JPS61256189A - Regenerator of fluidized bed type - Google Patents

Regenerator of fluidized bed type

Info

Publication number
JPS61256189A
JPS61256189A JP60096094A JP9609485A JPS61256189A JP S61256189 A JPS61256189 A JP S61256189A JP 60096094 A JP60096094 A JP 60096094A JP 9609485 A JP9609485 A JP 9609485A JP S61256189 A JPS61256189 A JP S61256189A
Authority
JP
Japan
Prior art keywords
heat
cold
air flow
capsule
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60096094A
Other languages
Japanese (ja)
Other versions
JPH0532677B2 (en
Inventor
Keisuke Kasahara
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP60096094A priority Critical patent/JPS61256189A/en
Publication of JPS61256189A publication Critical patent/JPS61256189A/en
Publication of JPH0532677B2 publication Critical patent/JPH0532677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To increase the heat transferring efficiency of a regenerator, by providing a means to generate high velocity air flow by gradually reducing the area where the air passes through, and a means to accumulate cold and hot heat disposed directly above the high velocity air flow generating means, and by transferring cold heat energy of high velocity air flow to the regenerating means of cold and hot heat by the intermediary of a group of solid particles. CONSTITUTION:An air flow flow-in from lower openings 15a. Its flowing velocity is gradually increased in a funnel-shaped hole 14 of which surface of flow path for the air flow is gradually reduced. The high velocity air flow is injected from upper injection ports 15b. It is mixed with a group 12 of solid particles, becoming a mixed phase flow, flowing upward along the wall of a capsule, and it circulates round the capsule, turning round downwardly from the top of a capsule. The cold heat energy in the air flow of high velocity is accumulated in a cold heat accumulating material 18 in a capsule by the intermediary of a group 12 of solid particles as a heat transferring medium. A mesh net 13 as a holding means to solid particles is provided on the upstream side of air flow under a punching metal 15. The mesh net 13 can increase the heat transferring efficiency of a heat generator. The pressure loss of a fluidized bed is not so large because the air flow will pass through the mesh net 13 during the low speed time before it becomes a high velocity fluid.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、冷凍装置、ヒートポンプ装置、空調装置、温
室栽培用冷温爪装置その他の冷會熱エネルギーを利用す
る各種装置に使用される蓄冷熱装置に係り、更に詳細に
は微小ガラス球その他の固体粒子を伝熱媒体として気体
内に有する冷熱エネルギーを蓄冷熱材に蓄冷熱させる、
いわゆる流動層式の蓄冷熱装置に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to cold storage heat used in refrigeration equipment, heat pump equipment, air conditioning equipment, cold claw equipment for greenhouse cultivation, and other various equipment that utilizes cold energy. It relates to a device, and more specifically, it uses micro glass spheres and other solid particles as a heat transfer medium to store cold energy contained in a gas in a cold storage material.
The present invention relates to a so-called fluidized bed type cold storage heat storage device.

「従来の技術」 従来より例えば常温以上の熱エネルギーを有する気流を
利用して潜熱利用の蓄冷熱材(例えばCaC126H2
0)に昼間の温度域を蓄熱し、夜間に該蓄熱材の熱エネ
ルギーを放熱して昼間の温度域に近ずける温室栽培用の
蓄熱装置が提案されている。
``Prior art'' Conventionally, for example, cold storage materials (such as CaC126H2
0) A heat storage device for greenhouse cultivation has been proposed that stores heat in the daytime temperature range and radiates the thermal energy of the heat storage material at night to bring the temperature closer to the daytime temperature range.

第9図はかかる蓄熱装置の一例を示す概略図で、多段状
に形成した棚102上に蓄熱材を封入したカプセル10
1を配置して蓄熱装置本体100を構成すると共に、該
本体100の入口側に補助ヒータ103、ブロワ−10
4、吸入ダクト105を取り付け、前記棚102と平行
に気流が流れるように構成し、昼間の温室内の余剰熱エ
ネルギーを有する気流が前記蓄熱材に奪熱され、該蓄熱
材に潜熱蓄熱させる。一方夜間は前記カプセル101上
を気流が通過することにより、該蓄熱材の潜熱と熱交換
されて、常温付近の温度域を有する気流が栽培室内に流
され、栽培室内を常に一定温度に維持し得るものである
FIG. 9 is a schematic diagram showing an example of such a heat storage device, in which a capsule 10 containing a heat storage material is placed on a shelf 102 formed in multiple stages.
1 is arranged to constitute a heat storage device main body 100, and an auxiliary heater 103 and a blower 10 are arranged on the inlet side of the main body 100.
4. Attach the suction duct 105 so that the airflow flows parallel to the shelf 102, and the airflow with surplus thermal energy in the greenhouse during the day is absorbed by the heat storage material, causing the heat storage material to store latent heat. On the other hand, at night, as airflow passes over the capsule 101, heat is exchanged with the latent heat of the heat storage material, and an airflow having a temperature range around room temperature is flowed into the cultivation chamber, thereby constantly maintaining the temperature inside the cultivation chamber at a constant temperature. It's something you get.

「発明が解決しようとする問題点」 この種の蓄熱装置においては、気流と蓄熱材との熱伝達
率が低い為に、必然的に気流流れ方向に沿って長い熱交
換室を必要とし且つ前記蓄熱材もその分多量に必要とす
る等、製造コストが犬になるのみならず、このような構
成を取っても尚、熱伝達率の飛躍的な向上を望みにくい
という問題を有していた。
"Problems to be Solved by the Invention" In this type of heat storage device, since the heat transfer coefficient between the airflow and the heat storage material is low, a long heat exchange chamber is inevitably required along the direction of the airflow, and Not only did this require a large amount of heat storage material, which increased manufacturing costs, but even with this configuration, it was difficult to expect a dramatic improvement in heat transfer coefficient. .

又かかる欠点を解消する為に、例えば公知の流動層式熱
交換装置を蓄冷熱装置に転用して、微小ガラス球その他
の固体粒子を伝熱媒体として気体内に有する冷熱エネル
ギーを蓄冷熱材に蓄冷熱させる方式が考えられる(この
種の流動層を利用した蓄冷熱装置は従来存在しない)。
In addition, in order to eliminate this drawback, for example, a known fluidized bed heat exchanger can be used as a cold heat storage device, and the cold energy contained in the gas can be transferred to the cold heat storage material using micro glass spheres or other solid particles as a heat transfer medium. One possible method is to store cold heat (there is no conventional cold storage heat storage device using this type of fluidized bed).

例えば第10図は公知の流動層式熱交換装置に示し、そ
の構成を簡単に説明すると、流動層110内に配したフ
ィンコイル状の熱交換器111の下方に、メツシュ網1
12で形成した固体粒子114保持板兼用の多数の気流
ガス流入孔113が流動層下面全面に形成され、該流入
孔+13より気流が流動層内に入ると、気流と固体粒子
114群との混相流が前記熱交換器111と接触して該
熱交換器111内を流れる冷媒又は熱媒と熱交換され、
気流に所定の冷熱エネルギーを伝熱して排出口115よ
り外部に排出されるものである。
For example, FIG. 10 shows a known fluidized bed heat exchanger, and to briefly explain its configuration, a mesh net 1 is placed below a fin-coil heat exchanger 111 arranged in a fluidized bed 110.
A large number of airflow gas inflow holes 113 which also serve as a holding plate for the solid particles 114 formed in step 12 are formed on the entire lower surface of the fluidized bed, and when the airflow enters the fluidized bed through the inflow holes +13, a mixed phase of the airflow and the solid particles 114 group is formed. the stream contacts the heat exchanger 111 and exchanges heat with a refrigerant or heat medium flowing within the heat exchanger 111;
A predetermined amount of cold energy is transferred to the airflow and is discharged to the outside from the discharge port 115.

しかしながらこの種の熱交換装置では、熱交換器111
の配設位置とは無関係に、多数の気流ガス流入孔113
が流動層全面に形成されて全面均質孔である為に、流動
層の上下方向の慣性力の運動が不均質となり、且つ前記
熱交換器111と熱交換される部分とされない部分が生
じる為に、前記気流交換の場合に比較して特段の熱伝達
率の向上につながらない。
However, in this type of heat exchange device, the heat exchanger 111
A large number of airflow gas inflow holes 113
are formed over the entire surface of the fluidized bed and are homogeneous pores, so the movement of the inertial force in the vertical direction of the fluidized bed becomes non-uniform, and there are parts that exchange heat with the heat exchanger 111 and parts that do not. , it does not lead to a particular improvement in the heat transfer coefficient compared to the case of air exchange.

又前記装置においては、流動層全面に流入孔113が形
成されている為に、流動層の圧力損失が大になり、ブロ
ワ−動力が大になり易い。
Further, in the above device, since the inlet holes 113 are formed over the entire surface of the fluidized bed, the pressure loss of the fluidized bed becomes large, and the blower power tends to become large.

かかる欠点を解消する為に、流動層の層高を低くすると
、安定且つ一様な流動化状態が得られにくく、流動層の
一部においてチャネリング(空気流の吹き抜は現象)を
生じ、熱伝達効率が大幅に低下するという問題を有する
In order to solve this problem, if the bed height of the fluidized bed is lowered, it is difficult to obtain a stable and uniform fluidized state, and channeling (a phenomenon of blowing air flow) occurs in a part of the fluidized bed, resulting in heat generation. The problem is that the transmission efficiency is significantly reduced.

本発明が解決しようとする技術的課題は、前記流動層を
用いて蓄冷熱層を形成するも、流動層の圧力損失がそれ
ほど犬になることなく、且つ熱伝達効率を格段に向上し
得る蓄冷熱装置を提供することを目的とする。
The technical problem to be solved by the present invention is to form a cold storage heat layer using the fluidized bed, but the pressure loss of the fluidized bed does not become so large, and the heat transfer efficiency can be significantly improved. The purpose is to provide a thermal device.

又本発明の他の目的は潜熱蓄冷熱を可能にし、装置自体
の小形化を図った蓄冷熱装置を提供することにある。
Another object of the present invention is to provide a cold heat storage device that enables latent heat storage and is miniaturized.

更に本発明の他の目的とする所は、複数の潜熱蓄冷熱を
可能にした蓄冷熱装置を提供することにある。
Still another object of the present invention is to provide a cold storage device that can store a plurality of latent heats.

更に又本発明の他の目的とする所は、熱交換器と蓄冷熱
槽を積層して又は混在させて一体的に配置し、装置全体
の小形化を可能にした蓄冷熱装置を提供することにある
Furthermore, another object of the present invention is to provide a cold storage device in which a heat exchanger and a cold storage tank are stacked or mixed and arranged integrally, thereby making it possible to downsize the entire device. It is in.

「問題点を解決しようとする手段] 本発明はかかる技術的課題を達成する為に、気体通過面
積を徐々に縮小させて高速(ジェット)気流を発生させ
る手段と、該高速気流発生手段の直上に配した蓄冷熱手
段とを有し、固体粒子群を介して前記高速気流が有する
冷熱エネルギーを蓄冷熱手段に伝熱させる事を特徴とす
る技術手段を提案する。
"Means for Solving the Problems" In order to achieve the technical problem, the present invention provides means for gradually reducing the gas passage area to generate a high-speed (jet) airflow, and a means for generating a high-speed airflow directly above the high-speed airflow generation means. The present invention proposes a technical means characterized in that the cooling energy of the high-speed air flow is transferred to the cold storage heat means through solid particles.

尚、前記蓄冷熱手段は一般に所定温度の融点(凝固点)
を有する蓄冷熱材を封入したカプセル群又は熱交換管に
合わせた蓄冷熱体から構成され、該カプセルの形状は球
形、卵型又は管群その他に気流がその周面を通過し易い
曲面状に形成するのがよい。この場合において前記カプ
セル等に封入する蓄冷熱材には、0℃の融点(凝固点)
を有する水、20〜30℃の融点を有するCaCl 2
 EIH20,50〜60℃の融点を有するパラフィン
等が用いられ、夫々所望目的に応じた潜熱蓄冷熱が行わ
れるよう構成する。又カプセル皮はプラスチック樹脂体
又は金属材等により形成される。
The cold storage heat means generally has a melting point (freezing point) of a predetermined temperature.
It is composed of a group of capsules enclosing a cold storage heat material having It is better to form. In this case, the cold storage heat material enclosed in the capsule etc. has a melting point (freezing point) of 0°C.
CaCl2 with a melting point of 20-30 °C
Paraffin or the like having a melting point of EIH 20, 50 to 60° C. is used, and the structure is such that latent heat storage and cold heat storage are performed depending on the desired purpose. Further, the capsule skin is formed of a plastic resin body, a metal material, or the like.

又、高速気流発生手段としては、例えば気体通過面積を
徐々に縮小させた漏斗状穴を多数穿設させたパンチング
メタルにより構成してもよく、又、厚肉平板部材を機械
加工により切削して前記漏斗状穴を形成してもよいや又
管群蓄熱体にはスリット状噴出孔となるや 更に、メツシュ網その他の固体粒子の保持手段は、本発
明の作用を円滑に達成させる為に、高速気流発生手段上
流開口側の下方位置に配するのが好ましい。
In addition, the high-speed airflow generating means may be constructed of, for example, punched metal in which a large number of funnel-shaped holes are formed in which the gas passage area is gradually reduced, or it may be constructed by cutting a thick flat plate member by machining. The funnel-shaped holes may be formed or slit-shaped ejection holes may be formed in the tube group heat storage body.Furthermore, mesh nets or other solid particle holding means may be used to smoothly achieve the effects of the present invention. It is preferable that the high-speed airflow generating means be disposed at a lower position on the upstream opening side.

更に本発明によれば、高速気流発生手段の直上に配した
蓄冷熱手段を配し、前記カプセル周囲を通過する高速気
流にコアンダ効果を生じさせるように構成しているが、
特に前記高速気流発生手段の噴出孔を円形に且つカプセ
ル直径より小に形成するのが好ましい。
Furthermore, according to the present invention, the cold storage heat means is disposed directly above the high-speed airflow generating means, and is configured to produce a Coanda effect in the high-speed airflow passing around the capsule.
In particular, it is preferable that the ejection hole of the high-speed airflow generating means be formed in a circular shape and smaller than the diameter of the capsule.

「作用J 本技術手段によれば、気体通過面積を徐々に縮小させて
加速した気流を発生させている為に、従来の流動層に比
較して圧力損失が大幅に低減すると共に、而も該高速気
流発生手段の直上に蓄冷2熱手段が配されている為に、
流動層の固体粒子群を介して前記高速気流が有するん熱
エネルギーを蓄冷熱手段に効果的に伝熱させる事が出来
、伝熱効率が大幅に向上する。
``Effect J'' According to the present technical means, the gas passing area is gradually reduced to generate an accelerated airflow, so the pressure loss is significantly reduced compared to the conventional fluidized bed, and the gas flow area is gradually reduced. Because the cold storage and heat storage means are placed directly above the high-speed airflow generation means,
The thermal energy possessed by the high-speed airflow can be effectively transferred to the cold storage heat means through the solid particles of the fluidized bed, and the heat transfer efficiency is greatly improved.

又前記蓄冷熱手段を、蓄冷熱材を封入したカプセル群か
ら構成し、該カプセルの形状は球形、卵型その他の曲面
状又は長管状に形成することにより、前記気流がカプセ
ル(長管を含む)の周面に沿ってサーキュレートする、
いわゆるコアンダ効果が生じ、固体粒子と気流からなる
混相流の慣性運動と伝熱が円滑に行われ、より一層の伝
熱効率の向上を図ることが出来る。
Further, the cold storage heat means is constituted by a group of capsules in which a cold storage heat material is enclosed, and the shape of the capsule is spherical, egg-shaped, other curved surface shape, or long tube shape, so that the air flow is ) circulates along the circumference of the
The so-called Coanda effect occurs, and the inertial motion and heat transfer of the multiphase flow consisting of solid particles and airflow are performed smoothly, making it possible to further improve heat transfer efficiency.

特にこの場合において、前記蓄冷熱材を、所定温度の融
点(凝固点)を有する潜熱蓄冷熱材で構成することによ
り、装置の小形化を図りつつ大容量の蓄冷熱が可能とな
る。
Particularly in this case, by configuring the cold storage material with a latent heat storage material having a melting point (freezing point) of a predetermined temperature, it is possible to store a large amount of cold heat while downsizing the device.

又、本発明は、メツシュ網その他の固体粒子の保持手段
を、高速気流発生手段上流開口側の下方位置に配するこ
とにより、前記圧力損失を更に低減させることが出来る
Further, in the present invention, the pressure loss can be further reduced by arranging the mesh net or other solid particle holding means at a lower position on the upstream opening side of the high-speed airflow generating means.

更に本発明によれば、 気流に冷熱エネルギーを付与す
る熱交換器を蓄冷熱手段上流側の装置内に配置し、該熱
交換器より高速気流発生手段への冷熱エネルギーの付与
が、主として固体粒子群を介して行われるようにするこ
とにより、装置全体の小形化が可能となる。
Furthermore, according to the present invention, a heat exchanger for imparting cold energy to the airflow is disposed in the device upstream of the cold storage heat means, and the cold energy is imparted from the heat exchanger to the high-speed airflow generating means mainly by solid particles. By performing this through groups, it is possible to downsize the entire device.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative arrangements of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. It's nothing more than that.

第1図は流動層式蓄冷熱器1,2.3を多段状に直列に
配した蓄冷熱装置の全体概略図を示す。
FIG. 1 shows an overall schematic diagram of a cold storage heat storage device in which fluidized bed cold storage heat storage devices 1, 2.3 are arranged in series in multiple stages.

第1図において、4は装置外枠で、ブロワ−5が連接さ
れた冷熱温熱気流吸入口6と、前記流動層蓄冷熱器1,
2.3内通過後の気流を外部に排出する排出ロアを、夫
々上下両側に形成する。
In FIG. 1, reference numeral 4 denotes an outer frame of the device, which includes a cold/hot air inlet 6 to which a blower 5 is connected, the fluidized bed regenerator 1,
2.3 Exhaust lowers for discharging the airflow after passing through the interior are formed on both the upper and lower sides, respectively.

流動層蓄冷熱器1,2.3は、下方が拡径された漏斗状
筒形状をなし、該蓄冷熱器1,2.3の中心上方に延設
する流出口11が夫々次段側の下側中心穴に挿設され、
各段毎の流動層蓄冷熱器1,2.3より排出された気流
が順次次段側の流出口11゛に集められて排出ロアより
外部に排出されるよう構成している。
The fluidized bed regenerators 1, 2.3 have a funnel-shaped cylinder shape with a diameter expanded at the bottom, and the outlet ports 11 extending above the center of the regenerators 1, 2.3 are connected to the next stage side, respectively. Inserted into the lower center hole,
The airflow discharged from the fluidized bed regenerators 1, 2.3 of each stage is sequentially collected at the outlet 11' on the next stage side and discharged to the outside from the discharge lower.

又、流動層蓄冷熱器1,2.3の下方拡径部内には、第
2〜4図に示す如く下方より順次、微小ガラス球その他
の固定粒子群12を保持するメツシュ網13その他の固
定粒子保持手段、気体通過面積を徐々に縮小させた漏斗
状穴14を多数穿設させたパンチングメタル15その他
の高速気流発生手段、前記漏斗状穴14の直上に配置さ
れたカプセル群16A、該カプセル群16Aを所定位置
に支持する位置決め用金、1liqi7,18 、及び
該カプセル群18Aを埋設する固定粒子群12が、夫々
収容配置されている。
In addition, in the lower enlarged diameter portion of the fluidized bed regenerator 1, 2.3, as shown in Figs. A particle holding means, a punching metal 15 having a large number of funnel-shaped holes 14 with a gradually reduced gas passage area and other high-speed airflow generating means, a group of capsules 16A disposed directly above the funnel-shaped holes 14, and the capsules. A positioning metal, 1liqi7, 18, which supports the group 16A at a predetermined position, and a fixed particle group 12, which embeds the capsule group 18A, are respectively accommodated.

又、前記カプセル群18Aは第5図に示す如く、カプセ
ル群18A 、18Bを所定間隔離して複数段状に形成
してもよい。
Further, the capsule group 18A may be formed in a plurality of stages with the capsule groups 18A and 18B separated by a predetermined distance, as shown in FIG.

次に前記各部材について詳細に説明する。Next, each of the above members will be explained in detail.

カプセル1Bは第6図に示すように球形、縦長卵型又は
管状形状を有し、その直径を略30〜100 mm程度
に設定してすると共に、その封止皮をプラスチック樹脂
体又は金属体で形成すると共に、内部に所望融点を有す
る水、Ca1l 28H20、パラフィン等の蓄冷熱材
19が封入されている。又これらの蓄冷熱材は単一種類
ではなく、複数種類混合して用いてもよく、又カプセル
毎に夫々異なる融点を有する別異の蓄冷熱材19を封入
するよう構成してもよい。このように構成すれば蓄冷熱
される潜熱蓄冷熱の温度域が拡がり、該蓄熱槽の汎用的
利用が可能となる。
As shown in Fig. 6, the capsule 1B has a spherical, vertically elongated oval, or tubular shape, and its diameter is set to about 30 to 100 mm, and its sealing skin is made of a plastic resin body or a metal body. At the same time, a cold storage heat material 19 such as water, Cal 28H20, paraffin, etc. having a desired melting point is sealed inside. In addition, these cold storage heat materials are not of a single type, but a plurality of types may be mixed and used, and different cold storage heat materials 19 having different melting points may be enclosed in each capsule. With this configuration, the temperature range of the latent heat stored as cold heat is expanded, and the heat storage tank can be used for general purposes.

例えば第5図の複数段のカプセル群18A 、18Bを
配置した構成において、上段側に潜熱温度が50〜80
℃のパラフィンを封入したカプセル群18Bを、又下段
側に0℃前後の凍結点を有する水を封入したカプセル群
16Aを夫々配置することにより、深夜電力を利用した
冷暖房システムの蓄冷及び蓄熱装置として利用出来る。
For example, in the configuration in which multiple stages of capsule groups 18A and 18B are arranged as shown in FIG. 5, the latent heat temperature on the upper stage side is 50-80
By arranging the capsule group 18B filled with paraffin at a temperature of 0.degree. C. and the capsule group 16A filled with water having a freezing point of around 0.degree. Available.

即ち、夏期冷房時には深夜電力を利用して冷凍機により
前記水を封入したカプセル群18Aに潜熱として蓄冷(
この場合パラフィンは顕熱蓄冷)させ、昼間において冷
房負荷を蓄冷熱装置内を循環させることにより、冷凍機
を運転することなく冷房が可能となり、一方、冬期暖房
時には深夜電力を利用してヒートポンプにより前記パラ
フィンを封入したカプセル群16Bに潜熱として蓄熱(
この場合水は顕熱蓄熱)させ、昼間において暖房負荷を
蓄冷熱装置内を循環させることにより、ヒートポンプを
運転することなく暖房が可能となり、従ってかかる蓄冷
蓄熱装置によれば深夜電力を有効利用した冷暖房システ
ムが効果的1つ小形に構成出来る。
That is, during summer cooling, late-night electricity is used to store cold (as latent heat) in the capsule group 18A filled with water by a refrigerator.
In this case, paraffin stores sensible heat and cools it, and by circulating the cooling load in the cold storage heat storage device during the day, it becomes possible to cool the room without operating the refrigerator.On the other hand, during winter heating, late-night electricity is used to run the heat pump. Heat is stored as latent heat in the paraffin-filled capsule group 16B (
In this case, by storing the water as sensible heat (sensible heat storage) and circulating the heating load through the cold storage heat storage device during the day, heating can be performed without operating a heat pump. Therefore, with this cold storage heat storage device, late-night electricity can be used effectively. The heating and cooling system can be effectively configured into one compact size.

元に戻り、パンチングメタル15は第3図に示すように
、下方開口15aより上方噴出口15bに向けて徐々に
縮径された漏斗状穴14を多数穿設させて形成され、前
記上方噴出口15bはカプセル16形状に合わせて円形
に形成すると共に、その口径を少なく共カプセル16形
状(短径)より小に形成する。
Returning to its original state, the punching metal 15 is formed by boring a large number of funnel-shaped holes 14 whose diameter gradually decreases from the lower opening 15a toward the upper spout 15b, as shown in FIG. 15b is formed into a circular shape to match the shape of the capsule 16, and its diameter is smaller than the shape (breadth diameter) of the capsule 16.

尚、かかるパンチングメタル15は平板から簡単に製作
可能の為に量産に適すると共に、該漏斗状穴14は上面
側も山形状に傾斜されている為に上方噴出口15b部に
固定粒子群12が堆積することはない。
This punching metal 15 is suitable for mass production because it can be easily manufactured from a flat plate, and since the funnel-shaped hole 14 is also sloped in the shape of a mountain on the upper surface side, the fixed particle group 12 is formed at the upper spout 15b. No accumulation occurs.

このように構成する事により、第7図に示すように、前
記下方開口15aより流入した気流は徐々に流路通過面
積が縮径される漏斗状穴14内で流速が徐々に加速され
て高速気流となって上方噴出口15bより噴出され、該
高速気流が固定粒子群12と混相流となって第7図に示
す如く、該混相流がカプセルの周面に沿って通過しなが
らカプセルの上方で、再び下方に回動しながらサーキュ
レート(コアンダ効果)し、高速気流の有する冷熱エネ
ルギーが固定粒子群12を伝熱媒体としてカプセル内の
蓄冷熱材18に蓄冷熱されることとなる。
With this configuration, as shown in FIG. 7, the airflow flowing in from the lower opening 15a is gradually accelerated in the funnel-shaped hole 14 whose diameter is gradually reduced to a high speed. The high-speed airflow is ejected from the upper jet port 15b as an airflow, and the fixed particle group 12 forms a multiphase flow, and as shown in FIG. Then, it circulates while rotating downward again (Coanda effect), and the cold energy of the high-speed airflow is stored in the cold heat storage material 18 in the capsule using the fixed particle group 12 as a heat transfer medium.

固定粒子保持手段たるメツシュ網13とパンチングメタ
ル15間の隙間は、気流が通過中に該隙間間隔に固体粒
子が残留しない程度の狭いものとし、この結果、気流の
流れが停止中に前記メツシュ網13上に堆積した固定粒
子群12(上方噴出口15bが小の為その堆積は小であ
るが)、ブロワ−5の作動開始により即座に流動層内に
戻される。
The gap between the mesh net 13 and the punching metal 15 serving as fixed particle holding means is made narrow enough that solid particles do not remain in the gap while the airflow is passing through. The fixed particle group 12 deposited on the fixed particle group 13 (although the deposit is small because the upper jet port 15b is small) is immediately returned to the fluidized bed when the blower 5 starts operating.

このようにメツシュ網13をパンチングメタル15の下
方上流側に配することにより、気流が高速流体になる前
の緩速時に前記メツシュ網13を通過する為に、圧力損
失の生じる恐れが大幅に低減される。
By arranging the mesh net 13 below and upstream of the punching metal 15 in this way, the risk of pressure loss is greatly reduced because the airflow passes through the mesh net 13 at a slow speed before becoming a high-speed fluid. be done.

かかる実施例によれば前述した本発明の効果が円滑に達
成されると共に、流動層蓄冷熱器1,2.3を多層階状
に配した為、該装置内に流入した気流が順次前記蓄冷熱
器1,2.3内を通過しながら蓄冷熱材19に蓄冷熱さ
せた後、上方排出ロアより外部に排出されるよう構成し
ている為に、スペースの有効活用と蓄熱容量を大に構成
することが出来る。
According to this embodiment, the above-described effects of the present invention can be smoothly achieved, and since the fluidized bed regenerators 1, 2, and 3 are arranged in a multilayered structure, the airflow flowing into the device can be sequentially transferred to the regenerator. The structure is such that the cold heat is stored in the cold storage heat material 19 while passing through the heating units 1, 2.3, and then discharged to the outside from the upper discharge lower, making effective use of space and increasing the heat storage capacity. It can be configured.

第8図は前記装置内に熱交換器が配置された他の実施例
で、上段に前述した流動層式蓄冷熱器3中段に、下側に
加熱コイル又は冷媒コイルとして機能する熱交換コイル
21と上側にコイル21に合わせた管状蓄熱体群16A
゛を配置した流動層式熱交換器兼蓄冷熱器20、下段に
熱交換コイル31を埋設した流動層式熱交換器30が夫
々配設されている。そして前記熱交換コイル21.31
は裸管で形成され、膨張弁32.32“を介してヒート
ポンプ又は冷凍機として機能する冷媒圧縮機33と接続
されている。
FIG. 8 shows another embodiment in which a heat exchanger is arranged in the device, in which the above-mentioned fluidized bed regenerator 3 is in the middle stage, and the heat exchange coil 21 functioning as a heating coil or refrigerant coil is in the lower part. and a tubular heat storage body group 16A that matches the coil 21 on the upper side.
A fluidized bed heat exchanger and cold storage heat exchanger 20 in which a heat exchanger coil 31 is disposed, and a fluidized bed heat exchanger 30 in which a heat exchange coil 31 is buried in the lower stage are respectively disposed. and said heat exchange coil 21.31
is formed of a bare tube and is connected via an expansion valve 32, 32'' to a refrigerant compressor 33 which functions as a heat pump or refrigerator.

尚、前記流動層式熱交換器30は装置内全幅に亙って配
設され気流の熱交換が十分性われるように構成する。
The fluidized bed heat exchanger 30 is disposed over the entire width of the device, and is configured to ensure sufficient heat exchange of airflow.

又、高速気流発生手段は第11図に示すように、スリッ
ト状に形成され、前記漏斗状孔14と同様に開口15“
aより噴出口15“bに進むにつれ気流通過面積が徐々
に縮小されるよう形成され、且つ該噴出口15゛bの直
上に熱交換コイル21、及びその上方に管状蓄熱体群1
6A″を配置する。
The high-speed airflow generating means is formed in the shape of a slit, as shown in FIG.
The airflow passage area is gradually reduced as it advances from the jet port 15''b from the jet port a, and a heat exchange coil 21 is disposed directly above the jet port 15''b, and a tubular heat storage body group 1 is placed above it.
6A'' is placed.

尚、管状蓄熱体群18八′の配置位置は必ずしも正確に
熱交換コイル21の直上に配置しても、又借かにずらし
て配置してもよく、いずれにしても気流が熱交換コイル
21の周面に沿って流れながら、その上方で管状蓄熱体
群16A°の周面に当たるよう構成すればよい、従って
前記特許請求の範囲に記載した「略直上」とは気流が蓄
冷熱手段の周面に当たりながら流れることを指す。
The tubular heat storage group 188' may be arranged exactly above the heat exchange coil 21, or may be slightly shifted from the heat exchange coil 21; The airflow may be configured so that it hits the circumferential surface of the tubular heat storage group 16A° above it while flowing along the circumferential surface of the cooling heat storage means. It refers to flowing while hitting a surface.

かかる実施例によれば、装置外部に気流に冷熱エネルギ
ーを付与する熱交換器その他のエネルギー付与手段を付
設することなく装置全体として小形化が達成されると共
に、前記熱交換コイル21、31が蒸発器としても又凝
縮器としても機能し、装置内を流れる気流との熱交換に
より気流の冷却と加熱を行うことが出来る。
According to this embodiment, the entire device can be made smaller without installing a heat exchanger or other energy imparting means for imparting cold energy to the airflow outside the device, and the heat exchange coils 21 and 31 are It functions both as a container and a condenser, and can cool and heat the airflow by exchanging heat with the airflow flowing inside the device.

又前記熱交換コイル21.31周囲には固体粒子群12
と気流との混相流が絶えず接触通過する為に、該熱交換
コイル21.31に霜が付着してもこれを削り取り、円
滑なデフロストを行うことが出来、且つ該デフロストに
より生じた霜は、固体粒子群12との比重差により排出
ロアより外部に排出される為に、蓄冷熱機に悪影響を及
ぼすことがない。
Also, around the heat exchange coil 21.31, there is a group of solid particles 12.
Since the multiphase flow of the heat exchanger coil 21.31 and the air flow constantly pass through each other in contact with each other, even if frost adheres to the heat exchange coil 21.31, it can be scraped off and smooth defrost can be performed. Since it is discharged to the outside from the discharge lower due to the difference in specific gravity with the solid particle group 12, there is no adverse effect on the regenerator.

「発明の効果」 以上記載した如く、本発明によれば、流動層を用いて蓄
冷熱層を形成するも、流動層の圧力損失がそれほど大に
なることなく、且つ熱伝達効率を格段に向上し得る蓄冷
熱装置が得られる。
"Effects of the Invention" As described above, according to the present invention, even though a cold storage heat layer is formed using a fluidized bed, the pressure loss of the fluidized bed does not become so large and the heat transfer efficiency is significantly improved. A cold heat storage device that can be used as a heat storage device can be obtained.

又本発明は潜熱蓄冷熱を可能にし、装置自体の小形化を
可能にすると共に、複数の温度域の潜熱を有する蓄熱材
を用いる事も可能であり、その用途範囲は極めて大きい
、等の種々の実用的効果を有する。
Furthermore, the present invention makes it possible to store latent heat cold heat, making it possible to miniaturize the device itself, and also to use a heat storage material that has latent heat in multiple temperature ranges, which has an extremely wide range of applications. It has practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1乃至第7図は本発明の一実施例を示し、第1図は蓄
冷熱装置の全体図、第2図乃至第4図、第7図はカプセ
ルを単段に配置した状態を示す要部拡大図で、第2図は
その斜視図、第3図は正面図、第4図は平面図、第7図
は気流の流れ状態を示す作用説明図である。第5図はカ
プセルを複数段に配置した状態を示す要部拡大正面図、
第8図及び第11図は熱交換器を組み込んだ他の実施例
で、第8図は全体図、第11図は気流の流れ状態を示す
要部拡大斜視図である。 第9図は従来公知の蓄熱装置を示す正面図、第10図は
本発明に隣接する公知技術の流動層式熱交換装置を示す
正面図である6 第1図 ツノ 第3図 第6図 第7図 第10図
Figures 1 to 7 show one embodiment of the present invention, Figure 1 is an overall view of the cold storage heat device, Figures 2 to 4, and Figure 7 are schematic diagrams showing capsules arranged in a single stage. 2 is a perspective view thereof, FIG. 3 is a front view, FIG. 4 is a plan view, and FIG. 7 is an explanatory diagram showing the flow state of airflow. Figure 5 is an enlarged front view of the main parts showing the capsules arranged in multiple stages;
FIGS. 8 and 11 show other embodiments incorporating a heat exchanger, with FIG. 8 being an overall view and FIG. 11 being an enlarged perspective view of essential parts showing the state of air flow. Fig. 9 is a front view showing a conventionally known heat storage device, and Fig. 10 is a front view showing a fluidized bed heat exchanger of a known technology adjacent to the present invention. Figure 7 Figure 10

Claims (1)

【特許請求の範囲】 1)気体通過面積を徐々に縮小させて高速気流を発生さ
せる手段と、該高速気流発生手段の略直上に配した蓄冷
熱手段とを有し、固体粒子群を介して前記高速気流が有
する冷熱エネルギーを蓄冷熱手段に伝熱させる事を特徴
とする流動層型蓄冷熱装置 2)前記蓄冷熱手段が、所定温度の融点(凝固点)を有
する蓄冷熱材を封入したカプセル群からなる特許請求の
範囲第1項記載の蓄冷熱装置 3)前記固体粒子群の保持手段を、高速気流発生手段上
流開口側の下方位置に配した特許請求の範囲第1項又は
第2項記載の蓄冷熱装置 4)前記高速気流発生手段の噴出孔と該噴出孔の直上に
配したカプセルの寸法形状を適宜決定し、前記カプセル
周囲を通過する高速気流にコアンダ効果を生じさせるよ
うにした特許請求の範囲第2項又は第3項記載の蓄冷熱
装置 5)装置内に流入した気流に冷熱エネルギーを付与する
熱交換器を蓄冷熱手段の上流側の装置内に配置し、該熱
交換器より高速気流発生手段への冷熱エネルギーの付与
が、主として固体粒子群を介して行われるように構成し
た事を特徴とする特許請求の範囲第1項記載から第4項
までのいずれか一項記載の蓄冷熱装置
[Claims] 1) A means for generating a high-speed airflow by gradually reducing a gas passage area, and a cold storage heat means disposed almost directly above the high-speed airflow generation means, A fluidized bed type cold storage heat device characterized in that the cold energy of the high-speed air flow is transferred to a cold storage heat means 2) A capsule in which the cold storage heat means encapsulates a cold heat storage material having a melting point (freezing point) of a predetermined temperature. 3) The cold storage heat device according to claim 1, wherein the solid particle group holding means is disposed at a lower position on the upstream opening side of the high-speed airflow generating means. The cold storage heat device described in 4) The size and shape of the ejection hole of the high-speed airflow generation means and the capsule arranged directly above the ejection hole are appropriately determined so as to cause a Coanda effect in the high-speed airflow passing around the capsule. 5) A heat exchanger for imparting cold energy to the airflow flowing into the device is disposed in the device on the upstream side of the cold storage heat means, and the heat exchanger Any one of claims 1 to 4, characterized in that the application of cold energy from the container to the high-speed airflow generating means is performed mainly through a group of solid particles. The described cold storage heat device
JP60096094A 1985-05-08 1985-05-08 Regenerator of fluidized bed type Granted JPS61256189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096094A JPS61256189A (en) 1985-05-08 1985-05-08 Regenerator of fluidized bed type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096094A JPS61256189A (en) 1985-05-08 1985-05-08 Regenerator of fluidized bed type

Publications (2)

Publication Number Publication Date
JPS61256189A true JPS61256189A (en) 1986-11-13
JPH0532677B2 JPH0532677B2 (en) 1993-05-17

Family

ID=14155805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096094A Granted JPS61256189A (en) 1985-05-08 1985-05-08 Regenerator of fluidized bed type

Country Status (1)

Country Link
JP (1) JPS61256189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116638A (en) * 1997-06-13 1999-01-12 Takenaka Komuten Co Ltd Air conditioning outlet in ceiling for thermal storage in building frame
JP2002310551A (en) * 2001-04-06 2002-10-23 Shimadzu Corp Cooling system with cold storage function
JP2008292082A (en) * 2007-05-25 2008-12-04 Sekisui Chem Co Ltd Heat storage device and air conditioning system using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116638A (en) * 1997-06-13 1999-01-12 Takenaka Komuten Co Ltd Air conditioning outlet in ceiling for thermal storage in building frame
JP2002310551A (en) * 2001-04-06 2002-10-23 Shimadzu Corp Cooling system with cold storage function
JP2008292082A (en) * 2007-05-25 2008-12-04 Sekisui Chem Co Ltd Heat storage device and air conditioning system using the same

Also Published As

Publication number Publication date
JPH0532677B2 (en) 1993-05-17

Similar Documents

Publication Publication Date Title
JP2001317894A (en) High efficiency multi-channel type loop heat transfer apparatus
CN203758095U (en) Evaporator with cold accumulation function
JP2009543021A (en) Rotating regenerator and magnetic refrigerator using this regenerator
JPH04177063A (en) Air conditioning plant
JPS61256189A (en) Regenerator of fluidized bed type
JPH0626673A (en) Gas cooling device
US9518768B2 (en) Evaporator having a phase change material louvered clam shell housing
CN208170604U (en) Air-conditioning system and air conditioner
CN102042728B (en) Method and device for preparing fluidized ice
CN208186911U (en) Air-conditioning system and air conditioner
CN106568187A (en) Heat exchanger and air conditioner
CN115493344B (en) Embedded air-cooled refrigerator and control method thereof
EP2846120A1 (en) Evaporator having a phase change material louvered clam shell housings
CN212058384U (en) Cooling tower with heat pipe system
CN219756528U (en) Protective net assembly, heat exchanger and air conditioner
CN215983353U (en) Regenerative condenser and air circulation system
JP4633967B2 (en) Ice thermal storage air conditioner
CN212673564U (en) Precooling evaporator
CN211782075U (en) Refrigeration system
CN208269331U (en) Air conditioner and combined air-conditioning system
KR200306466Y1 (en) Fin Tube installed Energy Storage-and-Recovery Device using Latent Heat of Fusion of Water and Air-Conditioning System with the Device
JPS6217598A (en) Latent heat accumulating device
JPS593274Y2 (en) Heat exchange device for ventilation
SU1645773A1 (en) Heat utilization unit
JPS599196Y2 (en) Heat exchange device for ventilation