JPH0532677B2 - - Google Patents

Info

Publication number
JPH0532677B2
JPH0532677B2 JP60096094A JP9609485A JPH0532677B2 JP H0532677 B2 JPH0532677 B2 JP H0532677B2 JP 60096094 A JP60096094 A JP 60096094A JP 9609485 A JP9609485 A JP 9609485A JP H0532677 B2 JPH0532677 B2 JP H0532677B2
Authority
JP
Japan
Prior art keywords
heat
cold storage
cold
fluidized bed
speed airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60096094A
Other languages
Japanese (ja)
Other versions
JPS61256189A (en
Inventor
Keisuke Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP60096094A priority Critical patent/JPS61256189A/en
Publication of JPS61256189A publication Critical patent/JPS61256189A/en
Publication of JPH0532677B2 publication Critical patent/JPH0532677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、冷凍装置、ヒートポンプ装置、空調
装置、温室栽培用冷温度装置その他の冷・熱エネ
ルギーを利用する各種装置に使用される蓄冷熱装
置に係り、更に詳細には微小ガラス球その他の固
体粒子を伝熱媒体として気体内に有する冷熱エネ
ルギーを蓄冷熱材に蓄冷若しくは蓄熱させる、い
わゆる流動層式の蓄冷熱装置に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention is a cold storage heat storage device used in refrigeration equipment, heat pump equipment, air conditioning equipment, cold temperature equipment for greenhouse cultivation, and other various equipment that utilizes cold and thermal energy. The present invention relates to a device, and more particularly to a so-called fluidized bed type cold storage device that uses micro glass spheres or other solid particles as a heat transfer medium to store cold energy contained in a gas in a cold storage material.

「従来の技術」 従来より例えば常温以上の熱エネルギーを有す
る気流を利用して潜熱利用の蓄冷熱材(冷えば
CaCl26H2O)に昼間の温度域を蓄熱し、夜間に
該蓄熱材の熱エネルギーを放熱して昼間の温度域
に近ずける温室栽培用の蓄熱装置が提案されてい
る。
``Conventional technology'' Conventionally, for example, cold storage materials that utilize latent heat by using airflow that has thermal energy above room temperature (
A heat storage device for greenhouse cultivation has been proposed that stores heat in the daytime temperature range in CaCl 2 6H 2 O) and radiates the thermal energy of the heat storage material at night to bring the temperature closer to the daytime temperature range.

第9図はかかる蓄熱装置の一例を示す概略図
で、多段状に形成した棚102上に蓄熱材を封入
したカプセル101を配置して蓄熱装置本体10
0を構成すると共に、該本体100の入口側に補
助ヒータ103、ブロワー104、吸入ダクト1
05を取り付け、前記棚102と平行に気流が流
れるように構成し、昼間の温室内の余剰熱エネル
ギーを有する気流が前記蓄熱材に奮熱され、該蓄
熱材に潜熱蓄熱させる。一方夜間は前記カプセル
101上を気流が通過することにより、該蓄熱材
の潜熱と熱交換されて、常温付近の温度域を有す
る気流が栽培室内に流され、栽培室内を常に一定
温度に維持し得るものである。
FIG. 9 is a schematic diagram showing an example of such a heat storage device, in which capsules 101 filled with heat storage material are arranged on shelves 102 formed in a multi-tiered manner.
0, and an auxiliary heater 103, a blower 104, and a suction duct 1 are installed on the inlet side of the main body 100.
05 is installed so that the airflow flows parallel to the shelf 102, and the airflow having surplus thermal energy in the greenhouse during the day is heated by the heat storage material, causing the heat storage material to store latent heat. On the other hand, at night, as airflow passes over the capsule 101, heat is exchanged with the latent heat of the heat storage material, and an airflow having a temperature range around room temperature is flowed into the cultivation chamber, thereby constantly maintaining the temperature inside the cultivation chamber at a constant temperature. It's something you get.

「発明が解決しようとする問題点」 この種の蓄熱装置においては、気流と蓄熱材と
の熱伝達率が低い為に、必然的に気流流れ方向に
沿つて長い熱交換室を必要とし且つ前記蓄熱材も
その分多量に必要とする等、製造コストが大にな
るのみならず、このような構成を取つても尚、熱
伝達率の飛躍的な向上を望みにくいという問題を
有していた。
"Problems to be Solved by the Invention" In this type of heat storage device, since the heat transfer coefficient between the airflow and the heat storage material is low, a long heat exchange chamber is inevitably required along the direction of the airflow, and Not only does this require a large amount of heat storage material, which increases manufacturing costs, but even with this configuration, it is difficult to expect a dramatic improvement in heat transfer coefficient. .

前記カプセル101内に蓄熱される熱エネルギ
ーが0℃以下の場合は、気流中に含有する湿度が
カプセル101表面に霜又は氷として付着し伝熱
効率が大幅に低下するという欠点を有する。
If the thermal energy stored in the capsule 101 is below 0° C., there is a disadvantage that the humidity contained in the airflow will adhere to the surface of the capsule 101 as frost or ice, resulting in a significant reduction in heat transfer efficiency.

又かかる欠点を解消する為に公知の流動層式熱
交換装置を蓄冷熱装置に転用して、例えば特開昭
60−73218号に示すように、砕石などの鉱物を粒
状にしたもの、或いは砂などの粒状蓄熱材を蓄熱
槽に充填して蓄熱材による流動層を形成し、空気
の分散板の上の流動層内には金属網を立設し、こ
の流動層の蓄熱材と直接交換する空気を媒体とし
て、蓄熱を行なうようにしたことを特徴とする蓄
熱装置が提案されている。
In addition, in order to eliminate this drawback, a known fluidized bed heat exchanger was converted into a cold storage heat exchanger, for example,
As shown in No. 60-73218, a heat storage tank is filled with granular minerals such as crushed stone, or granular heat storage materials such as sand to form a fluidized bed of the heat storage material, and the fluidized layer is placed on an air distribution plate. A heat storage device has been proposed which is characterized in that a metal mesh is installed upright in the bed, and heat is stored using air as a medium that is directly exchanged with the heat storage material of the fluidized bed.

しかしながらこの種の蓄熱装置では蓄熱を行う
媒体が、細粒状の流動層それ自体である為に蓄熱
効果に乏しく、単なる熱緩衝的機能は有するが、
夜間電力を有効に利用可能な長時間に亙る蓄熱装
置として機能し得ない。
However, in this type of heat storage device, the heat storage medium is a fine-grained fluidized bed itself, so it has a poor heat storage effect, and although it has a mere thermal buffer function,
It cannot function as a long-term heat storage device that can effectively utilize nighttime electricity.

かかる欠点を解消する為に、前記流動層内に蓄
熱材を封入したカプセルを埋没させて両者の欠点
を解消せんとする事が考えられるが、流動層に用
いる分散板は流動層全面に流入孔が形成されてい
る為に、各流入孔毎の気流圧力は極めて小で且つ
その流動層内通過速度もゆるやかである為に、前
記のように流動層内にカプセルを埋没させると該
カプセルが障害となつて、流動層の慣性運動が円
滑に行う事が出来ず、前記カプセルを埋没させな
い場合に比較して熱伝達率が大幅に低下するのみ
ならず、カプセルの存在は流動層内通過圧力の増
大につながりブロワー動力が大になり易い。
In order to overcome these drawbacks, it is conceivable to bury a capsule containing a heat storage material in the fluidized bed to eliminate both drawbacks, but the dispersion plate used in the fluidized bed has inlet holes all over the surface of the fluidized bed. Because of this, the airflow pressure at each inflow hole is extremely small and the speed at which it passes through the fluidized bed is slow. Therefore, if the capsule is buried in the fluidized bed as described above, the capsule will be damaged. As a result, the inertial motion of the fluidized bed cannot be carried out smoothly, and the heat transfer coefficient not only decreases significantly compared to the case where the capsules are not buried, but also the presence of the capsules reduces the pressure passing through the fluidized bed. This may lead to an increase in the blower power.

又気流の流動層内通過速度がゆるやかである事
は、気流中に含有する湿度がカプセル表面に霜又
は氷として付着した場合、該カプセル表面に固体
粒子が衝接した場合前記霜や氷とともに一体的に
固着してしまい、伝熱効率が更に大幅に低下する
という欠点が派生してしまう。
In addition, the slow passage speed of the airflow through the fluidized bed means that if the humidity contained in the airflow adheres to the capsule surface as frost or ice, and if solid particles collide with the capsule surface, they will be combined with the frost or ice. This leads to the disadvantage that the heat transfer efficiency further decreases significantly.

本発明が解決しようとする技術的課題は、前記
流動層内にカプセルを収納させて蓄冷熱層を形成
するも、流動層の慣性運動を円滑に行いつつ、而
も流動層の熱伝達効率を格段に向上し得る蓄冷熱
装置を提供することを目的とする。
The technical problem to be solved by the present invention is to form a cold storage heat layer by housing a capsule in the fluidized bed, but to achieve smooth inertial movement of the fluidized bed and to improve the heat transfer efficiency of the fluidized bed. The purpose of the present invention is to provide a cold storage heat storage device that can be significantly improved.

又本発明の他の目的は潜熱蓄冷若しくは蓄熱を
可能にし、装置自体の小形化を図つた蓄冷熱装置
を提供することにある。
Another object of the present invention is to provide a cold/heat storage device that enables latent heat storage or heat storage and is miniaturized.

更に本発明の他の目的とする所は、複数の潜熱
蓄冷若しくは蓄熱を可能にした蓄冷熱装置を提供
することにある。
Furthermore, another object of the present invention is to provide a cold storage heat storage device that is capable of storing a plurality of latent heats.

更に又本発明の他の目的とする所は、熱交換器
と蓄冷熱槽を積層して又は混在させて一体的に配
置し、装置全体の小形化を可能にした蓄冷熱装置
を提供することにある。
Furthermore, another object of the present invention is to provide a cold storage device in which a heat exchanger and a cold storage tank are stacked or mixed and arranged integrally, thereby making it possible to downsize the entire device. It is in.

「問題点を解決しようとする手段」 本発明はかかる技術的課題を達成する為に、 気体通過面積を徐々に縮小させて高速気流を
発生させる、高速(ジエツト)気流発生手段を
有する点、 前記発生手段の上面側に所定の厚みをもつて
堆積させ、流動層として機能させる固体粒子群
を有する点、 前記固体粒子群内に埋設する如く配設され、
断面閉曲線状のカプセル若しくは管状体からな
る蓄冷熱手段を有する点、 固体粒子群を介して、高速気流発生手段の略
直上に前記蓄冷熱手段を位置決め保持する位置
決め保持手段を有する点、 前記高速気流発生手段通過後の高速気流の保
有する流体エネルギーにより、該高速気流と前
記固体粒子群との混相流を生成させながら、該
混相流を蓄冷熱手段周面に動的に接触(摺接若
しくは衝接)させ、より具体的にはコアンダ効
果を生ぜしめるように、前記周面で混相流をサ
ーキユレートさせながら、該混相流の保有する
冷熱エネルギーを前記蓄冷熱手段に伝熱可能に
構成した点 を特徴とする流動層型蓄冷熱装置を提案する。
"Means for Solving the Problems" In order to achieve the above-mentioned technical problems, the present invention includes a high-speed (jet) airflow generation means that gradually reduces the gas passage area to generate high-speed airflow. having a group of solid particles deposited with a predetermined thickness on the upper surface side of the generating means to function as a fluidized bed; disposed so as to be embedded within the group of solid particles;
It has a cold storage heat means made of a capsule or a tubular body with a closed curved cross section; It has a positioning and holding means that positions and holds the cold storage heat means substantially directly above the high speed airflow generating means via a group of solid particles; The high speed airflow Using the fluid energy possessed by the high-speed airflow after passing through the generating means, a multiphase flow of the high-speed airflow and the solid particle group is generated, and the multiphase flow is brought into dynamic contact (sliding contact or impact) with the circumferential surface of the cold storage heat means. (contact), more specifically, the multiphase flow is circulated on the circumferential surface, and the cold energy held by the multiphase flow is configured to be heat transferable to the cold storage heat means, so as to produce a Coanda effect. We propose a fluidized bed type cold storage device with characteristics.

尚、前記冷熱エネルギーは高速気流発生手段通
過前の気流中に含有させてもよく、又前記蓄冷熱
手段の下方に位置する固体粒子群内に裸管状の熱
交換器を配設し、前記混相流を介して該熱交換器
よりの吸熱と、蓄冷熱手段への伝熱を行なうよう
にしてもよく、これにより吸熱/伝熱の熱交換効
率が格段に向上する。
The cold energy may be contained in the airflow before passing through the high-speed airflow generation means, or a bare tubular heat exchanger may be disposed within the solid particle group located below the cold storage heat means, and the multiphase Heat absorption from the heat exchanger and heat transfer to the cold heat storage means may be performed through the flow, thereby significantly improving the heat exchange efficiency of heat absorption/heat transfer.

又、前記蓄冷熱手段は一般に所定温度の融点
(凝固点)を有する蓄冷熱材を封入したカプセル
群又は熱交換管に合わせた蓄冷熱体から構成さ
れ、該カプセルの形状は球形、卵型又は管群その
他に気流がその周面を通過し易い曲面状(断面閉
曲線)に形成するのがよい。この場合において前
記カプセル等に封入する蓄冷熱材には、0℃の融
点(凝固点)を有する水、20〜30℃の融点を有す
るCaCl26H2O、50〜60℃の融点を有するパラフ
イン等が用いられ、夫々所望目的に応じた潜熱蓄
冷熱が行われるよう構成する。又カプセル皮はプ
ラスチツク樹脂体又は金属材等により形成され
る。
In addition, the cold storage heat means generally comprises a group of capsules enclosing a cold storage heat material having a melting point (freezing point) of a predetermined temperature, or a cold storage heat body fitted to a heat exchange tube, and the shape of the capsule may be spherical, oval, or tube. It is preferable to form a curved surface (closed curve in cross section) through which airflow can easily pass through the peripheral surface. In this case, the cold storage heat material sealed in the capsule etc. may include water having a melting point (freezing point) of 0°C, CaCl 2 6H 2 O having a melting point of 20 to 30°C, paraffin having a melting point of 50 to 60°C, etc. are used to store latent heat and cool heat depending on the desired purpose. Further, the capsule skin is formed of a plastic resin body, a metal material, or the like.

又、高速気流発生手段としては、気体通過面積
を徐々に縮小させた漏斗状穴を多数穿設させたパ
ンチングメタルにより構成してもよく、又、厚肉
平板部材を機械加工により切削して前記漏斗状穴
を形成してもよい。又管群蓄熱体の場合はスリツ
ト状噴出孔となる。
Further, the high-speed airflow generating means may be constructed of a punched metal having a large number of funnel-shaped holes in which the gas passage area is gradually reduced, or a thick flat plate member may be cut by machining to form the above-mentioned A funnel-shaped hole may also be formed. In the case of a tube group heat storage body, it becomes a slit-shaped ejection hole.

「作用」 本技術手段によれば、高速気流発生手段の直上
に、固体粒子群を介してカプセル状若しくは管状
の蓄冷熱手段を位置保持した状態で配設させてい
る為に、言い換えれば従来の流動層のように流動
層全面に均一に流入孔を穿設したのではなく、蓄
冷熱手段の下方に固体粒子群を介して流入孔を穿
設し、而も該流入孔を気体通過面積を徐々に縮小
させて加速した気流を発生させる高速気流発生手
段として形成した為に、従来の流動層に比較して
圧力損失の大幅低下と単位時間当たりの流体エメ
ルギーが大幅に増大し、而も前記蓄冷熱手段は断
面閉曲線状のカプセル若しくは管状体で形成され
且つ高速気流発生手段の直上位置に配置されてい
る為に、前記カプセル(長管を含む)周囲を通過
する高速気流によりカプセルの周面に沿つてサー
キユレートする、いわゆるコアンダ効果が生じ、
第7図と第11図に示すように固体粒子と気流か
らなる混相流が蓄冷熱手段に慣性運動と繰り返し
接触させながら円滑な伝熱が行われ、これにより
従来に比して伝熱効率を大幅に向上させることが
出来る。
"Operation" According to the present technical means, the capsule-shaped or tubular cold storage heat means is disposed directly above the high-speed airflow generation means in a state where the position is maintained through the solid particle group. Unlike a fluidized bed, inlet holes are not uniformly drilled over the entire surface of the fluidized bed, but the inlet holes are drilled below the cold heat storage means through a group of solid particles, and the inlet holes are used to reduce the gas passage area. Because it is formed as a high-speed airflow generating means that generates an accelerated airflow by gradually contracting it, the pressure loss is significantly reduced and the fluid energy per unit time is significantly increased compared to the conventional fluidized bed. Since the cold storage heat means is formed of a capsule or a tubular body with a closed curved cross-section and is placed directly above the high-speed airflow generation means, the high-speed airflow passing around the capsule (including the long tube) causes the peripheral surface of the capsule to be damaged. The so-called Coanda effect occurs, which circulates along the
As shown in Figures 7 and 11, smooth heat transfer is performed while the multiphase flow consisting of solid particles and air flows repeatedly contacts the cold storage heat storage means with inertial motion, which greatly improves heat transfer efficiency compared to conventional methods. can be improved.

更に本発明によれば、蓄冷熱手段に動的に接触
する混相流は高速で且つ単位時間当たりの流体エ
ネルギーが大である為に、気流中に含有する湿度
がカプセル表面に霜又は氷として付着した場合に
おいても、前記混相流により蓄冷熱手段表面に固
着した霜や氷が完全に除去され、常に且つ連続的
にデフロストされてしまう為に伝熱効率が更に大
幅に向上する。
Furthermore, according to the present invention, since the multiphase flow that dynamically contacts the cold storage heat means is high-speed and has a large fluid energy per unit time, the humidity contained in the air flow adheres to the capsule surface as frost or ice. Even in this case, the frost and ice fixed on the surface of the cold storage heat means are completely removed by the multiphase flow, and the heat transfer efficiency is further greatly improved because the defrost is always and continuously carried out.

尚、本発明は高速気流発生手段の直上に配した
蓄冷熱手段を配し、前記カプセル周囲を通過する
高速気流によりコアンダ効果を生じさせるように
構成しているが、特に前記高速気流発生手段の噴
出孔を円形に且つカプセル直径より小に形成する
のが好ましい。
The present invention is configured such that a cold heat storage means is disposed directly above the high-speed airflow generating means, and the high-speed airflow passing around the capsule produces a Coanda effect. Preferably, the ejection hole is circular and smaller than the capsule diameter.

特にこの場合において、前記蓄冷熱材を、所定
温度の融点(凝固点)を有する潜熱蓄冷熱材で構
成することにより、装置の小形化を図りつつ大容
量の蓄冷熱が可能となる。
Particularly in this case, by configuring the cold storage material with a latent heat storage material having a melting point (freezing point) of a predetermined temperature, it is possible to store a large amount of cold heat while downsizing the device.

更に前記の様に伝熱効率が大幅に向上する事
は、本発明を利用して熱交換器を構成する事も可
能であり、例えば前記高速気流発生手段の略直上
に、固体粒子群を介して、裸管状の熱交換器と、
更にその上方にの蓄冷熱手段を配する事により高
速気流の吸熱と蓄熱を一の装置で達成出来、装置
全体の小形化とエネルギー効率が大幅に向上す
る。
Furthermore, the heat transfer efficiency can be significantly improved as described above by using the present invention to construct a heat exchanger. , a bare tubular heat exchanger,
Furthermore, by arranging the cold storage heat means above it, heat absorption and heat storage of high-speed airflow can be achieved in one device, and the overall device size and energy efficiency are greatly improved.

「実施例」 以下、図面を参照して本発明の好適な実施例を
例示的に詳しく説明する。ただしこの実施例に記
載されている構成部品の寸法、材質、形状、その
相対配置などは特に特定的な記載がない限りは、
この発明の範囲をそれのみに限定する趣旨ではな
く、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described in this example are as follows, unless otherwise specified.
This is not intended to limit the scope of the invention, but is merely an illustrative example.

第1図は流動層式蓄冷熱器1,2,3を多段状
に直列に配した蓄冷熱装置の全体概略図を示す。
FIG. 1 shows an overall schematic diagram of a cold storage heat storage device in which fluidized bed type cold storage heat storage devices 1, 2, and 3 are arranged in series in a multistage manner.

第1図において、4は装置外枠で、ブロワー5
が連接された冷熱温熱気流吸入口6と、前記流動
層蓄冷熱器1,2,3内通過後の気流を外部に排
出する排出口7を、夫々上下両側に形成する。
In Figure 1, 4 is the outer frame of the device, and the blower 5
A cold/hot air inlet 6 connected to the fluidized bed regenerators 1, 2, and 3, and an outlet 7 for discharging the air after passing through the fluidized bed regenerators 1, 2, and 3 to the outside are formed on the upper and lower sides, respectively.

流動層蓄冷熱器1,2,3は、下方が拡径され
た漏斗状筒形状をなし、該蓄冷熱器1,2,3の
中心上方に延設する流出口11が夫々次段側の下
側中心穴に挿設され、各段毎の流動層蓄冷熱器
1,2,3より排出された気流が順次次段側の流
出口11′に集められて排出口7より外部に排出
されるよう構成している。
The fluidized bed regenerators 1, 2, and 3 have a funnel-shaped cylinder shape with a diameter expanded at the bottom, and the outlet ports 11 extending above the center of the regenerators 1, 2, and 3 are connected to the next stage side, respectively. It is inserted into the lower center hole, and the airflow discharged from the fluidized bed regenerators 1, 2, and 3 of each stage is sequentially collected at the outlet 11' of the next stage and discharged to the outside from the outlet 7. It is configured so that

又、流動層蓄冷熱器1,2,3の下方拡径部内
には、第2〜4図に示す如く下方より順次、微小
ガラス球その他の固定粒子群12を保持するメツ
シユ網13その他の固体粒子保持手段、気体通過
面積を徐々に縮小させた漏斗状穴14を多数穿設
させたパンチングメタル15その他の高速気流発
生手段、前記漏斗状穴14の直上に配置されたカ
プセル群16A、該カプセル群16Aを所定位置
に支持する位置決め用金網17,18、及び該カ
プセル群16Aを埋設する固体粒子群12が、
夫々収容配置されている。
In addition, in the lower enlarged diameter portions of the fluidized bed regenerators 1, 2, and 3, as shown in FIGS. A particle holding means, a punching metal 15 having a large number of funnel-shaped holes 14 with a gradually reduced gas passage area and other high-speed airflow generating means, a group of capsules 16A disposed directly above the funnel-shaped holes 14, and the capsules. Positioning wire meshes 17 and 18 that support the group 16A in a predetermined position, and the solid particle group 12 that embeds the capsule group 16A,
They are arranged to accommodate each.

又、前記カプセル群16Aは第5図に示す如
く、カプセル群16A,16Bを所定間隔離して
複数段状に形成してもよい。
Further, the capsule group 16A may be formed in a plurality of stages with the capsule groups 16A and 16B separated by a predetermined distance, as shown in FIG.

次に前記各部材について詳細に説明する。 Next, each of the above members will be explained in detail.

カプセル16は第6図に示すように球形、縦長
卵型又は管状形状を有し、その直径を略30〜100
mm程度に設定してすると共に、その封止皮をプラ
スチツク樹脂体又は金属体で形成すると共に、内
部に所望融点を有する水、CaCl26H2O、パラフ
イン等の蓄冷熱材19が封入されている。又これ
らの蓄冷熱材は単一種類ではなく、複数種類混合
して用いてもよく、又カプセル毎に夫々異なる融
点を有する別異の蓄冷熱材19を封入するよう構
成してもよい。このように構成すれば蓄冷熱させ
る潜熱蓄冷熱の温度域が拡がり、該蓄熱槽の汎用
的利用が可能となる。
As shown in FIG. 6, the capsule 16 has a spherical, vertically oval, or tubular shape, and has a diameter of about 30 to 100 mm.
mm, the sealing skin is formed of a plastic resin body or a metal body, and a cold heat storage material 19 such as water, CaCl 2 6H 2 O, paraffin, etc. having a desired melting point is sealed inside. There is. In addition, these cold storage heat materials are not of a single type, but a plurality of types may be mixed and used, and different cold storage heat materials 19 having different melting points may be enclosed in each capsule. With this configuration, the temperature range of the latent heat stored as cold heat is expanded, and the heat storage tank can be used for general purposes.

例えば第5図の複数段のカプセル群16A,1
6Bを配置した構成において、上段側に潜熱温度
が50〜60℃のパラフインを封入したカプセル群1
6Bを、又下段側に0℃前後の凍結点を有する水
を封入したカプセル群16Aを夫々配置すること
により、深夜電力を利用した冷暖房システムの蓄
冷及び蓄熱装置として利用出来る。
For example, the multi-stage capsule group 16A, 1 in FIG.
In the configuration in which 6B is arranged, capsule group 1 is filled with paraffin having a latent heat temperature of 50 to 60°C on the upper stage side.
6B and a group of capsules 16A filled with water having a freezing point of around 0°C on the lower side, respectively, can be used as a cold storage and heat storage device for a heating and cooling system using late-night electricity.

即ち、夏期冷房時には深夜電力を利用して冷凍
機により前記水を封入したカプセル群16Aに潜
熱として蓄冷(この場合パラフインは顕熱蓄冷)
させ、昼間において冷房負荷を蓄冷熱装置内を循
環させることにより、冷凍機を運転することなく
冷房が可能となり、一方、冬期暖房時には深夜電
力を利用してヒートポンプにより前記パラフイン
を封入したカプセル群16Bに潜熱として蓄熱
(この場合水は顕熱蓄熱)させ、昼間において暖
房負荷を蓄冷熱装置内を循環させることにより、
ヒートポンプを運転することなく暖房が可能とな
り、従つてかかる蓄冷蓄熱装置によれば深夜電力
を有効利用した冷暖房システムが効果的且つ小形
に構成出来る。
That is, during summer cooling, late-night electricity is used to store cold as latent heat in the capsule group 16A filled with water by a refrigerator (in this case, paraffin stores sensible heat).
By circulating the cooling load through the cold storage heat device during the daytime, it becomes possible to cool the air conditioner without operating a refrigerator.On the other hand, during winter heating, the paraffin-filled capsule group 16B is operated by a heat pump using late-night electricity. By storing heat as latent heat (in this case, water is storing sensible heat) and circulating the heating load within the cold storage heat storage device during the day,
Heating can be performed without operating a heat pump, and the cold storage and thermal storage device enables an effective and compact air-conditioning system that effectively utilizes late-night electricity.

元に戻り、パンチングメタル15は第3図に示
すように、下方開口15aより上方噴出口15b
に向けて徐々に縮径された漏斗状穴14を多数穿
設させて形成させ、前記上方噴出口15bはカプ
セル16形状に合わせて円形に形成すると共に、
その口径を少なく共カプセル16直径(短径)よ
り小に形成する。
Returning to its original position, the punching metal 15 moves from the lower opening 15a to the upper spout 15b, as shown in FIG.
A large number of funnel-shaped holes 14 whose diameters are gradually reduced toward
The diameter of the capsule is made smaller than the diameter (minor diameter) of the co-capsule 16.

尚、かかるパンチングメタル15は平板から簡
単に製作可能の為に量産に適すると共に、該漏斗
状穴14は上面側も山形状に傾斜されている為に
上方噴出口15b部に固定粒子群12が堆積する
ことはない。
This punching metal 15 is suitable for mass production because it can be easily manufactured from a flat plate, and since the funnel-shaped hole 14 is also sloped in the shape of a mountain on the upper surface side, the fixed particle group 12 is formed at the upper spout 15b. No accumulation occurs.

このように構成する事により、第7図に示すよ
うに、前記下方開口15aより流入した気流は
徐々に流路通過面積が縮径される漏斗状穴14内
で流速が徐々に加速されて高速気流となつて上方
噴出口15bより噴出され、該高速気流が固定粒
子群12と混相流となつて第7図に示す如く、該
混相流がカプセルの周面に沿つて通過しながらカ
プセルの上方で、再び下方に回動しながらサーキ
ユレート(コアンダ効果)し、高速気流の有する
冷熱エネルギーが固定粒子群12を伝熱媒体とし
てカプセル内の蓄冷熱材19に蓄冷熱されること
となる。
With this configuration, as shown in FIG. 7, the airflow flowing in from the lower opening 15a is gradually accelerated in the funnel-shaped hole 14 whose diameter is gradually reduced to a high speed. The high-speed airflow is ejected from the upper jet port 15b as an airflow, and the fixed particle group 12 forms a multiphase flow, and as shown in FIG. Then, while rotating downward again, it circulates (Coanda effect), and the cold energy of the high-speed airflow is stored in the cold heat storage material 19 in the capsule using the fixed particle group 12 as a heat transfer medium.

固定粒子保持手段たるメツシユ網13とパンチ
ングメタル15間の隙間は、気流が通過中に該隙
間間隔に固体粒子が残留しない程度の狭いものと
し、この結果、気流の流れが停止中に前記メツシ
ユ網13上に堆積した固定粒子群12(上方噴出
口15bが小の為その堆積は小であるが)、ブロ
ワー5の作動開始により即座に流動層内に戻され
る。
The gap between the mesh net 13 and the punching metal 15 serving as the fixed particle holding means is narrow enough that no solid particles remain in the gap while the airflow is passing through. The fixed particle group 12 deposited on the fixed particle group 13 (although the deposit is small because the upper jet port 15b is small) is immediately returned to the fluidized bed when the blower 5 starts operating.

このようにメツシユ網13をパンチングメタル
15の下方上流側に配することにより、気流が高
速流体になる前の緩速時に前記メツシユ網13を
通過する為に、圧力損失の生じる恐れが大幅に低
減される。
By arranging the mesh net 13 below and upstream of the punching metal 15 in this way, the possibility of pressure loss occurring is greatly reduced because the airflow passes through the mesh net 13 at a slow speed before becoming a high-speed fluid. be done.

かかる実施例によれば前述した本発明の効果が
円滑に達成されると共に、流動層蓄冷熱器1,
2,3を多層階状に配した為、該装置内に流入し
た気流が順次前記蓄冷熱器1,2,3内を通過し
ながら蓄冷熱材19に蓄冷熱させた後、上方排出
口7より外部に排出されるよう構成している為
に、スペースの有効活用と蓄熱容量を大に構成す
ることが出来る。
According to such an embodiment, the effects of the present invention described above can be smoothly achieved, and the fluidized bed regenerator 1,
2 and 3 are arranged in a multi-layered structure, the airflow flowing into the device sequentially passes through the cold storage heat storage devices 1, 2, and 3 and stores cold heat in the cold storage heat material 19, and then passes through the upper discharge port 7. Since it is configured to discharge more to the outside, it is possible to make effective use of space and increase the heat storage capacity.

第8図は前記装置内に熱交換器が配置された他
の実施例で、上段に前述した流動層式蓄冷熱器3
中段に、下側に加熱コイル又は冷媒コイルとして
機能する熱交換コイル21と上側にコイル21に
合わせた管状蓄熱体群16A′を配置した流動層
式熱交換器兼蓄冷熱器20、下段に熱交換コイル
31を埋設した流動層式熱交換器30が夫々配設
されている。そして前記熱交換コイル21,31
は裸管で形成され、膨張弁32,32′を介して
ヒートポンプ又は冷凍機として機能する冷媒圧縮
機33と接続されている。尚、前記流動層式熱交
換器30は装置内全幅に亙つて配設され気流の熱
交換が十分行われるように構成する。
FIG. 8 shows another embodiment in which a heat exchanger is arranged in the device, and the above-mentioned fluidized bed regenerator 3 is shown in the upper stage.
In the middle stage, a fluidized bed heat exchanger and cold storage device 20, which has a heat exchange coil 21 functioning as a heating coil or a refrigerant coil on the lower side and a tubular heat storage body group 16A' matching the coil 21 on the upper side, and a heat exchanger 20 in the lower stage. Fluidized bed heat exchangers 30 each having an embedded exchange coil 31 are provided. and the heat exchange coils 21, 31
is formed of a bare tube and is connected to a refrigerant compressor 33 which functions as a heat pump or refrigerator via expansion valves 32 and 32'. The fluidized bed heat exchanger 30 is disposed over the entire width of the device so that heat exchange of the airflow can be carried out sufficiently.

又、高速気流発生手段は第11図に示すよう
に、スリツト状に形成され、前記漏斗状孔14と
同様に開口15′aより噴出口15′bに進むにつ
れて気流通過面積が徐々に縮小されるよう形成さ
れ、且つ該噴出口15′bの直上に熱交換コイル
21、及びその上方に管状蓄熱体群16A′を配
置する。
Further, as shown in FIG. 11, the high-speed airflow generating means is formed in the shape of a slit, and like the funnel-shaped hole 14, the airflow passage area is gradually reduced as it advances from the opening 15'a to the jet port 15'b. A heat exchange coil 21 is disposed directly above the ejection port 15'b, and a tubular heat storage body group 16A' is disposed above the heat exchange coil 21.

尚、管状蓄熱体群16A′の配置位置は必ずし
も正確に熱交換コイル21の直上に配置しても、
又僅かにずらして配置してもよく、いずれにして
も気流が熱交換コイル21の周面に沿つて流れな
がら、その上方で管状蓄熱体群16A′の周面に
当たるよう構成すればよい。従つて前記特許請求
の範囲に記載した「略直上」とは気流が蓄冷熱手
段の周面に当たりながら流れることを指す。
Note that even if the tubular heat storage body group 16A' is arranged exactly above the heat exchange coil 21,
Alternatively, they may be arranged with a slight offset, and in any case, the airflow may be configured so that it flows along the circumferential surface of the heat exchange coil 21 and hits the circumferential surface of the tubular heat storage body group 16A' above it. Therefore, "substantially directly above" in the claims refers to the airflow flowing while hitting the circumferential surface of the cold storage heat means.

かかる実施例によれば、装置外部に気流に冷熱
エネルギーを付与する熱交換器その他のエネルギ
ー付与手段を付設することなく装置全体として小
形化が達成されると共に、前記熱交換コイル2
1,31が蒸発器としても又凝縮器としても機能
し、装置内を流れる気流との熱交換により気流の
冷却と加熱を行うことが出来る。
According to this embodiment, the entire device can be miniaturized without installing a heat exchanger or other energy imparting means for imparting cold energy to the airflow outside the device, and the heat exchange coil 2
1 and 31 function as both an evaporator and a condenser, and can cool and heat the airflow by exchanging heat with the airflow flowing inside the device.

又前記熱交換コイル21,31周囲には固体粒
子群12と気流との混相流が絶えず接触通過する
為に、該熱交換コイル21,31に霜が付着して
もこれを削り取り、円滑なデフロストを行うこと
が出来、且つ該デフロストにより生じた霜は、固
体粒子群12との比重差により排出口7より外部
に排出される為に、蓄冷熱機に悪影響を及ぼすこ
とがない。
Furthermore, since the multiphase flow of the solid particle group 12 and the air current constantly passes through contact with the surroundings of the heat exchange coils 21 and 31, even if frost adheres to the heat exchange coils 21 and 31, it is scraped off and defrost is carried out smoothly. Moreover, the frost generated by the defrosting is discharged to the outside from the discharge port 7 due to the difference in specific gravity with the solid particle group 12, so that it does not adversely affect the regenerator.

「発明の効果」 以上記載した如く、本発明によれば、前記流動
層内にカプセル等の蓄冷熱手段を収納させて蓄冷
熱層を形成するも、流動層の圧力損失や圧力負担
が大になることなく、熱伝達効率と蓄冷若しくは
蓄熱効果を格段に向上し得る蓄冷熱装置が得られ
る。
"Effects of the Invention" As described above, according to the present invention, although a cold storage heat layer is formed by housing a cold storage heat means such as a capsule in the fluidized bed, the pressure loss and pressure burden of the fluidized bed are greatly reduced. A cold storage heat storage device that can significantly improve heat transfer efficiency and cold storage or heat storage effects without any problems can be obtained.

又本発明は潜熱蓄冷若しくは蓄熱を可能にし、
装置自体の小形化を可能にすると共に、複数の温
度域の潜熱を有する蓄熱材を用いる事も可能であ
り、その用途範囲は極めて大きい。等の種々の実
用的効果を有する。
The present invention also enables latent heat cold storage or heat storage,
In addition to making it possible to downsize the device itself, it is also possible to use a heat storage material that has latent heat in multiple temperature ranges, and the range of its applications is extremely wide. It has various practical effects such as.

【図面の簡単な説明】[Brief explanation of the drawing]

第1乃至第7図は本発明の一実施例を示し、第
1図は蓄冷熱装置の全体図、第2図乃至第4図、
第7図はカプセルを単段に配置した状態を示す要
部拡大図で、第2図はその斜視図、第3図は正面
図、第4図は平面図、第7図は気流の流れ状態を
示す作用説明図である。第5図はカプセルを複数
段に配置した状態を示す要部拡大正面図、第8図
及び第10図は熱交換器を組み込んだ他の実施例
で、第8図は全体図、第10図は気流の流れ状態
を示す要部拡大斜視図である。第9図は従来公知
の蓄熱装置を示す正面図である。
1 to 7 show one embodiment of the present invention, FIG. 1 is an overall view of the cold storage heat device, FIGS. 2 to 4,
Fig. 7 is an enlarged view of the main parts showing the state in which the capsules are arranged in a single stage, Fig. 2 is a perspective view thereof, Fig. 3 is a front view, Fig. 4 is a plan view, and Fig. 7 is a flow state of airflow. FIG. Figure 5 is an enlarged front view of main parts showing a state in which capsules are arranged in multiple stages, Figures 8 and 10 are other embodiments incorporating a heat exchanger, Figure 8 is an overall view, and Figure 10 is FIG. 2 is an enlarged perspective view of a main part showing the state of airflow. FIG. 9 is a front view showing a conventionally known heat storage device.

Claims (1)

【特許請求の範囲】 1 気体通過面積を徐々に縮小させて高速気流を
発生させる、高速気流発生手段と、 その上面側に所定の厚みをもつて堆積させ、流
動層として機能させる固体粒子群と、 該固体粒子群内に埋設する如く配設され、断面
閉曲線状のカプセル若しくは管状体からなる蓄冷
熱手段と、 固体粒子群を介して、高速気流発生手段の略直
上に前記蓄冷熱手段を位置決め保持する位置決め
保持手段とを有し、 前記高速気流発生手段通過後の高速気流の保有
する流体エネルギーにより、該高速気流と前記固
体粒子群との混相流を生成させながら、該混相流
を蓄冷熱手段周面に動的に接触させ、該混相流の
保有する冷熱エネルギーを前記蓄冷熱手段に伝熱
可能に構成した事を特徴とする流動層型蓄冷熱装
置。 2 気体通過面積を徐々に縮小させて高速気流を
発生させる手段の略直上に、固体粒子群を介し
て、裸管状の熱交換器と、更にその上方にカプセ
ル状若しくは管状の蓄冷熱手段を配した事を特徴
とする請求項1記載の蓄冷熱装置。
[Scope of Claims] 1. A high-speed airflow generating means that gradually reduces the gas passage area to generate a high-speed airflow, and a group of solid particles deposited with a predetermined thickness on the upper surface thereof to function as a fluidized bed. , a cold heat storage means which is disposed so as to be embedded within the solid particle group and is composed of a capsule or a tubular body having a closed curved cross section, and the cold heat storage means is positioned substantially directly above the high speed airflow generation means via the solid particle group. and a positioning and holding means for holding the high-speed airflow after passing through the high-speed airflow generation means, while generating a multiphase flow of the high-speed airflow and the solid particle group, the multiphase flow is converted into cold storage heat. A fluidized bed type cold storage heat device, characterized in that the fluidized bed type cold storage heat device is configured to be brought into dynamic contact with the circumferential surface of the means so that cold energy held by the multiphase flow can be transferred to the cold storage heat means. 2. A bare tubular heat exchanger is disposed through a group of solid particles almost directly above the means for generating a high-speed airflow by gradually reducing the gas passage area, and a capsule-shaped or tubular cold storage heat means is arranged above the bare tubular heat exchanger. The cold storage heat device according to claim 1, characterized in that:
JP60096094A 1985-05-08 1985-05-08 Regenerator of fluidized bed type Granted JPS61256189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096094A JPS61256189A (en) 1985-05-08 1985-05-08 Regenerator of fluidized bed type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096094A JPS61256189A (en) 1985-05-08 1985-05-08 Regenerator of fluidized bed type

Publications (2)

Publication Number Publication Date
JPS61256189A JPS61256189A (en) 1986-11-13
JPH0532677B2 true JPH0532677B2 (en) 1993-05-17

Family

ID=14155805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096094A Granted JPS61256189A (en) 1985-05-08 1985-05-08 Regenerator of fluidized bed type

Country Status (1)

Country Link
JP (1) JPS61256189A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488045B2 (en) * 1997-06-13 2004-01-19 株式会社竹中工務店 Air-conditioning outlet inside the ceiling for heat storage
JP4715984B2 (en) * 2001-04-06 2011-07-06 株式会社島津製作所 Cooling system with cool storage function
JP5016385B2 (en) * 2007-05-25 2012-09-05 積水化学工業株式会社 Heat storage device and air conditioner using the same

Also Published As

Publication number Publication date
JPS61256189A (en) 1986-11-13

Similar Documents

Publication Publication Date Title
JP2001317894A (en) High efficiency multi-channel type loop heat transfer apparatus
CN106123170B (en) Air conditioning system and control method thereof
CN104246377A (en) Heat exchanger for air-conditioning device and air-conditioning device
CN104236177B (en) A kind of phase-transition heat-storage, coolant are crossed cold-heat-exchanging exchange system and are adopted its air conditioning system
CN105546879A (en) Parallel flow heat exchanger and air conditioner
JPH04177063A (en) Air conditioning plant
JPH0532677B2 (en)
CN102713477A (en) Refrigeration storage unit
CN100572999C (en) Built-in type refrigerator
CN206176618U (en) Domestic small -size energy storage air -conditioning ware
CN208170604U (en) Air-conditioning system and air conditioner
CN208170532U (en) Air-conditioning system and air conditioner
CN200996697Y (en) Heat-storage air conditioner
CN102042728B (en) Method and device for preparing fluidized ice
CN109900023A (en) A kind of heat management system
JP3361109B2 (en) Thermal storage refrigerator
CN206831739U (en) Heat pump system
CN206131589U (en) Air -cooling refrigerator
CN111197831A (en) Energy storage and release device, energy storage and release equipment and air conditioning system
CN110332634A (en) Ultra-thin heat pump type air conditioner system
CN219756528U (en) Protective net assembly, heat exchanger and air conditioner
CN108709356A (en) Using refrigeration compressor exhaust waste heat to the freezer of air-cooler defrosting
JP3260418B2 (en) Thermal storage type air conditioner
CN218495470U (en) Refrigerator with a door
CN208595654U (en) Air conditioner