JPS61256993A - Graphite crucible and heater for silicon single crystal pulling device - Google Patents

Graphite crucible and heater for silicon single crystal pulling device

Info

Publication number
JPS61256993A
JPS61256993A JP9829185A JP9829185A JPS61256993A JP S61256993 A JPS61256993 A JP S61256993A JP 9829185 A JP9829185 A JP 9829185A JP 9829185 A JP9829185 A JP 9829185A JP S61256993 A JPS61256993 A JP S61256993A
Authority
JP
Japan
Prior art keywords
graphite
heater
graphite crucible
base material
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9829185A
Other languages
Japanese (ja)
Inventor
Masaki Okada
雅樹 岡田
Soukan Miki
相煥 三木
Toru Hoshikawa
星川 亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP9829185A priority Critical patent/JPS61256993A/en
Publication of JPS61256993A publication Critical patent/JPS61256993A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of cracks in the title graphite crucible and graphite heater due to repeated use by forming a specified thermally decomposed coated film on the surface of the graphite crucible and graphite heater. CONSTITUTION:A high-purity, gas-impermeable and dense thermally decomposed coated film is formed on the surface of the base material of a graphite crucible and a heater which are used in a silicon single crystal pulling device. In this case, the gas impermeability and denseness mean that the radius of the pore measured by a mercury forced-injection method is regulated to <=0.1mu and the high purity means that the ash content is controlled to >=20ppm. Besides, the thickness of the coated film is preferably adjusted to 20-250mu. Moreover,the graphite crystal base surface, namely the carbon hexagonal net surface, of the coated film is optionally oriented in parallel with the surface of the base material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は黒鉛るつぼ及びヒーターに関し、更に詳しくは
、シリコン単結晶引上げ装置に使用される黒鉛るつぼ及
びヒーターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a graphite crucible and a heater, and more particularly to a graphite crucible and heater used in a silicon single crystal pulling apparatus.

〔従来の技術〕[Conventional technology]

シリコン単結晶は溶融したシリコンを引き上げつつ、結
晶を成長させて製造されており、これに使用する装置が
所謂シリコン単結晶引上げ装置である。この装置の代表
的な一例を示せば第1図の通りであり、第1図中(1)
は引上げ軸、(2)は上蓋、(3)はアルゴンガス導入
口、(4)はチャンバー、(5)はシード、(6)はシ
リコン単結晶、(7)はシリコン融液、(8)は石英る
つぼ、(9)は黒鉛るつぼ、(10)は断熱材、(11
)は黒鉛ヒーター、(12)は電極、及び(13)は輻
射温度針を表わす、この装置を用いてシリコン単結晶を
引上げるに際しては、石英るつぼ(8)で溶融したシリ
コン融液(7)から引上軸(1)によりシリコンが引上
げられるが、この際石英るつぼ(8)は引上げ温度で軟
化する恐れがあるため、その外側から耐熱性の優れた黒
鉛るつぼ(9)で保持されている。そして、この黒鉛る
つぼ(9)の外側から黒鉛ヒーター(11)で加熱され
る方式%式% 而してこの装置に於いて、黒鉛るつぼ及び黒鉛ヒーター
は、反覆作用により、亀裂を生じ破損するので分割した
り微粒質の高強度等方性黒鉛材を用いたりして種々の対
策が試みられているが、未だ充分な効果が得られていな
い。
Silicon single crystals are manufactured by growing crystals while pulling molten silicon, and the equipment used for this process is a so-called silicon single crystal pulling equipment. A typical example of this device is shown in Figure 1, and (1)
is the pulling shaft, (2) is the upper lid, (3) is the argon gas inlet, (4) is the chamber, (5) is the seed, (6) is the silicon single crystal, (7) is the silicon melt, (8) is a quartz crucible, (9) is a graphite crucible, (10) is a heat insulator, (11
) represents a graphite heater, (12) an electrode, and (13) a radiation temperature needle. When pulling a silicon single crystal using this device, a silicon melt (7) molten in a quartz crucible (8) is used. The silicon is pulled up by the pulling shaft (1), but at this time, the quartz crucible (8) may soften at the pulling temperature, so it is held from the outside by a graphite crucible (9) with excellent heat resistance. . In this device, the graphite crucible and graphite heater crack and break due to repeated action. Various countermeasures have been attempted, such as dividing the problem and using fine-grained high-strength isotropic graphite materials, but no sufficient effect has yet been achieved.

〔発明の目的並びに概要〕[Purpose and outline of the invention]

本発明者は従来の黒鉛るつぼや黒鉛ヒーターの上記難点
を解決するために従来から鋭意研究を続けて来たが、こ
の研究に於いて黒鉛るつぼは使用中に内部の石英るつぼ
により酸化され消耗し、酸化消耗を受けた部分は大きく
強度が劣化し、耐熱衝撃性が低下し、黒鉛るつぼと石英
るつぼとの間の熱膨脹係数の差による熱応力に耐えられ
なくなり、亀裂を生ずることが判明した。また装置内で
発生する珪素や一酸化珪素の蒸気の一部が黒鉛表面層で
反応し、炭化珪素層を形成することも、亀裂発生の原因
の一つとなっており、これ等亀裂の原因1よ黒鉛るつぼ
ばかりでなく、黒鉛ヒーターにも同様に生じていること
が判明した。
The present inventor has been conducting extensive research to solve the above-mentioned difficulties with conventional graphite crucibles and graphite heaters, but in this research, the graphite crucible was oxidized and consumed by the quartz crucible inside it during use. It was found that the parts that were subjected to oxidative consumption greatly deteriorated in strength, their thermal shock resistance decreased, and were unable to withstand the thermal stress due to the difference in thermal expansion coefficient between the graphite crucible and the quartz crucible, resulting in cracks. In addition, part of the silicon and silicon monoxide vapor generated in the equipment reacts on the graphite surface layer to form a silicon carbide layer, which is one of the causes of cracks. It was found that this phenomenon occurs not only in graphite crucibles but also in graphite heaters.

本発明者はこれ等の事実に基づいて更に研究を押し進め
、特に従来の黒鉛るつぼや黒鉛ヒーターの表面にある特
定の熱分解炭素被膜を形成せしめるときは所期の目的が
達成されることを見出し、ここに本発明を完成するに至
った。即ち本発明は黒鉛基材表面に、高純度且つガス不
滲透性の緻密な熱分解炭素被膜を形成させて成ることを
特徴とするシリコン単結晶引上げ装置用黒鉛るつぼ及び
ヒーターに係るものである。
Based on these facts, the inventor of the present invention further conducted research and found that the intended purpose could be achieved, especially when forming a specific pyrolytic carbon film on the surface of conventional graphite crucibles and graphite heaters. The present invention has now been completed. That is, the present invention relates to a graphite crucible and a heater for a silicon single crystal pulling apparatus, which are characterized by forming a dense pyrolytic carbon film of high purity and gas impermeability on the surface of a graphite base material.

〔発明の効果〕〔Effect of the invention〕

本発明に於いては従来の黒鉛るつぼ及び黒鉛ヒーターの
表面に上記特定の熱分解炭素被膜を好ましくはその膜厚
を20〜250μmで形成させることにより、後記各実
施例でも示した様に、著しく耐熱衝撃性が向上し、その
亀裂の発生を大きく防止することが出来、惹いては反覆
使用にも長期間両えうるちのである。
In the present invention, by forming the above-mentioned specific pyrolytic carbon film on the surface of the conventional graphite crucible and graphite heater, preferably with a film thickness of 20 to 250 μm, it is possible to significantly improve the Thermal shock resistance is improved, and the occurrence of cracks can be largely prevented, which in turn allows for repeated use over a long period of time.

〔発明の構成〕[Structure of the invention]

本発明の黒鉛るつぼ並びに黒鉛ヒーターは従来の黒鉛る
つぼや黒鉛ヒーターの基材の表面に熱分解炭素被膜が好
ましくは20〜250μmの膜厚で形成されて成るもの
であ。そしてこの際の熱分解炭素被膜は、特に高純度で
且つガス不iξ透性の緻密なものであることが必要であ
る。ここでガス不滲透性の緻密とは水銀圧入法で測定し
た細孔半径が0.1μmを越えないことを意味し、また
高純度とは灰分が20ppm+以下であることを意味す
る。
The graphite crucible and graphite heater of the present invention are formed by forming a pyrolytic carbon film on the surface of the base material of conventional graphite crucibles and graphite heaters, preferably with a thickness of 20 to 250 μm. The pyrolytic carbon coating at this time needs to be particularly highly pure, gas-impermeable, and dense. Here, gas-impermeable and dense means that the pore radius measured by mercury intrusion method does not exceed 0.1 μm, and high purity means that the ash content is 20 ppm+ or less.

本発明に於いては熱分解炭素被膜は上記2つの要件を共
に具備する必要があり、これ等のいずれの要件の一つで
も満足しないときは所期の効果が充分に達成され難い、
またその膜厚は好ましくは20〜250μm程度であり
、この膜厚があまりにも大きくなりすぎると加熱−冷却
のサイクルを2速に行うと剥離もしくは亀裂を生ずる傾
向があり、黒鉛基材が露出し被膜形成の効果が不充分と
なる場合があり、また逆にあまり膜厚が小さくなりすぎ
ると、被膜形成に基づく所期の効果が充分に発揮され難
い。
In the present invention, the pyrolytic carbon coating must satisfy both of the above two requirements, and if any one of these requirements is not satisfied, it will be difficult to fully achieve the desired effect.
Further, the film thickness is preferably about 20 to 250 μm, and if this film thickness is too large, it tends to peel or crack when the heating-cooling cycle is performed in second speed, and the graphite base material is exposed. The effect of film formation may be insufficient, and conversely, if the film thickness is too small, it is difficult to fully exhibit the desired effect based on film formation.

本発明に於いては上記熱分解炭素被膜はその黒鉛結晶基
底面即ち炭素6角網面を基材表面に選択的に平行に配向
させることが好ましい。このように平行に配向させるこ
とにより、黒鉛の反応性をより小さくすることが出来、
惹いては珪素や一酸化珪素との反応に基づく望ましくな
い現象を未然に防止することが出来、より有効に亀裂の
発生を防止することが出来る。この特定の配向性を有せ
しめるためには、熱分解炭素被膜の形成時の温度を調整
することにより容易に達成出来、1100〜1300℃
または1700〜2200℃に温度を設定して熱分解炭
素を生成せしめることにより、効果的に上記所定の配向
性を有する被膜が形成出来る。
In the present invention, it is preferable that the graphite crystal basal plane, that is, the hexagonal carbon plane, of the pyrolytic carbon coating is selectively oriented parallel to the substrate surface. By oriented in parallel in this way, the reactivity of graphite can be further reduced.
In turn, it is possible to prevent undesirable phenomena due to reactions with silicon and silicon monoxide, and it is possible to more effectively prevent the occurrence of cracks. This specific orientation can be easily achieved by adjusting the temperature during formation of the pyrolytic carbon film, which is 1100 to 1300°C.
Alternatively, by setting the temperature at 1,700 to 2,200°C to generate pyrolytic carbon, a film having the above-mentioned predetermined orientation can be effectively formed.

本発明者の研究に依ると次のことが明らかになった。即
ち熱分解炭素膜についてX線回折図を撮り、その(00
2)回折線の強度をもって選択的配向度の目安とすると
次の様になる。
According to the research conducted by the present inventor, the following has become clear. That is, an X-ray diffraction pattern is taken for the pyrolytic carbon film, and its (00
2) If the intensity of the diffraction line is used as a measure of the degree of selective orientation, it will be as follows.

熱分解炭素生成温度  (002)回折強度比1300
℃         50 1400℃          8 1500℃          2 1600℃         26 1700℃         43 2000℃        100 2200℃        107 この結果から形成温度が1400〜1600℃ではX線
回折強度が弱(、異方性の小さい熱分解炭素膜が形成さ
れるのに対し、1100〜1300℃及び1700〜2
200℃では回折強度が強く異方性の大きい熱分解炭素
膜が基材黒鉛基材上に選択的に配向していることが判明
する。このような事実に基づき本発明では上記温度範囲
が好ましい。
Pyrolysis carbon formation temperature (002) Diffraction intensity ratio 1300
℃ 50 1400℃ 8 1500℃ 2 1600℃ 26 1700℃ 43 2000℃ 100 2200℃ 107 These results show that when the formation temperature is 1400 to 1600℃, the X-ray diffraction intensity is weak (and a pyrolytic carbon film with small anisotropy is formed. 1100~1300℃ and 1700~2
It is found that at 200° C., a pyrolytic carbon film with a strong diffraction intensity and large anisotropy is selectively oriented on the graphite base material. Based on these facts, the above temperature range is preferable in the present invention.

本発明に於いて形成する熱分解炭素被膜の熱分解炭素自
体は従来から別の分野では良く知られているものであり
、炭素発生材料たとえばC3He等の炭化水素を熱分解
することにより発生する炭素である。
The pyrolytic carbon itself of the pyrolytic carbon film formed in the present invention is well known in other fields, and is carbon generated by thermally decomposing hydrocarbons such as carbon generating materials such as C3He. It is.

本発明に於いて上記熱分解炭素被膜を黒鉛るつぼや黒鉛
ヒーターの表面に形成させる方法自体は何等重要ではな
く、上記所定の要件を有する熱分解炭素被膜が形成され
るかぎり何等その形成方法は限定されるものではなく、
各種の形成方法がいずれも有効に通用出来る。
In the present invention, the method of forming the pyrolytic carbon film on the surface of the graphite crucible or the graphite heater itself is not important, and as long as the pyrolytic carbon film meeting the above predetermined requirements is formed, the method of forming the film is not limited in any way. It is not something that is done, but
Any of various forming methods can be used effectively.

本発明に於いて熱分解炭素被膜を形成すべき黒鉛基材と
しては従来からこの種分野に於いて使用されて来た黒鉛
るつぼ及び黒鉛ヒーターが使用出来るが、好ましくはこ
れ等黒鉛基材としては等方性であると同時に該被膜の熱
膨脹係数(以下CTEという)と、ある特定の範囲で一
致していることである。ここで等方性とは、各方向での
特性(たとえば熱膨脹係数や固有抵抗など)がほぼ同等
で、異方比が1.1以下好ましくは1.05以下である
ことを意味する。また基材のCTHの範囲としては0.
5〜3.0X10°6/℃であることが好ましい。通常
基材のCTEが低くなる程異方性が漸増し、機械的強度
の減少することが認められており、0.5 X 10°
II/℃よりも低いCTEをもつ基材では黒鉛るつぼや
黒鉛ヒーターに通した機械的強度が得られ難い。逆にC
TEが3.0xlO°8/℃よりも大きくなりすぎると
熱分解炭素被膜のCTEとの差が大きくなりすぎて加熱
−冷却のサイクル間に該被膜が剥離し保護作用を失う傾
向がある。
In the present invention, graphite crucibles and graphite heaters that have been conventionally used in this type of field can be used as the graphite base material on which the pyrolytic carbon film is to be formed, but preferably these graphite base materials are It is isotropic and at the same time matches the coefficient of thermal expansion (hereinafter referred to as CTE) of the film within a certain range. Here, isotropy means that the properties (for example, coefficient of thermal expansion, specific resistance, etc.) in each direction are approximately the same, and the anisotropy ratio is 1.1 or less, preferably 1.05 or less. The CTH range of the base material is 0.
It is preferably 5 to 3.0×10°6/°C. It is generally recognized that as the CTE of the base material decreases, the anisotropy gradually increases and the mechanical strength decreases.
With a base material having a CTE lower than II/°C, it is difficult to obtain mechanical strength that can be passed through a graphite crucible or a graphite heater. On the contrary, C
If the TE becomes too large than 3.0xlO°8/°C, the difference between the CTE of the pyrolytic carbon coating becomes too large and the coating tends to peel off during heating-cooling cycles and lose its protective effect.

また本発明に於ける黒鉛基材としては炭素繊維と炭素と
の複合材であるるつぼやヒーターも包含される。これ等
複合基材はこれ自体高強度であり、これに熱分解炭素被
膜を形成することにより、基材の本来の優れた高強度に
更に熱分解炭素被膜形成に基づく耐熱衝撃性が加味され
、極めて好ましいものとなる。この際の上記複合基材と
しても従来から使用されて来たものがいずれも本発明に
於いて有効に使用することが出来る。
Further, the graphite base material in the present invention includes a crucible and a heater made of a composite material of carbon fiber and carbon. These composite base materials themselves have high strength, and by forming a pyrolytic carbon coating on them, thermal shock resistance based on the formation of the pyrolytic carbon coating is added to the original excellent high strength of the base material. This is extremely desirable. Any conventionally used composite base material can be effectively used in the present invention.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明を説明する。但し以下の例
に於いてPyCとは熱分解炭素を示すものとする。
The present invention will be explained below with reference to Examples. However, in the following examples, PyC refers to pyrolytic carbon.

実施例1 使用した基材たる黒鉛るつぼの特性は次のようなもので
ある。
Example 1 The characteristics of the graphite crucible used as the base material are as follows.

嵩比重;1.77、 CTE ; 2.5 x 10−6/”c (室温〜4
00℃)同異方比;1.06、  灰分;20111)
1m<サイズ;14φ×12 上記の黒鉛るつぼを1300℃に加熱し、C3H8ガス
を301/sin  (S、 T、 P、 )の流速で
流しPyCを沈積した。被膜の厚さは沈積時間を変えて
表1に示す膜厚に調整する。
Bulk specific gravity; 1.77, CTE; 2.5 x 10-6/”c (room temperature ~ 4
00℃) Anisotropic ratio: 1.06, Ash content: 20111)
1 m<Size; 14φ×12 The above graphite crucible was heated to 1300° C., and C3H8 gas was flowed at a flow rate of 301/sin (S, T, P, ) to deposit PyC. The thickness of the coating was adjusted to the thickness shown in Table 1 by varying the deposition time.

得られた黒鉛るつぼに金属シリコンを入れ高周波炉で1
500℃まで加熱し、シリコンを溶融させ1時間反応さ
せた。試料数は夫々5ケである。
Metallic silicon is placed in the obtained graphite crucible and heated in a high frequency furnace.
It was heated to 500°C to melt the silicon and reacted for 1 hour. The number of samples is 5 each.

また、急熱急冷試験をして5分間に1500℃に加熱し
たるつぼを水中に投じてpyc被膜の剥離状況を調べた
In addition, a rapid heating and cooling test was carried out to examine the peeling state of the pyc film by throwing a crucible heated to 1500° C. for 5 minutes into water.

最後に、Czochrolski法による実用テストを
行った。即ちアルゴン雰囲気で1550℃まで加熱して
金属シリコンを溶融し、これから3時間でシリコン単結
晶を引き上げ冷却する実験を繰り返し耐久性の評価を行
った。
Finally, a practical test was conducted using the Czochrolski method. That is, the durability was evaluated by repeating an experiment in which metal silicon was melted by heating to 1550° C. in an argon atmosphere, and then the silicon single crystal was pulled up and cooled for 3 hours.

またHeガスリーク指示計を使用してPyCIlのガス
透過量を測定しガス滲透性の評価をした。
Furthermore, the gas permeability of PyCl was measured using a He gas leak indicator to evaluate the gas permeability.

これ等の結果を表1に示す。These results are shown in Table 1.

表1より被膜厚さが20〜250μmのpyc被覆した
黒鉛るつぼと溶融シリコンとの反応を抑制するうえで極
めて効果的であることがわかる。
From Table 1, it can be seen that the pyc-coated graphite crucible with a coating thickness of 20 to 250 μm is extremely effective in suppressing the reaction between the molten silicon and the graphite crucible.

なおpycのCTEは室温〜400℃の平均値が2.3
X10°6/℃であった。
The CTE of pyc has an average value of 2.3 between room temperature and 400°C.
It was X10°6/°C.

実施例2 下記表2に示すようにCTEを変えた黒鉛基材に実施例
1と同じ条件で150μmのPyCを被覆し、急熱急冷
試験を行った。この結果を表2に示す。
Example 2 Graphite substrates with different CTEs as shown in Table 2 below were coated with 150 μm of PyC under the same conditions as Example 1, and a rapid heating and cooling test was conducted. The results are shown in Table 2.

表2 (※)室温〜400℃で濃泥 表2より、PyCを被覆する上で剥離や亀裂を生じない
0.5〜3.0X10=/℃の範囲のCTEをもつ黒鉛
基材を使用するのがよいことがわかる。
Table 2 (*) From room temperature to 400°C, from Table 2, use a graphite base material with a CTE in the range of 0.5 to 3.0X10 = /°C that does not cause peeling or cracking when coating PyC. It turns out that this is good.

実施例3 シリコン単結晶引上げ用るつぼのpyc被覆基材として
炭素繊維−炭素複合基材を使用して実施例1と同様の試
験を行った。
Example 3 A test similar to that in Example 1 was conducted using a carbon fiber-carbon composite substrate as the pyc-coated substrate of a crucible for pulling a silicon single crystal.

該複合基材ば、炭素繊維の3次元織物に数回、樹脂及び
ピッチを含浸、焼成して得られたもので次のような特性
を持っている。
The composite base material is obtained by impregnating a three-dimensional carbon fiber fabric with resin and pitch several times and firing it, and has the following characteristics.

嵩比重i1.57、 ETE;1.3X10°6/℃(室温〜400℃)同異
方比;1,1、   灰分;20pp+m→イズ; 1
4”φ×12″ 被覆方法及び試験方法は、実施例1と同様に行った。こ
れ等の結果を表3に示す。
Bulk specific gravity i1.57, ETE; 1.3X10°6/°C (room temperature to 400°C) isotropic ratio: 1,1, ash content: 20pp+m→Is; 1
4"φ x 12" The coating method and testing method were the same as in Example 1. These results are shown in Table 3.

実施例4 嵩比重;1.59、CTE;2.0xlO°6/℃(室
温〜400℃)、同異方比;1.08、固有抵抗;90
0μΩ値、曲げ強さ;25MPa、灰分;20pPfi
の等方性黒鉛より420 (外径)×390 (内径)
X500mに加工した黒鉛ヒーター基材に実施例1と同
じ方法で150μmのPyCを被覆して複合黒鉛ヒータ
ーを得た。
Example 4 Bulk specific gravity: 1.59, CTE: 2.0xlO°6/°C (room temperature to 400°C), isotropic ratio: 1.08, specific resistance: 90
0μΩ value, bending strength: 25MPa, ash content: 20pPfi
420 (outer diameter) x 390 (inner diameter) from isotropic graphite
A graphite heater base material processed to a size of 500 m was coated with 150 μm of PyC in the same manner as in Example 1 to obtain a composite graphite heater.

PyC膜のCTEは2.3X10”B/℃(室温〜40
0℃)であった。
The CTE of PyC film is 2.3X10"B/℃ (room temperature ~ 40
0°C).

この複合ヒーターをCzochrolski法による実
用テストを行った。その結果、非被覆材が42回目で割
れたのに対して被覆黒鉛材は237回目に割れた。
This composite heater was subjected to a practical test using the Czochrolski method. As a result, while the uncoated material cracked at the 42nd test, the coated graphite material cracked at the 237th test.

以上の実施例から、ガス不滲透性の緻密で高純度のPy
C被膜を多孔性黒鉛及び炭素繊維−炭素結合基材に20
〜250μmの厚さで被覆した黒鉛ヒーターは、5i0
2やSin、Stとの反応を抑制する上で極めて効果的
で長寿命を示すことがわかった。
From the above examples, it is clear that gas-impermeable, dense and high-purity Py
C coating on porous graphite and carbon fiber-carbon bond base material
The graphite heater coated with a thickness of ~250 μm is 5i0
It was found that it is extremely effective in suppressing reactions with 2, Sin, and St, and exhibits a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシリコン単結晶引上げ装置を表わす図面である
。 (1)、、、、、、引上軸 (2)、、、、、、上蓋 (3)、、、、、、アルゴンガス導入口(4)、、、、
、、チャン、マー (5)、、、、、、シード (6)、、、、、、シリコン単結晶 (7)、、、、、、シリコン融液 (8)、、、、、、石英るつぼ (9)、、、、、、黒鉛るつぼ (↓0) 、、、、、、断熱材 (11) 、、、、、、黒鉛ヒーター (12) 、、、、、、電極 (13) 、、、、、、輻射温度計 (以上)
FIG. 1 is a diagram showing a silicon single crystal pulling apparatus. (1), Pulling shaft (2), Upper lid (3), Argon gas inlet (4),
, Chang Ma (5), Seed (6), Silicon single crystal (7), Silicon melt (8), Quartz crucible (9) Graphite crucible (↓0) , Insulation material (11) , Graphite heater (12) , Electrode (13) , , , Radiation thermometer (or more)

Claims (5)

【特許請求の範囲】[Claims] (1)黒鉛基材表面に、高純度且つガス不滲透性の緻密
な熱分解炭素被膜を形成させて成ることを特徴とするシ
リコン単結晶引上げ装置用黒鉛るつぼ及びヒーター。
(1) A graphite crucible and heater for a silicon single crystal pulling device, characterized in that a dense pyrolytic carbon film of high purity and gas impermeability is formed on the surface of a graphite base material.
(2)上記熱分解炭素被膜に於ける黒鉛結晶基底面が基
材表面にほぼ平行に選択的に配向していることを特徴と
する特許請求の範囲第1項に記載の黒鉛るつぼ及びヒー
ター。
(2) The graphite crucible and heater according to claim 1, wherein the graphite crystal basal plane in the pyrolytic carbon coating is selectively oriented substantially parallel to the substrate surface.
(3)上記熱分解炭素被膜の厚みが20〜250μmで
ある特許請求の範囲第1項または第2項記載の黒鉛るつ
ぼ及びヒーター。
(3) The graphite crucible and heater according to claim 1 or 2, wherein the pyrolytic carbon coating has a thickness of 20 to 250 μm.
(4)上記黒鉛基材が等方性で且つその熱膨脹係数が0
.5×10^−^6〜3.0×10^−^6/℃である
ことを特徴とする特許請求の範囲第1乃至第3項のいず
れかに記載の黒鉛るつぼ及びヒーター。
(4) The graphite base material is isotropic and has a coefficient of thermal expansion of 0.
.. The graphite crucible and heater according to any one of claims 1 to 3, characterized in that the temperature is 5 x 10^-^6 to 3.0 x 10^-^6/°C.
(5)上記黒鉛基材が炭素繊維と炭素との複合材である
ことを特徴とする特許請求の範囲第1乃至第4項のいず
れかに記載の黒鉛るつぼ及びヒーター。
(5) The graphite crucible and heater according to any one of claims 1 to 4, wherein the graphite base material is a composite material of carbon fiber and carbon.
JP9829185A 1985-05-09 1985-05-09 Graphite crucible and heater for silicon single crystal pulling device Pending JPS61256993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9829185A JPS61256993A (en) 1985-05-09 1985-05-09 Graphite crucible and heater for silicon single crystal pulling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9829185A JPS61256993A (en) 1985-05-09 1985-05-09 Graphite crucible and heater for silicon single crystal pulling device

Publications (1)

Publication Number Publication Date
JPS61256993A true JPS61256993A (en) 1986-11-14

Family

ID=14215820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9829185A Pending JPS61256993A (en) 1985-05-09 1985-05-09 Graphite crucible and heater for silicon single crystal pulling device

Country Status (1)

Country Link
JP (1) JPS61256993A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166790A (en) * 1986-12-26 1988-07-09 Toshiba Ceramics Co Ltd Pulling up device for silicon single crystal
JPS63210088A (en) * 1987-02-25 1988-08-31 日立化成工業株式会社 Manufacture of thermally cracked carbon coated graphite material
JPS63236798A (en) * 1987-03-25 1988-10-03 Toyo Tanso Kk Graphite material for pulling-up apparatus of ga compound single crystal
JPH01145312A (en) * 1987-11-30 1989-06-07 Toshiro Yamashina Production of carbon material having small amount of out gas and carbon structural material using said carbon material obtained by said production
JPH01167210A (en) * 1987-12-24 1989-06-30 Toyo Tanso Kk Processed article of carbonaceous felt and production thereof
JPH01275496A (en) * 1988-04-28 1989-11-06 Mitsubishi Metal Corp Quartz crucible for pulling up silicon single crystal
JPH0316994A (en) * 1989-06-12 1991-01-24 Nippon Mining Co Ltd Growth of compound semiconductor single crystal
JPH0489388A (en) * 1990-07-27 1992-03-23 Shin Etsu Handotai Co Ltd Graphite material for pulling up single crystal
US5098675A (en) * 1986-12-26 1992-03-24 Toshiba Ceramics Co., Ltd. Silicon single crystal pull-up apparatus
JP2001031473A (en) * 1999-07-21 2001-02-06 Toyo Tanso Kk Graphite heater
US6287381B1 (en) * 1991-08-22 2001-09-11 Raytheon Company Crystal growth process for large area GaAs with controllable resistivity and infrared window/dome with EMI-EMP protection formed therefrom
JP2009084150A (en) * 2008-11-25 2009-04-23 Toyo Tanso Kk Manufacturing method of carbon fiber-reinforced carbon composite material for single crystal drawing-up unit
CN108997019A (en) * 2017-06-02 2018-12-14 上海新昇半导体科技有限公司 graphite crucible and its manufacturing method
CN109975347A (en) * 2019-03-13 2019-07-05 安徽理工大学 A kind of the emulsion state sample fill method and auxiliary device of heat analysis crucible

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113754A (en) * 1974-07-09 1976-02-03 Toyama Chemical Co Ltd Shinkinaganma *44*3** okisoshikurohekishiru * fueniru ** ganma ketopuchirusan oyobi sonoenruinoseiho
JPS60103087A (en) * 1983-11-08 1985-06-07 日立化成工業株式会社 Graphite member for heating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113754A (en) * 1974-07-09 1976-02-03 Toyama Chemical Co Ltd Shinkinaganma *44*3** okisoshikurohekishiru * fueniru ** ganma ketopuchirusan oyobi sonoenruinoseiho
JPS60103087A (en) * 1983-11-08 1985-06-07 日立化成工業株式会社 Graphite member for heating

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098675A (en) * 1986-12-26 1992-03-24 Toshiba Ceramics Co., Ltd. Silicon single crystal pull-up apparatus
JPS63166790A (en) * 1986-12-26 1988-07-09 Toshiba Ceramics Co Ltd Pulling up device for silicon single crystal
JPS63210088A (en) * 1987-02-25 1988-08-31 日立化成工業株式会社 Manufacture of thermally cracked carbon coated graphite material
JPS63236798A (en) * 1987-03-25 1988-10-03 Toyo Tanso Kk Graphite material for pulling-up apparatus of ga compound single crystal
JPH01145312A (en) * 1987-11-30 1989-06-07 Toshiro Yamashina Production of carbon material having small amount of out gas and carbon structural material using said carbon material obtained by said production
JPH01167210A (en) * 1987-12-24 1989-06-30 Toyo Tanso Kk Processed article of carbonaceous felt and production thereof
JPH01275496A (en) * 1988-04-28 1989-11-06 Mitsubishi Metal Corp Quartz crucible for pulling up silicon single crystal
JPH0316994A (en) * 1989-06-12 1991-01-24 Nippon Mining Co Ltd Growth of compound semiconductor single crystal
JPH0489388A (en) * 1990-07-27 1992-03-23 Shin Etsu Handotai Co Ltd Graphite material for pulling up single crystal
US6287381B1 (en) * 1991-08-22 2001-09-11 Raytheon Company Crystal growth process for large area GaAs with controllable resistivity and infrared window/dome with EMI-EMP protection formed therefrom
JP2001031473A (en) * 1999-07-21 2001-02-06 Toyo Tanso Kk Graphite heater
JP2009084150A (en) * 2008-11-25 2009-04-23 Toyo Tanso Kk Manufacturing method of carbon fiber-reinforced carbon composite material for single crystal drawing-up unit
CN108997019A (en) * 2017-06-02 2018-12-14 上海新昇半导体科技有限公司 graphite crucible and its manufacturing method
CN109975347A (en) * 2019-03-13 2019-07-05 安徽理工大学 A kind of the emulsion state sample fill method and auxiliary device of heat analysis crucible
CN109975347B (en) * 2019-03-13 2021-05-07 安徽理工大学 Latex-like sample filling method and auxiliary device of crucible for thermal analysis

Similar Documents

Publication Publication Date Title
JPS61256993A (en) Graphite crucible and heater for silicon single crystal pulling device
JPS61201607A (en) Product consisting of pyrolytically prepared boron nitride and its preparation
Jiang et al. A dense structure Si-SiC coating for oxidation and ablation protection of graphite fabricated by impregnation-pyrolysis and gaseous silicon infiltration
Moore et al. An induction furnace for operations up to 3400 C using well oriented graphite
JPH01225686A (en) Chemical heat storage material and its manufacture
US4702901A (en) Process for growing silicon carbide whiskers by undercooling
JPH1045473A (en) Graphite material coated with thermally decomposed carbon excellent in oxidation resistance
JP2000351670A (en) Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal
US4241104A (en) Process for bonding carbon substrates using particles of a thermally stable solid
JPS60103087A (en) Graphite member for heating
CN101560728A (en) Method for generating silicon carbide coating on surface of carbon fiber
US2996783A (en) Method of shaping sic by vaporization and condensation
JPS605523B2 (en) Manufacturing method of graphite base material for oxidation-resistant coating
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
CN103757603A (en) Method for preparing zirconium diboride coating
JPH06263568A (en) Method for improving oxidation resistance of carbonaceous material
JP2620075B2 (en) Graphite material for Ga compound single crystal pulling device
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JPS6374995A (en) Graphite material for epitaxy
JPS60127210A (en) Production of high electrically conductive thin film
JP3220730B2 (en) Graphite wafer holding jig for atmospheric pressure CVD equipment
JPH01249679A (en) Graphite-silicon carbide composite body and production thereof
KR20140076135A (en) Method of coating a graphite pebble with silicon carbide and the graphite pebble coated with silicon carbide
JPH0154432B2 (en)