JPS6125995A - Turbo-molecular pump - Google Patents

Turbo-molecular pump

Info

Publication number
JPS6125995A
JPS6125995A JP14439284A JP14439284A JPS6125995A JP S6125995 A JPS6125995 A JP S6125995A JP 14439284 A JP14439284 A JP 14439284A JP 14439284 A JP14439284 A JP 14439284A JP S6125995 A JPS6125995 A JP S6125995A
Authority
JP
Japan
Prior art keywords
vertex
rotor
apex
blades
rotor blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14439284A
Other languages
Japanese (ja)
Other versions
JPH0381000B2 (en
Inventor
Toshio Kusumoto
淑郎 楠本
Hiroyuki Yamakawa
洋幸 山川
Hisahiro Terasawa
寿浩 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP14439284A priority Critical patent/JPS6125995A/en
Publication of JPS6125995A publication Critical patent/JPS6125995A/en
Publication of JPH0381000B2 publication Critical patent/JPH0381000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To aim at an increase in a compression ratio, by making up a rotor vane and a stator vane or either form into a specific triangular sectional form in substance, while making probability of a gas molecule receiving momentum toward the side of an exhaust port due to its collision with a vane large enough. CONSTITUTION:A second vertex 25 and a third vertex 26 in a section triangle of a rotor vane 15 are situated at the side of a suction port 17 nearer than a first vertex 24 is a gas transport direction B, and situated in more frontward than the first vertex 24 in a forward direction C of the rotor vane 15, which the third vertex 26 is situated at the side of an exhaust port 18 nearer than the second vertex 25 in the gas transport direction B. In addition, each length of sides 24 and 26 connecting the first vertex 24 and the third vertex 26 is longer than that of sides 25 and 26 connecting the second vertex 25 and the third vertex 26. With this constitution aforesaid, a gas molecule incident into a clearance 27 mainly receives such momentum as heading for the side of the exhaust port 18 in time of collision so that its probability becomes larger than the case that the conventional rotor vane 15 is in a flat plate form, thus a compression ratio is increased.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ターボ分子ポンプに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a turbomolecular pump.

(従来の技術) ターボ分子ポンプは、J工8Zg/コク−/9glに説
明され、また石井博著「真空ポンプ」(真空技術講座第
2巻、昭和tio年−月コ5日初版、日刊工業新聞社発
行)およびジョンF、オノ・ロン著、野田保他−名訳「
真空技術マニュアル」 (昭和5g年7月30日初版、
産業図書株式会社発行)に開示されているように、ター
ビン形の羽根を持つロータおよびス嬰−夕からなる分子
ポンプであって、分子流領域での気体輸送に特に有効な
、運動量輸送式真空ポンプの1種でおる。
(Prior art) Turbomolecular pumps are explained in J.Eng. published by a newspaper company) and by John F., Ron Ono, Tamotsu Noda et al.
Vacuum Technology Manual” (first edition July 30, 1939,
As disclosed in Sangyo Tosho Co., Ltd., it is a molecular pump consisting of a rotor with turbine-shaped blades and a vacuum pump, which is a momentum transport type vacuum pump that is particularly effective for gas transport in the molecular flow region. It is a type of pump.

その1例の一般的構造について、第3図を参照しながら
説明すると、円筒状内面ioを有するステータl/の中
に、円筒状外面ノコを有するローター73が、ステニタ
と同一の垂直軸線ムを有するように収容される。ステー
タl/の内面’/ 0とロータ13の外面ノコとの間の
環状断面のポンプ空間/4’の中には、ロータ外面/、
2から半径方向外向きに多くのロータ羽根/Sが突出し
、ステータ内面IOから半径方向内向きに多くのステー
タ羽根/6が突出する。ロータ羽根/Sは、軸線方向に
順次相離れたいくつかの段(図示の例では/、2段)と
して配列され、ロータ羽根isの各段は、周方向に等間
隔に順次相離れた多くのロータ羽根/Sからなる。ステ
ータ羽根16は、軸線方向にロータ羽根15の段と1つ
置き配置で順次相離れたいくつかの段(図示の例では7
2段)として配列され、ステータ羽根の各段も、周方向
に等間隔にj頃次相離れた多くのステータ羽根16から
なる。
The general structure of one example will be described with reference to FIG. 3. A rotor 73 having a cylindrical external saw is located in a stator l/ having a cylindrical inner surface io, and has the same vertical axis as the stencil. It is accommodated to have. Inside the pump space /4' of annular cross section between the inner surface of the stator l/0 and the outer saw of the rotor 13, there is a rotor outer surface /,
Many rotor blades /S protrude radially outward from 2, and many stator blades /6 protrude radially inward from the stator inner surface IO. The rotor blades /S are arranged in several stages (in the illustrated example, /, two stages) that are successively spaced apart in the axial direction, and each stage of the rotor blades is arranged in many stages that are successively spaced apart at equal intervals in the circumferential direction. It consists of rotor blades/S. The stator blades 16 are arranged every other step in the axial direction from the rotor blades 15 in several stages (7 in the illustrated example).
The stator blades 16 are arranged in two stages (two stages), and each stage of the stator blades is also made up of a number of stator blades 16 equally spaced in the circumferential direction and spaced about j times apart.

ステータ/lには、ポンプ空間lダの上方に連通する吸
気口lりと、ボーンプ空間/4’の下方に連通ずる排気
口1gとが取付けられる。ロータ13は、モータ19に
連結され、モータiqの駆動によって軸線Aを中心とし
て高速回転する。
An intake port 1g communicating with the upper part of the pump space 1' and an exhaust port 1g communicating with the lower part of the bone pump space 4' are attached to the stator /1. The rotor 13 is connected to a motor 19 and rotates at high speed around an axis A by driving the motor iq.

第一図には、ポンプ空間lダにおけるロータ羽根/Sお
よびステータ羽根16の配置の1部分が展開図示される
6第一図において、矢印Bは、吸気口17から排気口/
ざへ向う気体輸送方向を示し、矢印Cは、ロータ13が
回転するときにロータ羽根isが進行する方向を示す。
In FIG. 1, a part of the arrangement of the rotor blades/S and the stator blades 16 in the pump space L is shown in an exploded view. In FIG.
The arrow C indicates the direction in which the rotor blades travel when the rotor 13 rotates.

この図には、いくつかのロータ羽根段のうちの一段とい
くつかのステータ羽根段のうちの一段とが図示され、ま
た各羽根段に含まれる多くの羽根のうちの各5個が図示
される。各羽根is、itは平坦な一枚板であって、気
体輸送方向Bおよびロータ羽根進行方向Cに対して傾斜
するように指向される。詳しく言えば、ロータ羽根/S
は、その気体輸送方向Bと反対方向の縁すなわち吸気口
lりの側の縁コ0が、ロータ羽根進行方向Cについて、
気体輸送方向Bの緑すなわち排気ロアgの側の縁−7よ
りも先行するように指向され、また、ステータ羽根/6
は、気体輸送方向Bの縁すなわち排気口/gの側の縁、
2.2が、ロータ羽根進行方向Cについて、気体輸送方
向Bと反対方向の縁すなわち吸気口/7の側のに−3よ
りも先行するように指向される。
This figure shows one of several rotor vane stages, one of several stator vane stages, and five of the many vanes included in each vane stage. Each blade is, it is a flat single plate and is oriented so as to be inclined with respect to the gas transport direction B and the rotor blade traveling direction C. To be more specific, rotor blade/S
, the edge in the opposite direction to the gas transport direction B, that is, the edge on the side opposite the intake port, is in the rotor blade traveling direction C,
It is oriented so as to precede the green in the gas transport direction B, that is, the edge -7 on the side of the exhaust lower g, and the stator blade /6
is the edge in the gas transport direction B, that is, the edge on the exhaust port/g side,
2.2 is oriented so as to precede -3 on the edge opposite to the gas transport direction B, ie, on the side of the intake port /7, with respect to the rotor blade traveling direction C.

このような羽根/!;、/1.の配置によれは、ロータ
13を例えば毎分、20.000〜60,000回転さ
せたときに、特に分子流領域において、ロータ羽根15
およびステータ羽根16の表面に衝突する気体分子が、
衝突の際に、主として吸気口/りの側から排気口/gの
側へ向うような運動量を受け、これによって、全体とし
てBで示したような方向に、気体が圧縮されながら輸送
される。
A feather like this! ;, /1. Depending on the arrangement of the
And the gas molecules colliding with the surface of the stator blade 16,
At the time of collision, momentum is mainly directed from the intake port/g side to the exhaust port/g side, and as a result, the gas is transported while being compressed in the direction indicated by B as a whole.

(発明が解決しようとする問題点) 上述したターボ分子ポンプは、従来、特に水素のような
分子量の小さい軽量気体に対する圧縮比(すなわち、υ
i気伸側圧力/吸気側圧力が著しく小きく、従って、輸
送すべき気体が@景気体を含有していれば、ターボ分子
ポンプの吸気側で到達できる最低圧力が、軽量気体の小
さな圧縮比に支配されて、充分に低くはならない、とい
う欠点を有する。この欠点を除去するために、ロータの
回転速度を上けてロータ羽根の進行速度を犬にし、これ
によって圧縮比を増大させることも考えられるが、前述
り、たようにロータの回転速度はすでにかなシ大きいの
で、これをさらに地太させることは、ロータの強度、軸
受の強度、モータのトルク、モータの制御などの点で制
約を受け、実除上、技術的に困難である。
(Problems to be Solved by the Invention) Conventionally, the above-mentioned turbo-molecular pump has a high compression ratio (i.e., υ
If the gas expansion side pressure/suction side pressure is extremely small, and therefore the gas to be transported contains gas, the lowest pressure that can be reached on the suction side of the turbomolecular pump is due to the small compression ratio of the lightweight gas. has the disadvantage that it cannot be sufficiently low. In order to eliminate this drawback, it is conceivable to increase the rotational speed of the rotor to increase the advancing speed of the rotor blades, thereby increasing the compression ratio, but as mentioned above, the rotational speed of the rotor is already Since the radius is large, making it even thicker is technically difficult due to limitations in terms of rotor strength, bearing strength, motor torque, motor control, etc.

(問題点を解決するための手段) 上述した従来の問題点を解決するため、この発明では、
通常のターボ分子ポンプの作動条件において特に軽量気
体について、 「気体分子の分子量をm1ボルツマンの常数をに1気体
の絶対温度をT10一タ羽根の進行速度をvbとしたと
きに 5−vb7v’丁ロZ1 で定義される羽根速度比Sが ki なる関係を満たす。」という条件が成立つことを考慮し
、場らに、S≦lが成立つ場合には、実験によれは、従
来では平坦な版状体であったロータ羽根およびステータ
羽根またはそのいずれかの形状を特定の実質上三角形の
断面を有する形状に変えることによって、圧縮比が増大
するという事実に着目して、 「ロータ羽根およびステータ羽根またはそのいずれかが
実質的に三角形の断面形状を備え、前記三角形において
、その第一頂点および第3頂点かいずれも、気体輸送方
向について第1頂点より吸気口側に位置し、第3頂点が
、気体輸送方向について第2頂点より排気口側に位置し
、さらに第1頂点と第3JjI点を結ぶ辺の長でか、第
一頂点と第3頂点を結ぶ辺の長畑より大きいことを特徴
とするターボ分子ポンプ」 が提供される。
(Means for Solving the Problems) In order to solve the above-mentioned conventional problems, in this invention,
Under normal operating conditions of a turbomolecular pump, especially for light gases, ``5-vb7v' when the molecular weight of the gas molecule is m1, Boltzmann's constant is 1, the absolute temperature of the gas is T10, and the advancing speed of the blade is vb. The blade speed ratio S defined by Z1 satisfies the relationship ki.'' If S≦l holds, experiments show that the slope is flat in the conventional case. Focusing on the fact that the compression ratio can be increased by changing the shape of the rotor blades and/or stator blades, which were previously plate-like shapes, to a shape with a specific substantially triangular cross section, The stator blade or any one of the stator blades has a substantially triangular cross-sectional shape, and in the triangular shape, either the first apex or the third apex is located closer to the intake port than the first apex in the gas transport direction, and The apex is located closer to the exhaust port than the second apex in the gas transport direction, and the length of the side connecting the first apex and the third JjI point is greater than the long field of the side connecting the first apex and the third apex. A turbo-molecular pump with special features is provided.

(作用) 上述したように構成された分子ポンプにおいては、特に
S≦lの場合に、気体分子が羽根(ロータ羽根またはス
テータ羽根)との衝突によって排気口側へ向うような運
動量を受ける確率が、平坦な版状の羽根を備えた従来の
ターボ分子ポンプよりも大きく、従って圧縮比が従来の
ものより大になる。圧縮比が増大すれば、ターボ分子ポ
ンプの吸気側で到達できる最低圧力が低くなる。
(Function) In the molecular pump configured as described above, especially when S≦l, there is a probability that gas molecules will receive momentum toward the exhaust port due to collision with the blades (rotor blades or stator blades). , larger than conventional turbomolecular pumps with flat plate-like blades, and therefore the compression ratio is larger than conventional ones. As the compression ratio increases, the minimum pressure that can be reached on the suction side of the turbomolecular pump decreases.

(実施例) 以下、図面を参照しながらこの発明の実施例について説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

この発明のターボ分子ポンプは、ロータ羽根/3および
ステータ羽根16またはそのいずれかの断面形状を除い
て、第3図および第二図に図示したものと全く同一に構
成できる。
The turbomolecular pump of the present invention can be configured identically to that shown in FIGS. 3 and 2, except for the cross-sectional shapes of the rotor blades/3 and/or stator blades 16.

ロータ羽根15が第一図に図示されるような平坦状とは
異なる場合には、このロータ羽根15の実施例は、第1
図に図示されるように冥質的に三角形の断面を有する。
If the rotor blade 15 differs from the flat shape shown in FIG.
It has a subtly triangular cross section as shown in the figure.

この譲1図には、1つのロータ羽根段に属する相並ぶ3
個のロータ羽根15が示される。ロータ羽根15の断面
三角形は、第1頂点、2ダ、第一頂点、25および第3
頂点2乙の3個の頂点を有し、 この断面三角形において、 (1)棺コ頂点コSおよび第3頂点2乙はいずれも、気
体輸送方向Bについて、第1頂点2ダより吸気口/りの
側に位置し、かつ、ロータ羽根lSの進行方向Cについ
て、第1頂点、2ダより萌方に位置し、 (2)第1頂点24tと第一頂点−5を結ぶ辺コダ、−
5が、ロータ羽根の進行方向Cについて、fa、l頂点
、2ダと第3頂点コAを結ぶ辺コq、コロよル前方に位
置し、 (3)第3頂点コロが、気体輸送方向Bについて、第一
頂点、25より排気口1gの側に位置し、(4)第1頂
点コダと第3頂点λ6を結ぶ辺21.コ乙の長嘔が、第
一頂点2sh第3頂点=6を結ぶ辺コS、ツ乙の長ざよ
り犬になっている。
This figure shows three adjacent rotor blades belonging to one rotor blade stage.
rotor blades 15 are shown. The triangular cross-section of the rotor blade 15 has a first apex, a second apex, a first apex, a 25th apex, and a third apex.
In this triangular cross-section, (1) the coffin apex S and the third apex 2A are both connected to the air intake port from the first apex 2D in the gas transport direction B. (2) A side connecting the first apex 24t and the first apex -5, -
5 is located in front of the side co q connecting fa, l apex, 2 da and third apex co A with respect to the traveling direction C of the rotor blade, (3) the third apex roller is located in the gas transport direction Regarding B, the first vertex 25 is located closer to the exhaust port 1g, and (4) the side 21.B connects the first vertex Koda and the third vertex λ6. The long length of Kootto becomes a dog due to the long length of the side Koto S connecting the first vertex 2sh and the third vertex = 6.

かかる形状のロータ羽根/Sを有するターボ分子ポンプ
において、1つのロータ羽根l!;と(ロータ羽根の進
行方向C)についてこれに後続するロータ羽根/jaと
の間の間隙aりに向っ°〔、吸気口lりの側または排気
口isの側から気体分子が入射して来たとする。この気
体分子は、ロータ羽根の進行方向Cについてロータ羽根
/Shがロータ羽根15に後続して移動しているので、
主として、ロータ羽根isの後側の面25.コロ(辺2
6; 、24を含む面を指す、以下同様)および、2ダ
、コ乙ではなぐロータ羽根/3aの前側の面5lIa、
2shK@突する。この衝突した気体分子は面一2 ’
I a * −2!i aで反射されるが、前述した条
件によれば、面211h 、コ5aは面l謬Lユニ26
−よりも面、2Q 、2Aに向いているので、プた面2
11、.2Aが面コj、−i!Jよりも大きいので、反
射した気体分子は、主としτ面一グ、コロに再衝突する
。この再衝突した気体分子は面、2ダ、コtから再反射
されるが、辺、2ダ、2Aが排気口igO側の間隙口を
見込む立体角が吸気口lりの側の間隙口を見込む立体角
よりも大きいので、再反射された気体分子は、主として
排気口/gの方向へ向う。かくして、以上に定性的に説
明したように、間隙、27に入射する気体分子は、主と
して排気口/ざの側へ向うような運動量を衝突の際に受
け、その確率は、以上の説明から明らかなように、ロー
タ羽根15が平坦な板状の場合(すなわち、頂点コロが
辺、2ダ1.25に重なるまで三角形が平らになった場
合)の確率よりも大きい。このようにして、この発明の
ロータによれば圧縮比の大きいターボ分子ポンプが得ら
れる。
In a turbomolecular pump having a rotor blade/S having such a shape, one rotor blade l! ; and the following rotor blade /ja with respect to the traveling direction C of the rotor blade. Suppose you come. Since the rotor blade/Sh is moving following the rotor blade 15 in the traveling direction C of the rotor blade, these gas molecules are
Primarily, the rear surface 25 of the rotor blade is. Coro (side 2
6; refers to the surface including 24, the same applies hereinafter) and the front surface 5lIa of the rotor blade/3a, which is not 2 da, ko.
2shK@Tsu. These colliding gas molecules are flush with 2'
I a * -2! However, according to the conditions mentioned above, the surface 211h and the surface 5a are reflected by the surface L uni 26
Since it is more suitable for faces, 2Q, and 2A than -, puta faces 2
11. 2A is face j, -i! Since it is larger than J, the reflected gas molecules mainly re-collide with the τ plane and the roller. These re-colliding gas molecules are re-reflected from the surfaces, 2da and 2A, but the solid angle where the sides, 2da and 2A look at the gap opening on the side of the exhaust port igO is the gap opening on the side of the intake port. Since the solid angle is larger than the expected solid angle, the re-reflected gas molecules mainly head in the direction of the exhaust port/g. Thus, as explained qualitatively above, the gas molecules that enter the gap 27 receive a momentum that mainly moves toward the exhaust port/gap side during the collision, and the probability of this is clear from the above explanation. This is greater than the probability when the rotor blade 15 is flat and plate-shaped (that is, when the triangle becomes flat until the apex roller overlaps the side 2 da 1.25). In this way, according to the rotor of the present invention, a turbomolecular pump with a high compression ratio can be obtained.

ステータ羽根16が第二図に図示される平坦状とは異な
る場合には、相対的に言ってステータ羽根はロータ羽根
に対してC方向と逆の方向に進行すると見なすことがで
きるので、ステータ羽根16の実施例は、要約すれば、
[実質的に三角形の断面形状を備え、前記三角形におい
て、その第一頂点および第3頂点がいずれも、気体@j
送方向について第1頂点より吸気口側にかつロータ羽根
の進行方向について第1頂点より後方に位置し、第1頂
点と第2頂点を結ぶ辺が、ロータ羽根の進行方向につい
て第1頂点と第3頂点を結ぶ辺より後方に位置し、また
第3頂点が気体輸送方向について第一頂点より排気口側
に位置し、さらに第1頂点と第3頂点を結ぶ辺の長さが
、第一頂点と第3頂点を結ぶ辺の長さより大きい」よう
に構成される。
If the stator blades 16 are different from the flat shape shown in FIG. The 16 examples can be summarized as follows:
[It has a substantially triangular cross-sectional shape, and in the triangle, both the first apex and the third apex are gas @j
The side that connects the first apex and the second apex is located closer to the intake port side than the first apex in the feeding direction and behind the first apex in the direction of travel of the rotor blade, and the side connecting the first apex and the second apex The third vertex is located on the exhaust port side from the first vertex in the gas transport direction, and the length of the side connecting the first and third vertices is the first vertex. and the length of the side connecting the third vertex.

(発明の効果) この発明によるターボ分子ポンプのロータは、ターボ分
子ポンプの圧縮比を特にskiの場合に増大させる効果
を有する。
(Effects of the Invention) The rotor of the turbomolecular pump according to the present invention has the effect of increasing the compression ratio of the turbomolecular pump, especially in the case of ski.

モンテカルロシミュレーションによってさらに詳しく検
討した結果によれは、ロータ羽根の進行方向Cに対する
辺2’1..2Sおよび辺25..2Aの角度をそれぞ
れαおよびβとしく第1図)、進行方向Cに直交する面
に対する辺、2ダ、コ5の投影の長きおよび辺、24’
、、2Aの投影の長さをそれぞれTおよびSとした場合
に、羽根速度比S≦7として、 [(1)αが350であれば、β−25°、S / T
 −0,りSのときに最大圧縮比が得られ、 (2)αが20°であれば、β−lパ、S/T −0,
73のときに最大圧縮比が得られる」 という結果が得られた。これらの条件において、7段の
ロータ羽根の圧縮比にと羽根速度比8の関係は、第弘図
のグラフ(1)および(2)に実線五で示す通シになっ
た。なお、これらグラフ(1)および(2)の破線pは
、従来の平坦な板状体のロータ羽根で、ロータ羽根の進
行方向Cに対するロータ羽根の面の角度をそれぞれ35
°および一〇°としたときのKとSの関係を示す。
According to the results of a more detailed study using Monte Carlo simulation, the sides 2'1. .. 2S and side 25. .. Let the angles of 2A be α and β, respectively (Fig. 1), and the length and side of the projection of side 2da and
,, 2A, when the projection lengths are T and S, respectively, and the blade speed ratio S≦7, [(1) If α is 350, β-25°, S/T
The maximum compression ratio is obtained when -0, riS, (2) If α is 20°, then β-lp, S/T -0,
The maximum compression ratio was obtained when the ratio was 73. Under these conditions, the relationship between the compression ratio of the 7-stage rotor blades and the blade speed ratio 8 was as shown by the solid line 5 in graphs (1) and (2) of Fig. 1. Note that the broken lines p in these graphs (1) and (2) indicate the angle of the surface of the rotor blade with respect to the traveling direction C of the rotor blade, respectively, for the conventional flat rotor blade.
The relationship between K and S when set at 10° and 10° is shown.

上述したグラフ(1)および(2)によれば、ロータの
直径が0.7mでロータの回転数が毎分50000回の
標準的なターボ分子ポンプにおいて、この発明によれば
、ロータ羽根1段当りの圧縮比が、(1)の35°羽根
の場合に、温゛度30θ0にのN2に対してs、g%、
また混層300°にのN2に対して743%。
According to graphs (1) and (2) above, in a standard turbomolecular pump with a rotor diameter of 0.7 m and a rotor rotation speed of 50,000 times per minute, according to the present invention, one stage of rotor blades is used. When the compression ratio per unit is 35° impeller (1), s, g% for N2 at a temperature of 30θ0,
Also, it is 743% for N2 in the mixed layer at 300°.

(2)の20°羽根の場合に、温度300°にのN2に
対してS、コチ、また温度3θO0にのN2に対して/
/、5チ、 だけ従来のものより増大することが判る。
In the case of the 20° blade in (2), S and flathead for N2 at a temperature of 300°, and / for N2 at a temperature of 3θO0.
It can be seen that this increases by /, 5chi, compared to the conventional one.

これから判断すると、吸気口側に350羽根を6段(そ
のうちでd−夕羽根3段)また排気口側に一〇°羽根を
1g段(そのうちでロータ羽根り段)を設けた典型的な
構成のターボ分子ポンプにおいて、ポンプ全体の圧縮比
が、この発明によれば従来のものと比べて温度、? 0
00にのN2に対して3.5倍また温度300°にのN
2に対してio、g倍にできる。
Judging from this, it is a typical configuration with 6 stages of 350 blades on the intake side (including 3 stages of d-vane blades) and 1g stage of 10° blades on the exhaust port side (among them the rotor blade stage). In the turbomolecular pump of , the compression ratio of the entire pump is lower than that of the conventional pump according to the present invention. 0
3.5 times the N2 at 00°C and N2 at a temperature of 300°
2 can be multiplied by io and g.

この値は、実験的にも確認された。This value was also confirmed experimentally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるロータのロータ羽根の1図、第
2図は従来のロータ羽根およびステータ羽根の断面図、
第3図はターボ分子ポンプの1例の垂直断面図、第4図
は圧縮比と羽根速度比の関係を示すグラフである。 図面において、/Sはロータ羽根、/6はステータ羽根
、17は吸気口、7gは排シロ1.241は第1頂点、
2Sは第一頂点、コロは第3頂点、Bは気体輸送方向、
Cはロータ羽根の進行方向を示す。 第2図 S□ 第4図
FIG. 1 is a diagram of a rotor blade of a rotor according to the present invention, and FIG. 2 is a sectional view of a conventional rotor blade and stator blade.
FIG. 3 is a vertical sectional view of an example of a turbo-molecular pump, and FIG. 4 is a graph showing the relationship between compression ratio and blade speed ratio. In the drawing, /S is the rotor blade, /6 is the stator blade, 17 is the intake port, 7g is the exhaust slope 1.241 is the first vertex,
2S is the first vertex, Koro is the third vertex, B is the gas transport direction,
C indicates the direction of movement of the rotor blades. Figure 2 S□ Figure 4

Claims (1)

【特許請求の範囲】 1、ロータ羽根およびステータ羽根またはそのいずれか
が実質的に三角形の断面形状を備え、前記三角形におい
て、その第2頂点および第3頂点がいずれも、気体輸送
方向について第1頂点より吸気口側に位置し、第3頂点
が気体輸送方向について第一頂点より排気口側に位置し
、さらに第1頂点と第3頂点を結ぶ辺の長さが、第2頂
点と第3頂点を結ぶ辺の長さより大きいことを特徴とす
るターボ分子ポンプ。 2、ロータ羽根の前記三角形において、その第2頂点お
よび第3頂点がいずれも、ロータ羽根の進行方向につい
て第1頂点より前方に位置し、第1頂点と第2頂点を結
ぶ辺が、ロータ羽根の進行方向について第1頂点と第3
頂点を結ぶ辺より前方に位置する特許請求の範囲第1項
に記載のターボ分子ポンプ。 3、ステータ羽根の前記三角形において、その第2頂点
および第3頂点がいずれも、ロータ羽根の進行方向につ
いて第1頂点より後方に位置し、第1頂点と第2頂点を
結ぶ辺が、ロータ羽根の進行方向について第2頂点と第
3頂点を結ぶ辺より後方に位置する特許請求の範囲第1
項または第2項に記載の分子ポンプ。
[Scope of Claims] 1. The rotor blades and/or the stator blades have a substantially triangular cross-sectional shape, and the second and third apexes of the triangle are both at the first point in the gas transport direction. The third vertex is located closer to the intake port than the first vertex in the gas transport direction, and the length of the side connecting the first vertex and the third vertex is the same as that of the second vertex and the third vertex. A turbo-molecular pump characterized by being larger than the length of the side connecting the vertices. 2. In the triangle of the rotor blade, both the second and third apexes are located forward of the first apex in the direction of travel of the rotor blade, and the side connecting the first and second apexes is The first vertex and the third
The turbo-molecular pump according to claim 1, which is located forward of the side connecting the vertices. 3. In the triangle of the stator blade, both the second and third apexes are located behind the first apex in the direction of travel of the rotor blade, and the side connecting the first and second apexes is located behind the rotor blade. Claim 1 located behind the side connecting the second vertex and the third vertex with respect to the traveling direction of
The molecular pump according to item 1 or 2.
JP14439284A 1984-07-13 1984-07-13 Turbo-molecular pump Granted JPS6125995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14439284A JPS6125995A (en) 1984-07-13 1984-07-13 Turbo-molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14439284A JPS6125995A (en) 1984-07-13 1984-07-13 Turbo-molecular pump

Publications (2)

Publication Number Publication Date
JPS6125995A true JPS6125995A (en) 1986-02-05
JPH0381000B2 JPH0381000B2 (en) 1991-12-26

Family

ID=15361079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14439284A Granted JPS6125995A (en) 1984-07-13 1984-07-13 Turbo-molecular pump

Country Status (1)

Country Link
JP (1) JPS6125995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110627A (en) * 2015-12-15 2017-06-22 エドワーズ株式会社 Vacuum pump, rotary vane installed on vacuum pump, and repelling mechanism
WO2017104541A1 (en) * 2015-12-15 2017-06-22 エドワーズ株式会社 Vacuum pump, and rotating blade and reflection mechanism mounted on vacuum pump
GB2612781A (en) * 2021-11-10 2023-05-17 Edwards Ltd Turbomolecular pump bladed disc

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191492A (en) * 1981-05-22 1982-11-25 Hitachi Ltd Molecular turbo-pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191492A (en) * 1981-05-22 1982-11-25 Hitachi Ltd Molecular turbo-pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110627A (en) * 2015-12-15 2017-06-22 エドワーズ株式会社 Vacuum pump, rotary vane installed on vacuum pump, and repelling mechanism
WO2017104541A1 (en) * 2015-12-15 2017-06-22 エドワーズ株式会社 Vacuum pump, and rotating blade and reflection mechanism mounted on vacuum pump
US11009029B2 (en) 2015-12-15 2021-05-18 Edwards Japan Limited Vacuum pump, and rotor blade and reflection mechanism mounted in vacuum pump
GB2612781A (en) * 2021-11-10 2023-05-17 Edwards Ltd Turbomolecular pump bladed disc
GB2612781B (en) * 2021-11-10 2024-04-10 Edwards Ltd Turbomolecular pump bladed disc

Also Published As

Publication number Publication date
JPH0381000B2 (en) 1991-12-26

Similar Documents

Publication Publication Date Title
US5393197A (en) Propulsive thrust ring system
US5118251A (en) Compound turbomolecular vacuum pump having two rotary shafts and delivering to atmospheric pressure
US10480532B2 (en) Compressor stator vane, axial flow compressor, and gas turbine
CN103314218B (en) Centrifugal turbomachine
PH12016000290A1 (en) Axial blower and series-type axial blower
WO2000071873A1 (en) Variable displacement turbo supercharger
JP2000274394A5 (en)
JP2000337290A (en) Vacuum pump
CN1133403A (en) Axial-flow blower with guiding in channel
GB2498816A (en) Vacuum pump
JPH0826877B2 (en) Turbo molecular pump
JP2000161285A (en) Turbo-molecular pump and vacuum device
US6109864A (en) Vacuum pumps
JP2015102076A (en) Component for vacuum pump, siegbahn type exhaust mechanism and complex type vacuum pump
JPS6125995A (en) Turbo-molecular pump
KR890004933B1 (en) Turbo molecular pump
JP2006307823A (en) Turbo-molecular pump
RU2429386C2 (en) Fan unit with free radial wheel rotor
JP2002005078A5 (en)
US20230026923A1 (en) Blower Fan Assembly
JPS60182394A (en) Turbomolecular pump
JP2002161889A (en) Turbo-molecular pump disc
JPS6125993A (en) Turbo-molecular pump
US3138318A (en) Turbo-molecular vacuum pump
JPH05296195A (en) Axial fan