JPS6125694A - Oxidation treatment of organic waste water - Google Patents

Oxidation treatment of organic waste water

Info

Publication number
JPS6125694A
JPS6125694A JP14435884A JP14435884A JPS6125694A JP S6125694 A JPS6125694 A JP S6125694A JP 14435884 A JP14435884 A JP 14435884A JP 14435884 A JP14435884 A JP 14435884A JP S6125694 A JPS6125694 A JP S6125694A
Authority
JP
Japan
Prior art keywords
activated carbon
oxidizing agent
reaction
oxidation
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14435884A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yagi
康之 八木
Masaharu Kataoka
片岡 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP14435884A priority Critical patent/JPS6125694A/en
Publication of JPS6125694A publication Critical patent/JPS6125694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To obtain an excellent treating effect by carrying out the oxidation of organic materials and the decomposition of the remaining oxidizing agent with use of activated carbon as a medium. CONSTITUTION:The pH of the liquid to be treated is regulated in a pH regulating vessel 1 to specified reaction pH, and the liquid flows into the first reaction vessel 2. Activated carbon is suspended in the reaction vessel 2, and an oxidizing agent such as hydrogen peroxide is injected into the vessel by an oxidizing agent injection pump 6. The organic materials in the liquid to be treated are adsorbed into pores on the surface of the activated carbon by the organic material adsorbing action of the activated carbon, and the organic material concn. is gradually increased. Simultaneously with said action, the oxidizing agent injected into the vessel is decomposed on the surface of the porous activated carbon, a reactive group for decomposing the organic material is liberated, and the organic materials adsorbed to the surface of the activated carbon are oxidized and decomposed.

Description

【発明の詳細な説明】 本発明は,有機性廃水を過酸化水素又は次亜塩素酸ナト
リウム等の酸化剤で酸化処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for oxidizing organic wastewater with an oxidizing agent such as hydrogen peroxide or sodium hypochlorite.

〔従来技術〕[Prior art]

従来,有機性廃水の酸化処理方法としては,過酸化水素
又は次亜塩素酸ナトリウム等の酸化剤を被処理液に注入
し,反応槽内で被処理液中の有機物を酸化分解させ,余
剰の酸化剤を後段で亜坑酸ナトリウム又は重亜硫酸ナト
リウム等の還元剤で中和する方法,酸化性ガス,例えば
オノ°ン等を被処理液に接触させて酸化処理する方法,
紫外線照射又は電気化学的な酸化処理方法が知られてい
る。
Conventionally, the oxidation treatment method for organic wastewater involves injecting an oxidizing agent such as hydrogen peroxide or sodium hypochlorite into the liquid to be treated, oxidizing and decomposing the organic matter in the liquid in a reaction tank, and removing the excess. A method in which the oxidizing agent is neutralized with a reducing agent such as sodium aphrite or sodium bisulfite at a later stage; a method in which an oxidizing gas such as onone is brought into contact with the liquid to be treated;
Ultraviolet irradiation or electrochemical oxidation treatment methods are known.

これらの処理方法のうち,オノ゛ンや紫外線等による酸
化処理方法は装置が複雑となるばかりでなく,運転コス
トも酸化剤を用いる方法に比べて。
Among these treatment methods, oxidation treatment methods using onion or ultraviolet rays not only require more complicated equipment, but also have higher operating costs than methods that use oxidizers.

高価となる等の欠点を有するため,通常の酸化処理は酸
化剤を用いた薬品酸化が行われている。しかしながら、
この薬品酸化処理は被処理液中の有機物の酸化速度が運
いため、長時間接触させなければ充分な処理効果が得ら
れないと同時に、残存する酸化剤を中和する際に別途、
還元剤を必要とする欠点がある。
Since it has drawbacks such as being expensive, chemical oxidation using an oxidizing agent is commonly used as the oxidation treatment. however,
In this chemical oxidation treatment, the rate of oxidation of organic matter in the liquid to be treated is affected, so sufficient treatment effects cannot be obtained unless contact is made for a long time.
It has the disadvantage of requiring a reducing agent.

また、この場合に、酸化速度を上げるために金属触媒1
例えば酸化ニッケル、酸化マンガン等を用いる方法も検
討されているが、必ずしも満足する結果は得られていな
い。
In this case, in order to increase the oxidation rate, a metal catalyst 1
For example, methods using nickel oxide, manganese oxide, etc. have been considered, but satisfactory results have not always been obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記の従来技術の欠点を解消し、被処
理液中の有機物に対する酸化速度を高め。
An object of the present invention is to eliminate the drawbacks of the prior art described above and increase the rate of oxidation of organic substances in the liquid to be treated.

従来の酸化処理に比べて優れた処理効果が得られ。Superior treatment effects can be obtained compared to conventional oxidation treatment.

残存する酸化剤の処理を還元剤を用いることなく行うこ
とのできる有機性廃水の処理方法を提供することにある
An object of the present invention is to provide a method for treating organic wastewater in which residual oxidizing agents can be treated without using reducing agents.

〔発明の要点」 この目的は9本発明によれば、有機物の酸化工程及び残
存酸化剤の分解工程をそれぞれ活性炭を媒体として行う
ことにより達成できる。即ち1本発明による有機性廃水
の処理方法は廃水を酸化剤と混合して活性炭を浮遊させ
た反応槽内に流入させ、酸化剤として過酸化水素を用い
る場合は反応pH3〜59次亜塩素酸ナトリウムを用い
る場合は反応pH9〜10とし、有機物を酸化する工程
と、その耐化工程からの流出液を別の活性炭を浮遊させ
た反応槽に流入させて残存する酸化剤を分解させる工程
から成ることを特徴とする。
[Summary of the Invention] According to the present invention, this object can be achieved by carrying out the step of oxidizing organic matter and the step of decomposing the residual oxidant, respectively, using activated carbon as a medium. Namely, in the method for treating organic wastewater according to the present invention, wastewater is mixed with an oxidizing agent and flows into a reaction tank in which activated carbon is suspended, and when hydrogen peroxide is used as the oxidizing agent, the reaction pH is 3 to 59 hypochlorous acid. When using sodium, the reaction pH is adjusted to 9 to 10, and the process consists of a step of oxidizing organic matter, and a step of flowing the effluent from the resistant process into another reaction tank in which activated carbon is suspended to decompose the remaining oxidizing agent. It is characterized by

本発明は、酸化剤による有機物の酸化分解作用が多孔性
固体表面で活発に行われ、かつ有機物濃度が高いほど酸
化速度が上昇するという2つの物理的特性を応用する手
段として、酸化処理に活性炭を媒体として用いるもので
ある。即ち1本発明は、被処理液中の有機物を多孔性活
性炭の表面に吸着させ、高濃度の有機物を活性炭表面に
保持する吸着濃縮作用と高濃度の有機物が保持された活
性炭表面で酸化剤を作用させ、効率よく酸化処理する酸
化分解作用更に、有機物の酸化分解後に残留麺する酸化
剤を別の活性炭と接触させて酸化剤の自己分解速度を上
昇させ、無毒化する作用を反応槽内で連続的に行う様、
構成したものである。
The present invention utilizes activated carbon for oxidation treatment as a means of applying two physical properties: the oxidative decomposition action of organic matter by an oxidizing agent is actively carried out on the surface of a porous solid, and the oxidation rate increases as the concentration of organic matter increases. is used as a medium. That is, 1. The present invention adsorbs organic substances in the liquid to be treated on the surface of porous activated carbon, and has an adsorption concentration effect that retains high-concentration organic substances on the activated carbon surface, and an oxidizing agent on the activated carbon surface that retains high-concentration organic substances. In addition, the oxidizing agent that remains after the oxidative decomposition of organic matter is brought into contact with another activated carbon to increase the self-decomposition rate of the oxidizing agent and detoxify it in the reaction tank. Do it continuously,
It is composed of

〔発明の実施例〕[Embodiments of the invention]

次に図面に基づいて9本発明を詳述する。第1図は本発
明の酸化処理方法を実施する装置の一実施例を示すフロ
ーシートである。被処理液は、まずpH調整槽lで所定
の反応pH(過酸化水素の場合:反応pH3〜59次亜
塩素酸ソーダの場合:反応pH9〜10)に調整され、
第一反応槽2に流入する。第1反応槽2には活性炭が浮
遊しており、ff化化性注入ポンプ6槽内に過酸化水素
又は次亜機素酸ナトリウム等の酸化剤が注入される。
Next, the present invention will be explained in detail based on the drawings. FIG. 1 is a flow sheet showing an embodiment of an apparatus for carrying out the oxidation treatment method of the present invention. The liquid to be treated is first adjusted to a predetermined reaction pH (for hydrogen peroxide: reaction pH 3 to 59, for sodium hypochlorite: reaction pH 9 to 10) in a pH adjustment tank 1,
It flows into the first reaction tank 2. Activated carbon is floating in the first reaction tank 2, and an oxidizing agent such as hydrogen peroxide or sodium hypoxite is injected into the ff-forming injection pump 6 tank.

被処理液中の有機物は、まず活性炭の有機物吸着作用に
より活性炭表面の細孔内部に吸着され、徐々に有機物濃
度が高められるが(吸着−濃縮作用)この作用と同時に
槽内に注入された酸化剤が多孔性の活性炭表面で分解し
、有機物を分解する反応基(過酸化水素の場合は05ジ
カル)が遊離し。
The organic matter in the liquid to be treated is first adsorbed inside the pores on the surface of the activated carbon by the organic matter adsorption effect of the activated carbon, and the concentration of organic matter gradually increases (adsorption-concentration effect). The agent decomposes on the surface of porous activated carbon, and a reactive group (05 radical in the case of hydrogen peroxide) that decomposes organic matter is liberated.

活性炭表面に吸着された有機物を酸化分解する。Oxidatively decomposes organic substances adsorbed on the surface of activated carbon.

(酸化分解作用) 前記の吸着−濃縮作用と酸化分解作用とは同一活性炭表
面で行われ、単一活性炭表面での両反応は見掛は上、平
衡状態に近くなっている。従って。
(Oxidative decomposition action) The adsorption-concentration action and the oxidative decomposition action described above are performed on the same activated carbon surface, and both reactions on the single activated carbon surface appear to be close to an equilibrium state. Therefore.

活性炭吸着で一般的に見られる破過(有機物吸肩の飽和
点)は生じにくい。こうして吸着−濃縮作用及び酸化分
解作用を受けた被処理液は第1反応槽内で活性炭と分離
され、pH調整槽3に流入する。
Breakthrough (saturation point of the organic absorption shoulder), which is commonly seen in activated carbon adsorption, is unlikely to occur. The liquid to be treated thus subjected to the adsorption-concentration action and the oxidative decomposition action is separated from the activated carbon in the first reaction tank and flows into the pH adjustment tank 3.

被処理液はpH調整槽3で酸化剤の分解7)H(過酸化
水素の場合:反応pH9〜121次亜塩素酸ソーダの場
合:反応pH3〜5)に調整され、第2反応槽4に流入
する。第2反応槽4は第1反応槽と同様に活性炭が浮遊
しておシ、ここで残存する酸化剤、即ち有機物の酸化分
解が終了した後に残留する酸化剤は、更に活性炭表面で
自己分解を促進され、迅速に分解する。従って、処理水
中には酸化剤が残留することなく、従来の酸化処理法に
使用された亜硫酸ナトリウム等の還元剤は不要となる。
The liquid to be treated is adjusted to decomposition of the oxidizing agent 7)H (for hydrogen peroxide: reaction pH 9-121, for sodium hypochlorite: reaction pH 3-5) in the pH adjustment tank 3, and then transferred to the second reaction tank 4. Inflow. In the second reaction tank 4, activated carbon is suspended in the same way as in the first reaction tank, and the remaining oxidizing agent, that is, the oxidizing agent remaining after the oxidative decomposition of organic matter is completed, undergoes further self-decomposition on the surface of the activated carbon. Accelerated and rapid decomposition. Therefore, no oxidizing agent remains in the treated water, and reducing agents such as sodium sulfite used in conventional oxidation treatment methods become unnecessary.

残存酸化剤の分解が終了し、無害化された被処理液は第
2反応槽内で活性炭と分離されpH調整槽5で中和され
た後、放流又は再利用される。
After the decomposition of the remaining oxidizing agent is completed, the detoxified liquid to be treated is separated from the activated carbon in the second reaction tank, neutralized in the pH adjustment tank 5, and then discharged or reused.

こうして9本発明によれば、有機性廃水を迅速に効率よ
く酸化処理することができ、しかも、残存酸化剤を除去
するための還元剤を必要とせず優れた処理効果が達成さ
れる。
Thus, according to the present invention, organic wastewater can be oxidized quickly and efficiently, and excellent treatment effects can be achieved without the need for a reducing agent to remove residual oxidizing agents.

次に実施例に基づいて本発明を詳述するが1本発明はこ
れに限定されるものではない。
Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

〔実施例1〕 機械工場廃水の2次処理水(COD含有量110w1/
l)を用いて、第1図に示したフローシートの酸化工程
及び分解工程、それぞれの基本実験を行った。また7本
実験に使用した活性炭はあらかじめ有機物吸着の破過点
に達しているスはントカーボンである。
[Example 1] Secondary treated machine factory wastewater (COD content 110w1/
Basic experiments for the oxidation process and the decomposition process of the flow sheet shown in FIG. 1 were conducted using 1). In addition, the activated carbon used in the seven experiments is a short carbon that has already reached the breakthrough point of organic matter adsorption.

第2図は第1反応槽(酸化工程)で酸化剤として過酸化
水素を用いた場合の接触時間とCOD除去量との関係を
示し、第3図は反応pHとCOD除去lとの関係を示す
。第2図及び以下の記載において残存CODは残存酸化
剤を補正した数値で示している。第2図及び第3図から
れかるように従来法(活性炭omt7t>では接触時間
が5時間経過しても、CODが30■/lであるのに対
し。
Figure 2 shows the relationship between the contact time and the amount of COD removed when hydrogen peroxide is used as the oxidant in the first reaction tank (oxidation step), and Figure 3 shows the relationship between the reaction pH and the amount of COD removed. show. In FIG. 2 and the following description, the residual COD is shown as a value corrected for the residual oxidant. As can be seen from FIGS. 2 and 3, in contrast to the conventional method (activated carbon omt7t), the COD was 30 μ/l even after 5 hours of contact time.

本発明方法である活性炭存在下による酸化では活性炭量
を増加させるにつれて、CODの除去効果が上昇し、活
性炭20,000η/lの場合では接触時間2時間で既
にCODは10■/lとなっている。また、この時の反
応pHは3〜5が最も好ましいことが分かる。
In the method of the present invention, oxidation in the presence of activated carbon, the COD removal effect increases as the amount of activated carbon increases, and in the case of activated carbon of 20,000 η/l, the COD was already 10 η/l after 2 hours of contact time. There is. It is also understood that the reaction pH at this time is most preferably 3 to 5.

第4図は第1反応槽に使用する酸化剤を次亜塩素酸ナト
リウムとした場合の接触時間とCOD除去量との関係を
示し、第5図は反応pHとCOD除去量との関係を示す
Figure 4 shows the relationship between the contact time and the amount of COD removed when the oxidizing agent used in the first reaction tank is sodium hypochlorite, and Figure 5 shows the relationship between the reaction pH and the amount of COD removed. .

第4図及び第5図かられかるように、酸化剤として次亜
塩素酸ナトリウムを用いた場合も1本発明方法は従来法
に比べ、COD除去効果が大きい。
As can be seen from FIGS. 4 and 5, even when sodium hypochlorite is used as the oxidizing agent, the method of the present invention has a greater COD removal effect than the conventional method.

また、この時の反応pHは、過酸化水素−を用いた場合
と異なり、pH9〜10のアルカリ状態が最も好ましい
ことがわかる。
Further, it can be seen that the reaction pH at this time is most preferably an alkaline state of pH 9 to 10, unlike the case where hydrogen peroxide is used.

即ち1本発明方法は酸化剤として過酸化水素及び次亜塩
素酸ナトリウムのいずれを使用しても。
Namely, the method of the present invention can be used regardless of whether hydrogen peroxide or sodium hypochlorite is used as the oxidizing agent.

従来法と比べて酸化速度及び処理効果の両面において著
しく優れている。
This method is significantly superior to conventional methods in terms of both oxidation speed and treatment effect.

第6図は、第2反応槽(残留酸化剤の分解工程)Kおけ
る残留酸化剤の分解pHと残留濃度との関係を示す。第
6図かられかるように、酸化剤として過酸化水素を用い
た場合と1次亜塩素酸ナトリウムを用いた場合とでは9
分解pHの好適範囲が異なり、残留過酸化水素の好適分
解pHは9〜12、残留次亜塩素酸ナトリウムの好適分
解pHは3〜5であり、このpH条件において、接触時
間を2時間とすることで残留醪化剤の自己分解が終了す
ることがわかる。
FIG. 6 shows the relationship between the decomposition pH of the residual oxidant in the second reaction tank (residual oxidant decomposition step) K and the residual concentration. As shown in Figure 6, when hydrogen peroxide is used as the oxidizing agent and when primary sodium hypochlorite is used, the difference is 9.
The preferred decomposition pH ranges are different; the preferred decomposition pH for residual hydrogen peroxide is 9 to 12, and the preferred decomposition pH for residual sodium hypochlorite is 3 to 5. Under these pH conditions, the contact time is 2 hours. It can be seen that this completes the self-decomposition of the residual thickening agent.

〔実施例2〕 実施例1と同じ機械工場の2次処理水を用いて。[Example 2] Using the same secondary treated water from the machine shop as in Example 1.

第1図に示すフローシートで連続処理を行った。Continuous processing was carried out using the flow sheet shown in FIG.

酸化剤として過酸化水素をCODに対して、1.5倍用
いて第1反応槽の接触時間を4時間1及応pH3,活性
炭浮遊量10,000〜/1.第2反応槽の接触時間を
2時間9及応pH10,活性炭浮遊15oOo■/lで
処理し1通水倍率(原水量/活性炭容量)k5000倍
まで実施した。処理水質及び処理COD量を測定し、結
果を第7図に示す。
Hydrogen peroxide was used as an oxidizing agent at a rate of 1.5 times the COD, and the contact time in the first reaction tank was set to 4 hours at a pH of 3, and the amount of suspended activated carbon was 10,000 to 1. The contact time in the second reaction tank was 2 hours at 9, pH 10 and activated carbon suspended at 150Oo/l until the water flow rate (raw water amount/activated carbon volume) was 5000 times. The treated water quality and treated COD amount were measured, and the results are shown in Figure 7.

運転期間を通じて、第1反応検出口の残存CODはlO
■/を前後(残存酸化剤のCODを補正)で安定してお
り、この時の残存酸化剤は20〜50■/lであった。
Throughout the operation period, the residual COD at the first reaction detection port is lO
It was stable around (COD of residual oxidant was corrected) around (1)/l, and the residual oxidant at this time was 20 to 50 (2)/l.

残存酸化剤は第2反応槽で分解され放流水(第2反応検
出口)には殆ど検出されなかった。
The remaining oxidant was decomposed in the second reaction tank and was hardly detected in the discharged water (second reaction detection port).

また、処理COD量の累積値をみると1通水倍量500
0倍において1.19−Cot)/S’−活性炭となり
In addition, looking at the cumulative value of the amount of COD treated, the amount of water per passage is 500.
At 0x, it becomes 1.19-Cot)/S'-activated carbon.

通常の活性炭の破過点帆45’−COD/r−活性炭と
比べて約3倍の結果を得た。これは1本発明方法では活
性炭表面で有機物の吸着−濃縮と酸化分解との両反応が
平衡して進行しているため、破過現象が生じにくいもの
と考えられる。なお1本発明方法は活性炭の浮遊量及び
酸化剤注入tを変化させることで、実装置における水量
、水質変動にも容易に灼応できる特徴がある。
The breakthrough point of normal activated carbon was about 3 times as high as that of 45'-COD/r-activated carbon. This is thought to be because, in the method of the present invention, both reactions of adsorption and concentration of organic matter and oxidative decomposition proceed in equilibrium on the surface of the activated carbon, so that the breakthrough phenomenon is unlikely to occur. Note that the method of the present invention has a feature that it can easily respond to changes in water amount and water quality in an actual device by changing the suspended amount of activated carbon and the oxidizing agent injection t.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一実施例を示すフ
ローシート、第2図は過酸化水素を用いた有機物の酸化
工程におけるCODの時間変化図。 第3図は同じく酸化工程における反応pHとの関係図、
第4図は次亜塩素酸ナトリウムを用いた有機物の酸化工
礎におけるCODの時間変化図、第5図は同じく酸化工
程における反応pHとの関係図、第6図は残留酸化剤の
分解工程における分解7)Hとの関係図、第7図は過酸
化水素を用いた酸化工程と分解工程の連続結果で、bる
。 1=−pH調整槽    2・・・第1反応槽3 ・p
H調整槽    4・・・第2反応槽5・・pH調整槽
    6・・酸化剤注入ポンシフ ・被処理液移送ポ
ンプ 8 ・・酸・アルカリ注入ポンプ。
FIG. 1 is a flow sheet showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a time change diagram of COD in an oxidation process of organic matter using hydrogen peroxide. Figure 3 is also a relationship diagram with reaction pH in the oxidation process,
Figure 4 is a time change diagram of COD in the oxidation foundation of organic matter using sodium hypochlorite, Figure 5 is a diagram of the relationship with reaction pH in the oxidation process, and Figure 6 is a diagram of the relationship between the COD and the reaction pH in the decomposition process of residual oxidant. Decomposition 7) Relationship diagram with H, Figure 7 shows the successive results of the oxidation step using hydrogen peroxide and the decomposition step. 1=-pH adjustment tank 2...1st reaction tank 3 ・p
H adjustment tank 4...Second reaction tank 5...pH adjustment tank 6...Oxidizer injection pump - To be treated liquid transfer pump 8...Acid/alkali injection pump.

Claims (2)

【特許請求の範囲】[Claims] (1)有機性廃水に過酸化水素又は次亜塩素酸ナトリウ
ム等の酸化剤を作用させ、廃水中の有機物を酸化処理す
る方法において、廃水を酸化剤と混合して活性炭を浮遊
させた反応槽内に流入させ有機物を酸化させる酸化工程
と、その酸化工程からの流出液を別の活性炭を浮遊させ
た反応槽に流入させ残留する酸化剤を分解する工程から
成ることを特徴とする有機性廃水の酸化処理方法。
(1) In a method of oxidizing organic matter in wastewater by applying an oxidizing agent such as hydrogen peroxide or sodium hypochlorite to organic wastewater, a reaction tank is used in which wastewater is mixed with an oxidizing agent and activated carbon is suspended. Organic wastewater is characterized by comprising an oxidation step in which the organic matter is oxidized by the oxidizing agent, and a step in which the effluent from the oxidation step is flowed into another reaction tank in which activated carbon is suspended to decompose the remaining oxidizing agent. oxidation treatment method.
(2)酸化剤として、過酸化水素を作用させる場合は酸
化工程での反応pHを3〜5、分解工程での反応pHを
9〜12とし、酸化剤として、次亜塩素酸ナトリウムを
作用させる場合は酸化工程での反応pHを9〜10、分
解工程での反応pHを3〜5とすることを特徴とする特
許請求の範囲第一項記載の酸化処理方法。
(2) When using hydrogen peroxide as an oxidizing agent, the reaction pH in the oxidation step is 3 to 5, and the reaction pH in the decomposition step is 9 to 12, and sodium hypochlorite is used as the oxidizing agent. The oxidation treatment method according to claim 1, wherein the reaction pH in the oxidation step is 9 to 10, and the reaction pH in the decomposition step is 3 to 5.
JP14435884A 1984-07-13 1984-07-13 Oxidation treatment of organic waste water Pending JPS6125694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14435884A JPS6125694A (en) 1984-07-13 1984-07-13 Oxidation treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14435884A JPS6125694A (en) 1984-07-13 1984-07-13 Oxidation treatment of organic waste water

Publications (1)

Publication Number Publication Date
JPS6125694A true JPS6125694A (en) 1986-02-04

Family

ID=15360244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14435884A Pending JPS6125694A (en) 1984-07-13 1984-07-13 Oxidation treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS6125694A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241596A (en) * 1986-04-11 1987-10-22 Kurita Water Ind Ltd Treatment of waste water containing organic matter
JPH04300695A (en) * 1991-03-28 1992-10-23 Ebara Infilco Co Ltd Method and apparatus for treating organic waste water
KR20010088752A (en) * 2001-08-30 2001-09-28 염복철 The treatment method of industrial wastewaters having a hard decomposition activity
KR100434392B1 (en) * 2001-08-30 2004-06-04 삼구화학공업 주식회사 The treatment method of industrial wastewaters utilizing perchloric acid salt
US7985877B2 (en) 2006-06-05 2011-07-26 Daikin Industries, Ltd. Carboxylic acid compound, use thereof, and process for producing the same
US8013182B2 (en) 2007-11-13 2011-09-06 Daikin Industries, Ltd. Carboxylic acid ester, use of the same, and method for producing the same
US8022245B2 (en) 2006-07-06 2011-09-20 Daikin Industries, Ltd. Alpha-fluoromethoxycarboxylic ester, process for producing the alpha-fluoromethoxycarboxylic ester, and process for producing sevoflurane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241596A (en) * 1986-04-11 1987-10-22 Kurita Water Ind Ltd Treatment of waste water containing organic matter
JPH04300695A (en) * 1991-03-28 1992-10-23 Ebara Infilco Co Ltd Method and apparatus for treating organic waste water
KR20010088752A (en) * 2001-08-30 2001-09-28 염복철 The treatment method of industrial wastewaters having a hard decomposition activity
KR100434392B1 (en) * 2001-08-30 2004-06-04 삼구화학공업 주식회사 The treatment method of industrial wastewaters utilizing perchloric acid salt
US7985877B2 (en) 2006-06-05 2011-07-26 Daikin Industries, Ltd. Carboxylic acid compound, use thereof, and process for producing the same
US8022245B2 (en) 2006-07-06 2011-09-20 Daikin Industries, Ltd. Alpha-fluoromethoxycarboxylic ester, process for producing the alpha-fluoromethoxycarboxylic ester, and process for producing sevoflurane
US8013182B2 (en) 2007-11-13 2011-09-06 Daikin Industries, Ltd. Carboxylic acid ester, use of the same, and method for producing the same

Similar Documents

Publication Publication Date Title
JP2000015288A (en) Waste water treatment method and apparatus
JP2001205277A (en) Method and apparatus for removing hardly decomposable organic compound in water
JPS6125694A (en) Oxidation treatment of organic waste water
JPH02164490A (en) Water treatment method and apparatus
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JPH09150165A (en) Water treating method and device therefor
JPH10277568A (en) Treatment of organic matter-containing waste water
JPS61111198A (en) Apparatus for producing ultra-pure water
JP2003088885A (en) Method and apparatus for treating organic waste water
JPS6054787A (en) Oxidation treatment of organic waste water
JPH1133593A (en) Treatment of organic waste water
CN105936535B (en) A kind of method for treating water and device of O3 catalytic oxidation
CN211644870U (en) Device for treating low-concentration COD wastewater
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
JP4538881B2 (en) Membrane module cleaning method
TW201313625A (en) Treatment method for wastewater in semiconductor process
JP2749256B2 (en) Advanced water treatment method
JPH11165180A (en) Method for treating scrubber drainage
JPS58137492A (en) Method for removing color of water
JP2000350997A (en) Method and apparatus for treating sewage
JPS6218230B2 (en)
JPS54135448A (en) Biological nitrification and denitrating process of sewage
JP2915214B2 (en) Method for treating wastewater containing alkyl sulfoxide
JPH0411990A (en) Treatment of waste membrane cleaning solution
JP3373138B2 (en) Organic wastewater treatment method and apparatus