JPS61256310A - Optical circuit device - Google Patents

Optical circuit device

Info

Publication number
JPS61256310A
JPS61256310A JP9924885A JP9924885A JPS61256310A JP S61256310 A JPS61256310 A JP S61256310A JP 9924885 A JP9924885 A JP 9924885A JP 9924885 A JP9924885 A JP 9924885A JP S61256310 A JPS61256310 A JP S61256310A
Authority
JP
Japan
Prior art keywords
optical
core
tapered
transmission line
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9924885A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Hidetaka Tono
秀隆 東野
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9924885A priority Critical patent/JPS61256310A/en
Publication of JPS61256310A publication Critical patent/JPS61256310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To increase efficiency and to decrease a change in the lapse of time in optical coupling efficiency, and to facilitate assembly by forming a wedgelike tapered core part at one end of the core of an optical transmission line and approximating the section of the end surface of the tapered core to the end surface of an optical waveguide, providing a semicylindrical lens, and also providing a supporting body to be held at the wedgelike tapered core part. CONSTITUTION:A PLZT thin film is formed on a sapphire substrate 11. Then, the optical waveguide 12 is formed and its end surface 12a is polished into a specular surface. A quartz single-mode fiber which has a core 13 is used as the optical transmission line 14. One end of the optical transmission line 14 is tapered in a wedge-like shape at a taper angle of, for example, 10 deg. and the supporting body 16 which has low-fusion-point glass vapor-deposited is heated and adhered under a vacuum onto the tapered part 13a. Then the core end surface is polished specularly to manufacture a semicylindrical lens 15. The curvature of the lens is determined by controlling the number of times of discharging. The semicylindrical lens 15 and the end surface 12a of the optical waveguide are put closer and coupled optically to manufacture an optical circuit device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信、光制御に係る光回路デバイスに関する
。特に薄膜光導波路型の光回路デバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical circuit device related to optical communication and optical control. In particular, it relates to thin film optical waveguide type optical circuit devices.

〔従来の技術〕[Conventional technology]

従来の光通信、光制御等に使用されている光回路デバイ
スの一例を第3図に示す。第3図はかかる従来の光回路
デバイスの要部構成を示す断面図である。第3図に示す
如き従来の光回路デバイスは、基板31上に設けた光導
波路32と、光波を伝送するコア32を含む光伝送線3
4とを光結合させて構成されている0上記光回路デバイ
スにおける光結合の方法としては、光回路デバイスの信
頼性および小型化の観点から、通常第3図に示す如く、
光導波路32および光伝送線34のコア33の鏡面仕上
げしたそれぞれの端面35詔よび36を突き合わせる端
面結合法が使用されている(コロナ社昭和53年5月1
5日発行、小山次部、西原浩著「光波電子工学」第25
0頁参照)。
An example of a conventional optical circuit device used for optical communication, optical control, etc. is shown in FIG. FIG. 3 is a cross-sectional view showing the main structure of such a conventional optical circuit device. A conventional optical circuit device as shown in FIG. 3 includes an optical waveguide 32 provided on a substrate 31 and an optical transmission line 3 including a core 32 for transmitting light waves.
From the viewpoint of reliability and miniaturization of the optical circuit device, the method of optical coupling in the above-mentioned optical circuit device, which is configured by optically coupling the optical circuit device 4 and 4, is usually as shown in FIG.
An end face coupling method is used in which the mirror-finished end faces 35 and 36 of the core 33 of the optical waveguide 32 and the optical transmission line 34 are butted together (Corona Publishing, May 1, 1978).
Published on the 5th, Tsugube Koyama, Hiroshi Nishihara, “Light Wave Electronics” No. 25
(See page 0).

上述した光回路デバイスにおいては、光導波路32の断
面積が例えば厚さ1)Irns幅10fimであり、こ
れに対しコアの断面積は直径107寡であり、両断面積
の大きさが異なるため良好な光結合効率が得られなかっ
た。
In the above-mentioned optical circuit device, the cross-sectional area of the optical waveguide 32 is, for example, the thickness 1) Irns width 10 fim, whereas the cross-sectional area of the core is 107 mm in diameter, and the sizes of the two cross-sectional areas are different. No optical coupling efficiency was obtained.

上述した光回路デバイスの一つの改良として、電子通信
学会光量子エレクトロニクス研究会資料OQ]it 8
0−123.1980年第57頁の坂口晴男、関紀男1
山本周の論文に見られる如く、半導体レーザと単一モー
ド光伝送線との光結合にかかる構成を薄膜光導波路への
応用か考えられる。
As one improvement of the above-mentioned optical circuit device, the Institute of Electronics and Communication Engineers Optical Quantum Electronics Study Group Material OQ]it 8
0-123. Haruo Sakaguchi, Norio Seki 1980, page 57
As seen in Shu Yamamoto's paper, it is conceivable to apply the configuration for optical coupling between a semiconductor laser and a single mode optical transmission line to a thin film optical waveguide.

かかる改良された光回路デバイスの要部構成の断面図を
第4図に示す。第4図において31は基板、32は光導
波路、33はコア、34はコア33を含む光伝送線であ
り、第3図と同じである。ただし、第4図の光回路デバ
イスにあっては、光伝送線34の先端をコア33と共に
約90°の頂角を構成する模型テーパ部42となるよう
に研磨して構成し、コア33の先端をアーク放電により
加熱溶融して半円柱レンズ41に加工してあり、これに
よって光結合効率を上げる工夫がなされている。かかる
構成において、例えば厚さ0.61m 、 82〜37
mの半導体し〜ザ、直径10)IrILのステップ型単
一モード光伝送線としたとき、2.9〜3.3 dBの
光結合損失があると報告されている。
A cross-sectional view of the main structure of such an improved optical circuit device is shown in FIG. In FIG. 4, 31 is a substrate, 32 is an optical waveguide, 33 is a core, and 34 is an optical transmission line including the core 33, which is the same as in FIG. However, in the optical circuit device shown in FIG. 4, the tip of the optical transmission line 34 is polished to form a model tapered portion 42 that forms an apex angle of about 90° with the core 33. The tip is heated and melted by arc discharge and processed into a semi-cylindrical lens 41, thereby improving the optical coupling efficiency. In such a configuration, for example, a thickness of 0.61 m, 82 to 37
It has been reported that an optical coupling loss of 2.9 to 3.3 dB occurs when an IrIL stepped single mode optical transmission line is made of a semiconductor with a diameter of 10 dB.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら第4図に示す如き構成の光回路デバイスで
は、光導波路32と、テーパ状半円柱レンズ41と・コ
ア33の光軸との一致が困難であるため、光結合効率が
長期間での経時変化を生ずるという問題があった。従っ
て光導波路32で光回路を構成すると、光回路特性の経
時変動が発生する欠点があった。これは下記の理由番こ
よる。
However, in the optical circuit device having the configuration shown in FIG. 4, it is difficult to align the optical axes of the optical waveguide 32, the tapered semi-cylindrical lens 41, and the core 33, so that the optical coupling efficiency decreases over a long period of time. There was a problem with making changes. Therefore, when an optical circuit is constructed using the optical waveguide 32, there is a drawback that the optical circuit characteristics change over time. This is due to the following reasons.

コア33の一端を模型テーパ状に加工するとき要求され
る条件は、コア33の光軸、即ち中心軸を模型テーパ部
42の二つの面の交線部と一致させ、かつ二つのテーパ
面のなす角の2等分線と一致させることにある。またコ
ア33の先端の半円柱レンズ41の精度のよい放電溶融
加工をすることが重要である。即ち半円柱レンズ41の
光軸とコア33の中心軸とが一致し、焦点面で光導波路
32の端面35にビーム径を絞り込んで一致させると、
コア33と光導波路32との光結合効率を理論値にでき
る限り接近させることができる。しかしながらこの半円
柱レンズ41の加工はサブミクロン精度の加工技術が必
要であるにも拘らずXこれを実施する放電溶融加工も技
術的に未確立な点が多い。
When processing one end of the core 33 into a model tapered shape, the conditions required are that the optical axis, that is, the central axis, of the core 33 be aligned with the intersection of the two surfaces of the model taper section 42, and that the two tapered surfaces be aligned. The purpose is to match the bisector of the angle. Furthermore, it is important to perform electric discharge melting processing of the semi-cylindrical lens 41 at the tip of the core 33 with high precision. That is, when the optical axis of the semi-cylindrical lens 41 and the central axis of the core 33 coincide, and the beam diameter is narrowed down to coincide with the end surface 35 of the optical waveguide 32 at the focal plane,
The optical coupling efficiency between the core 33 and the optical waveguide 32 can be made as close to the theoretical value as possible. However, although machining of this semi-cylindrical lens 41 requires a machining technique with sub-micron precision, there are many points in which the electrical discharge melting process to carry out this process is not yet established technically.

従ってコア33の中心軸と、半円柱レンズ41の光軸と
の一致および焦点面と光導波路断面35との一致の確実
な実現が困難なため、光結合面の微小な相対位置のずれ
(この原因に温度変化によるものもある)による光結合
効率の不安定が生ずる。更に加えて光軸の不一致がある
と、光導波路32とコア33とを同一平面での光結合が
できず、一定の角度のとき光結合効率が極大となるので
、かかる条件下での組立加工は非常に困難である。また
多モード光導波路32では更に基本モードの励振効率の
極大と、光結合効率の極大とが一致せず、効率の良い光
回路デバイスを得ることができず、更に光結合面の相対
位置のずれにより光導波路内のモード分散状態の安定化
が困難であった。
Therefore, it is difficult to ensure that the central axis of the core 33 and the optical axis of the semi-cylindrical lens 41 match, and that the focal plane and the cross section of the optical waveguide 35 match. (Some of the causes are temperature changes), resulting in instability of optical coupling efficiency. Furthermore, if there is a mismatch in the optical axes, the optical waveguide 32 and the core 33 cannot be optically coupled on the same plane, and the optical coupling efficiency is maximized at a certain angle, so assembly processing under such conditions is difficult. is extremely difficult. Furthermore, in the multimode optical waveguide 32, the maximum excitation efficiency of the fundamental mode and the maximum optical coupling efficiency do not match, making it impossible to obtain an efficient optical circuit device, and furthermore, the deviation of the relative position of the optical coupling surface This makes it difficult to stabilize the mode dispersion state within the optical waveguide.

従って本発明の目的は光導波路と光伝送線即ちコアの光
軸を一致させ、高効率でかつ光結合効率の経時変化が少
ない、組立の容易な構造の光回路デバイスを提供するこ
とにあるQ゛〔問題点を解決するための手段〕 本発明は、基板上に設けた光導波路と、」二記光導波路
と光結合する光波を伝送するコアを有する光伝送線とか
らなり、上記光伝送線の一端を模型テーバ状に形成して
テーパコア部を構成し、上記テーパコア部のコア端面を
上記先導波路端面に近似させ、上記コア端面の厚さより
大なる半径からなる半円柱レンズを上記コア端面に設け
、上記テーパコア部を保持する支持体を設けた光回路デ
バイスにある。
Therefore, it is an object of the present invention to provide an optical circuit device with an easy-to-assemble structure that aligns the optical axes of an optical waveguide and an optical transmission line, that is, a core, has high efficiency, has little change in optical coupling efficiency over time, and is easy to assemble. [Means for Solving the Problems] The present invention comprises an optical waveguide provided on a substrate, and an optical transmission line having a core for transmitting a light wave optically coupled to the optical waveguide, One end of the wire is formed into a model tapered shape to constitute a tapered core part, the core end face of the tapered core part is approximated to the leading waveguide end face, and a semi-cylindrical lens having a radius larger than the thickness of the core end face is formed on the core end face. The optical circuit device is provided with a support body for holding the tapered core portion.

〔作 用〕[For production]

本発明の光回路デバイスにおいては、上述した如く、光
伝送線の一端を楔型テーパ状に形成してテーパコア部を
構成し、この部分を支持体で保持するのである。この構
成にすることにより、楔型テーパコア部表面の保護と安
定化が果されるので、光伝送線中を伝送される光は基本
モードのままコア端面まで伝送され、しかもコア端面の
厚さより大なる半径を有する半円柱レンズを設けたため
、その集光作用によって伝送光の放射角は10°以下に
することができるようになる。このため得られる光結合
は、第4図に示した光回路デバイスにおけるレンズの作
用と異なり・第3図に示した光回路デバイスにおける如
き突き合わせ端面結合に近い光の分布によって行なわれ
る。従って高効率で経時変動の少ない光結合を得ること
ができる。
In the optical circuit device of the present invention, as described above, one end of the optical transmission line is formed into a wedge-shaped tapered shape to constitute a tapered core portion, and this portion is held by a support. By adopting this configuration, the surface of the wedge-shaped taper core is protected and stabilized, so that the light transmitted in the optical transmission line is transmitted to the core end face in its fundamental mode, and the thickness is larger than the core end face. Since the semi-cylindrical lens having the radius is provided, the radiation angle of the transmitted light can be reduced to 10 degrees or less due to its light condensing effect. The optical coupling thus obtained is different from the effect of the lens in the optical circuit device shown in FIG. 4 and is performed by a light distribution similar to the butt-end coupling in the optical circuit device shown in FIG. 3. Therefore, it is possible to obtain optical coupling with high efficiency and little variation over time.

また支持板を設けたことにより、楔型テーパコア部の固
有振動が除去される作用を有しているため、安定した光
結合効率も得られるのである。
Further, by providing the support plate, the natural vibration of the wedge-shaped tapered core portion is removed, so that stable optical coupling efficiency can be obtained.

更に多モード光導波路の場合においても、光伝送線のコ
ア端面までは基本モードで光が伝送され、光軸もほぼ一
致し、突き合わせによる光結合に近似しており、光軸の
一致した突き合わせによる光結合が達成されるので、基
本的に基本モード以外は励振され難く、従って光導波路
特開口UGI−256310(3) のモード分散状態が安定で高い光結合効率が得られる0
またレンズ作用を有しているので光導波路端面とコア端
面を完全に突き合わせなくとも安定な茜効率の光結合が
達成される0実施例 以下に図面を参照して本発明の光回路デノイイスについ
て詳述する。
Furthermore, even in the case of a multimode optical waveguide, light is transmitted in the fundamental mode up to the core end face of the optical transmission line, and the optical axes almost coincide, which approximates optical coupling by butting. Since optical coupling is achieved, basically it is difficult for anything other than the fundamental mode to be excited, and therefore the mode dispersion state of the optical waveguide special aperture UGI-256310 (3) is stable and high optical coupling efficiency can be obtained.
In addition, since it has a lens effect, optical coupling with stable madder efficiency can be achieved without completely abutting the end face of the optical waveguide and the end face of the core.Embodiments The optical circuit denomination of the present invention will be described in detail with reference to the drawings below. Describe.

第1図(b)は本発明の光回路デバイスの要部を示す断
面図であり、第1図(a)は第1図(b)のA −A’
線でとった断面図である0 第1図(、)および(b)において、本発明の光回路デ
バイスは、サファイヤ基板11(屈折率1.77>上に
スパッタ蒸着により膜厚0.8/isのPLZ’l’薄
膜(屈折率2.6)を形成した。次に幅10fimに例
えばイオンビームエツチングにより光導波路12を形成
した後、その端面12aを研磨して鏡面を作った。−刀
先伝送線14には例えば直径125/lynで、その中
に直径10)1mのコア13を有する石英単一モードフ
ァイバーを使用しである。光伝送線14の一端は楔型テ
ーパ状にし、そのテーパ面のなす角度を10°として研
磨し、このテーパ部t3a上に、低融点ガラス(例えば
コーニング8363、軟化点380℃、屈折率1.9)
の薄膜(厚さ0.2声rrL)(図示せず)を蒸着した
支持体16を真空加熱接着した0次にコア端面の鏡面研
磨を行ない、厚さ2声m1幅10μmのコア端面13b
を作製した0次にアーク放電により加熱溶融して上記端
面13b上に半円柱レンズ15を作製した。このときの
レンズの曲率は放電回数の制御によって決定することが
でき、この場合にはレンズ半径10w1mとした。かく
して作った光伝送線の伝送光の遠視野像より単一モード
であることを確認した。
FIG. 1(b) is a cross-sectional view showing the main part of the optical circuit device of the present invention, and FIG. 1(a) is a cross-sectional view taken along line A-A' in FIG.
1 (,) and (b), which are cross-sectional views taken along the line 0, the optical circuit device of the present invention is formed by sputter deposition on a sapphire substrate 11 (with a refractive index of 1.77) to a film thickness of 0.8/ A PLZ'l' thin film (refractive index: 2.6) was formed.Next, an optical waveguide 12 was formed with a width of 10 fim, for example, by ion beam etching, and its end surface 12a was polished to create a mirror surface. For example, a quartz single mode fiber having a diameter of 125/lyn and having a core 13 with a diameter of 10) 1 m is used as the transmission line 14. One end of the optical transmission line 14 is formed into a wedge-shaped tapered shape and polished so that the angle of the tapered surface is 10°.A low melting point glass (for example, Corning 8363, softening point 380° C., refractive index 1. 9)
A support 16 on which a thin film (thickness: 0.2 mm) (not shown) was deposited was vacuum-heated and bonded, and the core end surface was mirror polished to form a core end surface 13b with a thickness of 2 mm and a width of 10 μm.
A semi-cylindrical lens 15 was produced on the end face 13b by heating and melting the produced zero-order lens by arc discharge. The curvature of the lens at this time can be determined by controlling the number of discharges, and in this case, the lens radius was set to 10 w1 m. From the far-field image of the transmitted light of the optical transmission line created in this way, it was confirmed that it was a single mode.

上述した低融点ガラス薄膜の屈折率は1.9でアリ、コ
ア13の石英ファイバーの屈折率1.47よりも大であ
るが、薄膜の厚さが0.2/IrrL(8mM視察によ
る)でコア端面13bの厚さ10fimに比り、て薄く
、かつコア13のテーパ部13g(7)テーパ面のなす
角度を10°と構成しているので、基本モードのままコ
ア端面13bまで光が伝送される〇 上述した如く作製した半円柱レンズ15と、前記光導波
路端面12aとを近接させて光結合を行ない、光回路デ
バイスを作製した0上述した如く作製した光回路デバイ
スにおいては、光伝送線14と光導波路12とを近接さ
せると、伝送光の電磁界分布と光導波路の基本モードの
電磁界分布はほぼ一致し、高効率が得られた。光結合損
失は3dBと良好であった。また両者の間隔5〜30)
tmで光結合損失は±ldBの範囲であり、位置ずれに
対し安定であることを確認できた。
The refractive index of the low melting point glass thin film mentioned above is 1.9, which is higher than the refractive index of the quartz fiber of core 13, which is 1.47, but the thickness of the thin film is 0.2/IrrL (based on 8mM observation). It is thinner than the core end face 13b, which has a thickness of 10 fim, and the tapered portion 13g (7) of the core 13 has an angle of 10 degrees, so light is transmitted to the core end face 13b while remaining in the fundamental mode. 〇 The semi-cylindrical lens 15 manufactured as described above and the optical waveguide end surface 12a are brought into close proximity to perform optical coupling, and an optical circuit device is manufactured. 〇 In the optical circuit device manufactured as described above, an optical transmission line is formed. When the optical waveguide 14 and the optical waveguide 12 were brought close to each other, the electromagnetic field distribution of the transmitted light and the electromagnetic field distribution of the fundamental mode of the optical waveguide almost matched, and high efficiency was obtained. The optical coupling loss was good at 3 dB. Also, the distance between the two is 5 to 30)
At tm, the optical coupling loss was in the range of ±1 dB, and it was confirmed that the optical coupling loss was stable against positional deviation.

上記光回路デバイスにおいては光導波路12と光伝送線
14とは光軸が一致しており、同一平面上に構成するこ
とができ組立が容易にできた。特に光導波路12と光伝
送線14との光軸が一致していること、および支持体の
採用によりテーパ部13aの固有振動の除去もなされて
いるので一週間の経時変化にも光結合損失3dBと極め
て少ないものであった。
In the above-mentioned optical circuit device, the optical waveguide 12 and the optical transmission line 14 have the same optical axis, and can be constructed on the same plane, making assembly easy. In particular, the optical axes of the optical waveguide 12 and the optical transmission line 14 are aligned, and the use of a support eliminates the natural vibration of the tapered part 13a, so even after one week of aging, the optical coupling loss is 3 dB. It was extremely rare.

多モードPLZT薄膜光導波路(4モード)でY分岐を
構成した場合にも、分岐1対1で安定していることが判
った。従って主として基本モードが励振されていてモー
ド分散状態が安定しているものと考えられる。
It has been found that even when a Y branch is configured with a multimode PLZT thin film optical waveguide (4 modes), the branch ratio is stable 1:1. Therefore, it is considered that the fundamental mode is mainly excited and the mode dispersion state is stable.

次に本発明の光回路デバイスの別の例について説明する
。第2図は本発明の別の光回路デバイスの第1図(a)
に対応する図であり、光伝送線側の要部を示す図である
Next, another example of the optical circuit device of the present invention will be explained. FIG. 2 is FIG. 1(a) of another optical circuit device of the present invention.
FIG. 2 is a diagram corresponding to FIG. 1, and is a diagram showing main parts on the optical transmission line side.

第2図において、13,14.15は第1図の場合と同
じである。第2図においては光伝送線14には例えば外
径125)trrLl コア径30)1mの石英単一モ
ードファイバーを使用し、光伝送線14を125声m間
隔で4個並列させ、第1図の場合と同様に加工した。光
導波路12は幅10)im、厚さ1メ雇の′I′1拡散
LiNbO5を用い、125)Am間隔で作成し、端面
研磨を行なった。
In FIG. 2, 13, 14, and 15 are the same as in FIG. In FIG. 2, for example, a quartz single mode fiber with an outer diameter of 125) trrLl and a core diameter of 30) 1 m is used as the optical transmission line 14, and four optical transmission lines 14 are arranged in parallel at an interval of 125 m. Processed in the same way as in the case of The optical waveguide 12 was fabricated using 'I'1 diffused LiNbO5 with a width of 10) im and a thickness of 1 meter, with a spacing of 125) Am, and the end faces were polished.

次に両端面を近接させて光結合させて光回路デバイスを
作った。この光回路デバイスの光結合損失は35±Q、
5dBの範囲に入り良好であった。また経時変化も認め
られなかった0これに対し、前記第4図に示した従来の
光回路デバイスでは加工時に光軸が各光結合点で不一致
が発生し、結合損失のばらつきを抑制することが困難で
あった。
Next, we made an optical circuit device by bringing both end faces close together and optically coupling them. The optical coupling loss of this optical circuit device is 35±Q,
It was within a good range of 5 dB. In addition, no change over time was observed.0 On the other hand, in the conventional optical circuit device shown in Fig. 4, the optical axis mismatch occurs at each optical coupling point during processing, making it difficult to suppress variations in coupling loss. It was difficult.

〔発明の効果〕〔Effect of the invention〕

本発明は、光伝送線のコアの一端を小角の模型テーパ状
としたテーパコア部とし、このテーバコア端面の断面を
光導波路端面に近似させ、コア端面の厚さより大なるレ
ンズ半径からなる半円柱レンズを設け、かつ模型チーi
4コア部に保持する支持体を設けであるので、高効率で
光結合効率の経時変化が少なく、組立が容易であると共
に突き合わせ光結合とレンズ結合の両者の特長を生かし
た構成としてあり、複数本の光伝送線と光導波路との光
結合も高効率でバラツキを少なく作ることができ、光回
路デバイスの小型集積化もできる。
The present invention provides a semi-cylindrical lens in which one end of the core of an optical transmission line is made into a small-angle model tapered core part, the cross section of this tapered core end face approximates the end face of an optical waveguide, and the lens radius is larger than the thickness of the core end face. and model Qi
4A support body is provided to hold the core part, so it is highly efficient, there is little change in optical coupling efficiency over time, and it is easy to assemble. Optical coupling between a real optical transmission line and an optical waveguide can be made with high efficiency and less variation, and optical circuit devices can be integrated in a smaller size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(b)は本発明の光回路デ/(イスの要部を示す
断面図であり、第1図(a)は第1図(b)のA −A
’線でとった断面図であり・第3図は従来の光回路デバ
イスの要部断面図であり、第4図は他の従来の光回路デ
バイスの要部断面図である011は基板、12は先導波
路、13はコア、14は光伝送線、12aは先導波路端
面、13bはコア端面、13aは楔型チー/N11部、
15はテーバ状半円柱レンズ、16は支持体O 特許出願人  松下電器産業株式会社 第1図(a) 16・支  巧 体 手続補正書(方式) 昭和60年8月26 日
FIG. 1(b) is a cross-sectional view showing the main parts of the optical circuit device (chair) of the present invention, and FIG.
Figure 3 is a cross-sectional view of a main part of a conventional optical circuit device, and Figure 4 is a cross-sectional view of a main part of another conventional optical circuit device. 011 is a substrate, 12 13 is a leading waveguide, 13 is a core, 14 is an optical transmission line, 12a is a leading waveguide end face, 13b is a core end face, 13a is a wedge-shaped Chi/N11 part,
15 is a tapered semi-cylindrical lens, 16 is a support body O. Patent applicant: Matsushita Electric Industrial Co., Ltd. Figure 1 (a) 16. Support body procedural amendment (method) August 26, 1985

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に設けた光導波路と、上記光導波路と光結合
する光波を伝送するコアを有する光伝送線とからなり、
上記光伝送線の一端を楔型テーパ状に形成して楔型コア
部を構成し、上記楔型コア部のコア端面を上記光導波路
端面に近似させ、上記コア端面の厚さより大なる半径か
らなる半円柱レンズを上記コア端面に設け、上記テーパ
コア部を保持する支持体を設けたことを特徴とする光回
路デバイス。
1. Consisting of an optical waveguide provided on a substrate and an optical transmission line having a core for transmitting a light wave that is optically coupled to the optical waveguide,
One end of the optical transmission line is formed into a wedge-shaped tapered shape to constitute a wedge-shaped core part, and the core end face of the wedge-shaped core part is made to approximate the end face of the optical waveguide, and from a radius larger than the thickness of the core end face. An optical circuit device comprising: a semi-cylindrical lens provided on the end face of the core; and a support for holding the tapered core portion.
JP9924885A 1985-05-10 1985-05-10 Optical circuit device Pending JPS61256310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9924885A JPS61256310A (en) 1985-05-10 1985-05-10 Optical circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9924885A JPS61256310A (en) 1985-05-10 1985-05-10 Optical circuit device

Publications (1)

Publication Number Publication Date
JPS61256310A true JPS61256310A (en) 1986-11-13

Family

ID=14242399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9924885A Pending JPS61256310A (en) 1985-05-10 1985-05-10 Optical circuit device

Country Status (1)

Country Link
JP (1) JPS61256310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423209A (en) * 1987-07-20 1989-01-25 Fujitsu Ltd Optical fiber connector
WO1998050808A1 (en) * 1997-05-07 1998-11-12 The Furukawa Electric Co., Ltd. Optical fiber with lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423209A (en) * 1987-07-20 1989-01-25 Fujitsu Ltd Optical fiber connector
WO1998050808A1 (en) * 1997-05-07 1998-11-12 The Furukawa Electric Co., Ltd. Optical fiber with lens
US6301406B1 (en) 1997-05-07 2001-10-09 The Furukawa Electric Co., Ltd. Optical fiber with lens
US6317550B2 (en) 1997-05-07 2001-11-13 The Furukawa Electric Co., Ltd. Lensed optical fiber

Similar Documents

Publication Publication Date Title
EP0220439A2 (en) Expanded end optical fiber and associated coupling arrangements
JPH0321881B2 (en)
US5546486A (en) Optical fiber end for application in an optical isolator and a method of manufacture thereof
US5625726A (en) Optical waveguide substrate, an article comprising the same and a substrate coupled thereto for holding optical fibers
JPS61256310A (en) Optical circuit device
JPH0634837A (en) Optical component
JPS62121405A (en) Optical attenuator
JPS61166504A (en) Optical circuit device
JPS6170516A (en) Semiconductor laser module with optical isolator
US5146522A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
JPH04158340A (en) Light wavelength conversion element and manufacture thereof
JPS6243609A (en) Optical circuit element
JPH1020248A (en) Optical isolator
JPH0434505A (en) Optical waveguide type device and production thereof
JPS61190307A (en) Coupling light guide
JPS58196521A (en) Optical coupling circuit
JPS61232406A (en) Coupled optical waveguide and its manufacture
JPH0675128A (en) Optical waveguide element
JPH03103805A (en) Connecting method for optical waveguide and optical fiber
JPS60156014A (en) Production of flush type optical waveguide device
JPH037909A (en) Optical component and its manufacture and device using the same
JPH08278424A (en) Optical splitter
JPS6243608A (en) Optical circuit element
JP2586572B2 (en) Refractive index distributed optical coupler and method for producing the same
JPH01142508A (en) Waveguide type optical device