属そのものになるため、セラミ
ックスに金属層を薄くコーティングする必要がある。
However, if the amount of this alloy layer is too large compared to the ceramic, the properties after molding will become that of metal, so it is necessary to coat the ceramic with a thin metal layer.

セラミ、クスへのコーティング厚みは100μ以下が望
ましい。
The thickness of the coating on ceramic or wood is preferably 100 μm or less.

金属が低融点金属である必要性は本発明が、焼成時の収
縮を小さくすること以外に、低温処理が可能な事、及び
金属の湧流れが良く、セラミック粉体に良くコーティン
グされる必要がある。
The necessity for the metal to be a low melting point metal is that in addition to minimizing shrinkage during firing, the metal must be able to be treated at low temperatures, have good flow, and be coated well on the ceramic powder. be.

また、コーティング粉末の粒径が大きいと、成形時空孔
が大きくなるので硬化処理を行なう時、空孔を埋める形
で、コーティング金属が流れるため、収縮等が大きくな
る。よって、粉末粒径yはあまシ大きくないことが好ま
しい。最も好ましいのは、収縮等のことから0.03〜
0.15朋であるか0.2m程度まででも問題はない。
Furthermore, if the particle size of the coating powder is large, the pores during molding will become large, and during the hardening process, the coating metal will flow to fill the pores, resulting in increased shrinkage. Therefore, it is preferable that the powder particle size y is not too large. The most preferable range is 0.03 to 0.03 in view of shrinkage, etc.
There is no problem even if it is up to 0.15m or 0.2m.

実施例1 焼結した薄板サイアロンを、破砕、粉砕処理を施し、粒
径4200μ以下に調整した粉末を、アルミ・シリコン
溶湯中に入れ、急冷凝固させ得られた粉末を600℃、
窒素雰囲気で加圧成形を行なう方法で、2〜3 kl/
cyt2の加圧で保持時間を5分〜20分間とった所、
アルミ・シリコンは50パ一セント以上窒化物になシ製
品収縮は5ノ譬−セント以下でちゃ、加工部分は面精度
を必要とする箇所のみであった。          
           1実施例2 実施例1に用いた粉末を600℃、窒素雰囲気中で加圧
成形を行なう方法で50Φj2〜150VcIL2で加
圧成形を行ない、保持時間3分以内で、実施例1に示し
た通りのものを得られた。
Example 1 Sintered thin plate SiAlON was crushed and pulverized to have a particle size of 4,200μ or less, and the powder was placed in molten aluminum/silicon, and the resulting powder was rapidly solidified at 600°C.
A method of pressure forming in a nitrogen atmosphere, 2 to 3 kl/
When cyt2 was pressurized for a holding time of 5 to 20 minutes,
The shrinkage of aluminum and silicon was 50 percent or more compared to nitride, and the shrinkage of the product was less than 5 percent, and the only parts to be machined were those that required surface precision.
1 Example 2 The powder used in Example 1 was press-molded at 50Φj2 to 150VcIL2 at 600°C in a nitrogen atmosphere, and the powder was molded as shown in Example 1 within a holding time of 3 minutes. I got what I wanted.

実施例3 実施例1に用いた粉末を600℃の窒素雰囲気中で加圧
成形を行なう方法で500〜600kII/cWL2、
保持時間3分以内で行なうことにより製品収縮が3パー
セント以下になった。
Example 3 The powder used in Example 1 was molded under pressure in a nitrogen atmosphere at 600°C to form a powder of 500 to 600 kII/cWL2,
By keeping the holding time within 3 minutes, product shrinkage was reduced to 3% or less.

〔発明の効果〕〔Effect of the invention〕

このように、従来1400℃以上の高温で処理しないと
焼結されなかったセラミ、クスを、低温で固定化するこ
と、及び収縮率が小さくなることによシ一部の製品では
機械加工なしでも精度向上した製品を得られることであ
る。
In this way, ceramics and clays, which conventionally cannot be sintered unless treated at high temperatures of 1,400°C or higher, can be sintered without machining by fixing them at low temperatures and reducing the shrinkage rate. This means that products with improved accuracy can be obtained.

手続ネ…正書(ψ妃ン 昭和60年 8月 14日 卓Procedure Ne...Authentic book (ψfei-n) August 14, 1985 table

Claims (3)

【特許請求の範囲】[Claims] (1)アルミナ、アルミナ・ジルコニア、窒化硅素、サ
イアロン等のセラミックス粉末に、アルミ・シリコン等
の低融点金属をコーティングしたことを特徴とするコー
ティング・セラミックス粉末。
(1) A coated ceramic powder characterized by coating ceramic powder such as alumina, alumina-zirconia, silicon nitride, or sialon with a low-melting point metal such as aluminum or silicon.
(2)アルミナ、アルミナ・ジルコニア、窒化硅素、サ
イアロン等のセラミックス粉末を0.2mm以下の粉末
とし、この粉末にアルミ・シリコン等の低融点金属をコ
ーティングしたことを特徴とする特許請求範囲第一項に
記載されたコーティング・セラミックス粉末。
(2) Claim 1, characterized in that ceramic powder such as alumina, alumina-zirconia, silicon nitride, and sialon is powdered to a size of 0.2 mm or less, and this powder is coated with a low-melting point metal such as aluminum or silicon. Coating ceramic powders listed in section.
(3)アルミナ、アルミナ・ジルコニア、窒化硅素、サ
イアロン等のセラミックス粉末で、0.03〜0.15
mmの粒径に調整された粉末に、アルミ・シリコン等の
低融点金属をコーティングしたことを特徴とする、特許
請求範囲第一項に記載されたコーティング・セラミック
ス粉末。
(3) Ceramic powder such as alumina, alumina-zirconia, silicon nitride, sialon, etc., 0.03 to 0.15
The coated ceramic powder according to claim 1, characterized in that the powder adjusted to a particle size of mm is coated with a low melting point metal such as aluminum or silicon.
JP60101038A 1985-05-13 1985-05-13 Coding ceramic powder Pending JPS61261251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60101038A JPS61261251A (en) 1985-05-13 1985-05-13 Coding ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60101038A JPS61261251A (en) 1985-05-13 1985-05-13 Coding ceramic powder

Publications (1)

Publication Number Publication Date
JPS61261251A true JPS61261251A (en) 1986-11-19

Family

ID=14289988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60101038A Pending JPS61261251A (en) 1985-05-13 1985-05-13 Coding ceramic powder

Country Status (1)

Country Link
JP (1) JPS61261251A (en)

Similar Documents

Publication Publication Date Title
EP1252952A2 (en) Binder Composition for powder metalliurgy
US6365082B1 (en) Polymer gel molds
JPS61261251A (en) Coding ceramic powder
US4542072A (en) Processing silicon nitride by use of boron nitride as a barrier layer
US5928583A (en) Process for making ceramic bodies having a graded porosity
US3442994A (en) Method for making curved ceramic plates
JPS59156954A (en) Manufacture of porous ceramics
KR100500552B1 (en) Process for Manufacturing Sintered Ceramics Parts with Complicated Shape
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JPH0224789B2 (en)
JPH05318431A (en) Production of inclination function material
JPS5926972A (en) Manufacture of nitride carbide ceramic
JPS61201662A (en) Manufacture of composite ceramics
JP2644806B2 (en) Manufacturing method of composite sliding material composed of ceramic and metal
JPS61286285A (en) High strength ceramics
JPH08127807A (en) Production of composite material
JPS6153146A (en) Manufacture of ceramic sintered body
JPS62227703A (en) Method of molding ceramics
JPS63210062A (en) Ceramic composition material
JPS6270266A (en) Production of composite sintered body
JPH0323273A (en) Method for degreasing powder compact
JPH0559162B2 (en)
JPS63210056A (en) Manufacture of ceramic processed body
JPH01168845A (en) Iron-iron oxide sintered compact and its production
JPS61235102A (en) Manufacture of ceramic sintered body