JPS61256160A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS61256160A
JPS61256160A JP60098342A JP9834285A JPS61256160A JP S61256160 A JPS61256160 A JP S61256160A JP 60098342 A JP60098342 A JP 60098342A JP 9834285 A JP9834285 A JP 9834285A JP S61256160 A JPS61256160 A JP S61256160A
Authority
JP
Japan
Prior art keywords
heat exchanger
defrosting
compressor
outdoor heat
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60098342A
Other languages
Japanese (ja)
Other versions
JPH0373794B2 (en
Inventor
宏治 室園
寿夫 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60098342A priority Critical patent/JPS61256160A/en
Publication of JPS61256160A publication Critical patent/JPS61256160A/en
Publication of JPH0373794B2 publication Critical patent/JPH0373794B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気を熱源とするヒートポンプ式空調機に関
するもので、詳しくは低外気時に室外熱交換器に付着す
る霜を融解する除霜制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump type air conditioner that uses air as a heat source, and more specifically to defrosting control that melts frost adhering to an outdoor heat exchanger when the outside air temperature is low. It is.

従来の技術 従来空気熱源ヒートポンプ式空調機の室外熱交換器の除
霜方式は、大半が四方弁を切換えて冷房サイタルさし、
室外熱交換器を凝縮器、室内熱交換器を蒸発器とする逆
サイクル除霜方式で、この時コールドドラフト防止の為
に室内ファンを停止していた。
Conventional technology Most defrosting methods for outdoor heat exchangers in conventional air-source heat pump air conditioners operate by switching a four-way valve to direct the cooling site.
It uses a reverse cycle defrosting system in which the outdoor heat exchanger is used as a condenser and the indoor heat exchanger is used as an evaporator, and the indoor fan was stopped at this time to prevent cold drafts.

この方式では基本的に冷媒循環が少なく圧縮機入力の増
大がそれほど期待できないので、除霜時間が長くなるこ
と、並びに除霜運転中の数分間は室内ファンが停止する
ので暖房感が欠如し快適性が損なわれること、さらには
除霜運転終了後の四方弁が切換わって暖房運転に復帰し
てからも室内熱交換器の温度が上昇するまでに時間を要
するなど使用者からすれば満足できるものではなかった
With this method, there is basically little refrigerant circulation and it is not possible to expect much increase in compressor input, so the defrosting time becomes longer, and the indoor fan stops for several minutes during defrosting operation, so there is no feeling of heating and comfort. This is not satisfactory from the user's point of view, as it takes time for the temperature of the indoor heat exchanger to rise even after the four-way valve switches after defrosting operation and returns to heating operation. It wasn't something.

近年このような欠点を有する逆サイクル除霜方式に代わ
って、除霜運転時にも四方弁は暖房運転時のままとし、
圧縮機からの吐出ガスの一部を室内熱交換器に流して若
干の暖房能力を維持しながら、吐出ガスの残りを室外熱
交換器の入口に導き除霜を行なうホットガスバイパス除
霜方式が提案されている(例えば「日本冷凍協会講演論
文集」。
In recent years, in place of the reverse cycle defrosting system which has these drawbacks, the four-way valve is kept as it is in heating operation even during defrosting operation.
A hot gas bypass defrosting system allows part of the discharged gas from the compressor to flow through the indoor heat exchanger to maintain some heating capacity, while the rest of the discharged gas is guided to the inlet of the outdoor heat exchanger for defrosting. (e.g. ``Japan Refrigeration Association Lecture Proceedings'').

559−11.P、53)。559-11. P, 53).

以下図面を参照しながら上述の従来のヒートポンプ式空
調機の一例について説明する。
An example of the above-mentioned conventional heat pump type air conditioner will be described below with reference to the drawings.

第4図は従来のヒートポンプ式空調機の冷凍サイクル図
を示すものである。
FIG. 4 shows a refrigeration cycle diagram of a conventional heat pump type air conditioner.

同図において1は容量制御可能な周波数可変圧縮機、2
は四方弁、3は室内熱交換器、4は弁開度を可変できる
電動膨張弁、5TI′i室外熱交換器、6はホットガス
バイパス回路、7は二方弁である。
In the figure, 1 is a variable frequency compressor with capacity control;
3 is a four-way valve, 3 is an indoor heat exchanger, 4 is an electric expansion valve whose valve opening degree can be varied, 5TI'i is an outdoor heat exchanger, 6 is a hot gas bypass circuit, and 7 is a two-way valve.

ホットガスバイパス回路6は、周波数可変圧縮機1の吐
出側と室外熱交換器5の暖房運転時に入口側となる配管
とを連結し、途中に二方弁7を備えて構成されている。
The hot gas bypass circuit 6 connects the discharge side of the variable frequency compressor 1 to a pipe that becomes the inlet side during heating operation of the outdoor heat exchanger 5, and includes a two-way valve 7 in the middle.

通常の暖房運転時には二方弁7は閉の状態で暖房サイク
ルを形成するが、低外気時に室外熱交換器5に着霜が生
じ、暖房能力が低下して除霜運転が必要になると、二方
弁7を開いて高温の吐出ガスの大部分をホットガスバイ
パス回路6を経て室外熱交換器5の入口側へ導く。同時
に高温の吐出ガスの残りを暖房運転時と同様に四方弁2
、室内熱交換器3、電動膨張弁4と流し、若干の暖房運
転を継続して行ない、室外熱交換器5の入口側である点
Cにて高圧側で分岐した大部分の冷媒と合流させる。こ
の合流後の冷媒は自身の持つ凝縮熱で室外熱交換器5を
除霜した後、四方弁2を経て周波数可変圧縮機1に戻り
除霜サイ・クルを完結する。
During normal heating operation, the two-way valve 7 is closed to form a heating cycle, but when frost forms on the outdoor heat exchanger 5 when the outside air temperature is low, the heating capacity decreases and a defrosting operation becomes necessary. The diverter valve 7 is opened to guide most of the high temperature discharged gas to the inlet side of the outdoor heat exchanger 5 via the hot gas bypass circuit 6. At the same time, the remainder of the high-temperature discharged gas is removed from the four-way valve 2 in the same way as during heating operation.
, the indoor heat exchanger 3 and the electric expansion valve 4, continue to perform a slight heating operation, and merge with most of the refrigerant branched on the high pressure side at point C, which is the inlet side of the outdoor heat exchanger 5. . After this combined refrigerant defrosts the outdoor heat exchanger 5 with its own condensation heat, it returns to the variable frequency compressor 1 via the four-way valve 2 and completes the defrost cycle.

発明が解決しようとする問題点 しかしながら上記構成では以下のような問題点があった
。第5図は第4図に示すヒートポンプ式空調機の従来例
の除霜運転時におけるモリエル線図を示したものである
。同図に示す記号a ”−’ eは第4図に示したもの
と対応する。
Problems to be Solved by the Invention However, the above configuration has the following problems. FIG. 5 shows a Mollier diagram of the conventional heat pump type air conditioner shown in FIG. 4 during defrosting operation. The symbols a''-'e shown in the figure correspond to those shown in FIG.

すなわち除霜運転時に圧縮機吐出側の点aで分岐した冷
媒は室外熱交換器50入口側の点Cで合流し、この点C
は温度の高い過熱域に存在する。
That is, during defrosting operation, the refrigerant branched at point a on the compressor discharge side joins at point C on the inlet side of the outdoor heat exchanger 50, and this point C
exists in the superheated region.

ここで冷媒は10なるエンタルピを持つ。そして凝縮後
、つまり除霜後の冷媒状態は二相域の液分の多い点dま
で変化して圧力損失後の点eとなり、この液分の多い乾
き度x11なる冷媒をそのまま周波数可変圧縮機1に吸
入されるので相当の液圧縮を行なっていることになる。
Here, the refrigerant has an enthalpy of 10. After condensation, that is, after defrosting, the refrigerant state changes to point d with a high liquid content in the two-phase region and reaches point e after pressure loss. 1, so a considerable amount of liquid compression is being performed.

これは年間のヒートポンプシーズンの除霜回数を考慮す
ると圧縮機信頼性上大きな問題となる。さらに除霜時の
冷媒の利用状況(点C→点d)からすると、冷媒の顕熱
(過熱域)と潜熱(二相域)を利用しており、霜が融解
しドレン水が滴下し始める除霜後期には室外熱交換器5
の表面に温度分布を生じるので、室外熱交換器5の表面
の高温部からは周囲の大気に対流放熱し除霜性能を落と
していることにもなる。
This poses a major problem in terms of compressor reliability, considering the number of defrosting operations during the annual heat pump season. Furthermore, looking at the usage status of the refrigerant during defrosting (point C → point d), the sensible heat (superheat region) and latent heat (two-phase region) of the refrigerant are used, and as the frost melts, drain water begins to drip. In the later stages of defrosting, the outdoor heat exchanger 5
Since a temperature distribution occurs on the surface of the outdoor heat exchanger 5, convective heat is radiated from the high temperature portion of the surface of the outdoor heat exchanger 5 to the surrounding atmosphere, which also reduces the defrosting performance.

また第6図は前記従来のと一トポンプ式空調機の除霜運
転時の暖房能力の変化を示し、第7図は同じく除霜運転
時の高圧側圧力と低圧側圧力の変化を示す。第7図にお
いてAは高圧側圧力、Bは低圧側圧力を示す。同図より
明らかなように除霜が進むにつれて高圧側圧力Aと低圧
側圧力Bの比、すなわち圧縮比が小さくなり、また低圧
側圧力Bは上昇するので前記周波数可変圧縮機1の吸入
側の冷媒の比容積が小さくなって冷凍サイクル内の冷媒
の、循環量は増加し、したがって暖房能力は除霜開始時
一旦大きく低下した後後々に増加する。
Further, FIG. 6 shows the change in the heating capacity of the conventional single-pump air conditioner during defrosting operation, and FIG. 7 similarly shows the change in high pressure side pressure and low pressure side pressure during defrosting operation. In FIG. 7, A indicates the high pressure side pressure, and B indicates the low pressure side pressure. As is clear from the figure, as defrosting progresses, the ratio of the high pressure side pressure A and the low pressure side pressure B, that is, the compression ratio, decreases, and the low pressure side pressure B increases, so that the suction side of the frequency variable compressor 1 decreases. As the specific volume of the refrigerant becomes smaller, the amount of refrigerant circulated within the refrigeration cycle increases, and therefore the heating capacity decreases significantly at the start of defrosting and then increases later.

このため除霜開始時、暖房能力が大きく低下して室内へ
吹き出す空気の温度も低下し、居住者に不快感を与える
恐れがあり、また除霜終了時近くになると暖房能力は除
霜開始時に比べて大きくなりすぎ、それだけ除霜時間も
長くなっていた。
As a result, when defrosting begins, the heating capacity decreases significantly and the temperature of the air blown into the room also drops, potentially causing discomfort to the occupants. It was getting too big, and the defrosting time was getting longer.

本発明は上記問題点に鑑み、除霜運転時にも室内熱交換
器に高温の吐出ガスの一部を流して暖房運転継続可能と
して、圧縮機への多量の液戻りや液圧縮を軽減し、室外
熱交換器表面の温度分布を改善して一様温度とする均一
除霜を実現し1除霜運転開始時に室内ファンの風量分暖
房運転時より低下させ、除霜運転時に室内ファンの風量
を変化させて、長期にわたって信頼性の高い、しかも居
住者に不快感を与えることなく除霜効率を改善したヒー
トポンプ式空調機を提供するものである。
In view of the above-mentioned problems, the present invention allows a portion of the high temperature discharged gas to flow through the indoor heat exchanger during defrosting operation to allow continued heating operation, thereby reducing a large amount of liquid returning to the compressor and liquid compression. Achieves uniform defrosting by improving the temperature distribution on the surface of the outdoor heat exchanger to achieve a uniform temperature. 1. At the start of defrosting operation, the air volume of the indoor fan is lowered than during heating operation, and during defrosting operation, the air volume of the indoor fan is reduced. To provide a heat pump air conditioner that is highly reliable over a long period of time and has improved defrosting efficiency without causing discomfort to residents.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ式空
調機は、圧縮機、四方弁、室内熱交換器、絞り量を可変
とした絞り装置、室外熱交換器等を順次環状に配管で連
結して冷凍サイクルを構成し、暖房運転時に高圧となる
前記圧縮機より前記室内熱交換器に至る配管と、同じく
暖房運転時に低圧となる前記室外熱交換器より圧縮機に
至る配管とを結ぶバイパス回路を形成し、前記バイパス
回路に開閉弁を設けて、前記室外熱交換器の除霜運転開
始時には前記絞り装置の絞り量を暖房運転時の絞り量よ
りも小さく(7、さらに前記開閉弁を開とし、室内ファ
ンの除霜運転開始時には前記絞り低下させ、除霜運転時
に前記室内ファンの風量を変化させるものである。
Means for Solving the Problems In order to solve the above problems, the heat pump air conditioner of the present invention includes a compressor, a four-way valve, an indoor heat exchanger, a throttling device with variable throttling amount, an outdoor heat exchanger, etc. A refrigeration cycle is constructed by sequentially connecting the pipes in an annular manner through piping, with piping leading from the compressor to the indoor heat exchanger, which is at high pressure during heating operation, and piping from the outdoor heat exchanger, which is at low pressure during heating operation, to the compressor. A bypass circuit is formed that connects the piping leading to the pipe, and an on-off valve is provided in the bypass circuit, and when the defrosting operation of the outdoor heat exchanger starts, the throttling amount of the throttling device is made smaller than the throttling amount during the heating operation. 7. Further, the opening/closing valve is opened, the aperture is lowered when the indoor fan starts defrosting operation, and the air volume of the indoor fan is changed during the defrosting operation.

作  用 本発明は北上構成により、除霜運転時にも高温の吐出ガ
スの一部を室内熱交換器に流して暖房運転継続可能とし
、第1の絞り装置の絞りを小さくして、高温の吐出ガス
の残りを室外熱交換器出口である圧縮機吸入側へ直接戻
すので、冷媒循環もよく圧縮機入力を維持した状態で、
圧縮機吸入冷媒も二相ではあるか乾き度を大きくでき、
液戻りや液圧縮を軽減できる。また室外熱交換器への流
入冷媒も二相となり、除霜初期、中期はもちろん融解後
のドレン水滴下中の後期から乾燥期寸で室外熱交換器表
面は温度ムラなく一様に温度上昇するので、暖房運転に
戻る復帰温度までに一部分がどんどん温度上昇するこ吉
がなくなり、それだけ周囲への対流放熱損失が押さえら
れて除霜効率も改善できる。さらに、除霜開始時に室内
ファンの風量を低下させ、除霜運転時にこの室内ファン
の風量を変化させることで除霜時居住者に不快感を与え
ることなくまだ不必要な暖房を行なわず、除霜効率をさ
らに改善できる。
Effects The present invention has a kitakami configuration that allows part of the high temperature discharged gas to flow to the indoor heat exchanger even during defrosting operation to continue the heating operation, and reduces the aperture of the first throttle device to reduce the high temperature discharged gas. The remainder of the gas is returned directly to the compressor suction side, which is the outlet of the outdoor heat exchanger, so refrigerant circulation is good and the compressor input is maintained.
The compressor suction refrigerant is also two-phase, but the dryness can be increased,
Reduces liquid return and liquid compression. In addition, the refrigerant flowing into the outdoor heat exchanger becomes two-phase, and the temperature on the surface of the outdoor heat exchanger rises uniformly and evenly during the early and middle stages of defrosting, as well as from the latter stages during the dripping of drain water after melting to the drying stage. Therefore, there is no chance that the temperature in one part will rise rapidly until the temperature returns to heating operation, and the loss of convective heat radiation to the surroundings can be suppressed to the extent that the defrosting efficiency can be improved. Furthermore, by reducing the air volume of the indoor fan at the start of defrosting and changing the air volume of this indoor fan during defrosting operation, it is possible to eliminate unnecessary heating without causing discomfort to residents during defrosting. Frost efficiency can be further improved.

実施例 以下本発明の一実施例のヒートポンプ式空調機について
、図面を参照しながら説明する。
EXAMPLE Hereinafter, a heat pump type air conditioner according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例におけるヒートポンプ式空調
機の冷凍サイクル図を示すものである。
FIG. 1 shows a refrigeration cycle diagram of a heat pump air conditioner according to an embodiment of the present invention.

同図において、11は圧縮機、12は四方弁、13は室
内熱交換器、14は電磁力で弁開度を可変できる電動膨
張弁、15け室外熱交換器、16はバイパス回路、17
はバイパス回路に設けられた開閉弁、18は室内熱交換
器13と熱交換した空気を室内に吹き出す室内ファン、
19はこの室内ファンを駆動するトランジスタモータ等
の速度可変の駆動モーフである。また20は室内熱交換
器13の温度を検知する室内温度検出素子、21は室外
熱交換器15の温度を検知する室外温度検出素子であり
、22はこの室内温度検出素子20、室外温度検出素子
21の温度信号を受けて電動膨張弁14、開閉弁17、
駆動モータ19を制御する制御回路である。そして、圧
縮機11、四方弁12、室内熱交換器13、電動膨張弁
14、室外熱交換器15を順次環状に連結し、さらて圧
縮機11の吐出側と、室外熱交換器15の暖房運転時の
出口側とを結び、その途中に開閉弁17を備えたバイパ
ス回路16を設けたものである。
In the figure, 11 is a compressor, 12 is a four-way valve, 13 is an indoor heat exchanger, 14 is an electric expansion valve whose valve opening can be varied by electromagnetic force, 15 is an outdoor heat exchanger, 16 is a bypass circuit, and 17
18 is an on-off valve provided in the bypass circuit; 18 is an indoor fan that blows air that has exchanged heat with the indoor heat exchanger 13 into the room;
Reference numeral 19 is a variable speed drive morph such as a transistor motor that drives this indoor fan. Further, 20 is an indoor temperature detection element that detects the temperature of the indoor heat exchanger 13, 21 is an outdoor temperature detection element that detects the temperature of the outdoor heat exchanger 15, and 22 is the indoor temperature detection element 20 and the outdoor temperature detection element. In response to the temperature signal of 21, the electric expansion valve 14, the on-off valve 17,
This is a control circuit that controls the drive motor 19. The compressor 11, the four-way valve 12, the indoor heat exchanger 13, the electric expansion valve 14, and the outdoor heat exchanger 15 are sequentially connected in an annular manner, and the discharge side of the compressor 11 and the outdoor heat exchanger 15 are heated. A bypass circuit 16 connected to the outlet side during operation and equipped with an on-off valve 17 is provided in the middle.

次に、以上のように構成されたヒートポンプ式空調機に
ついてその動作を説明する。
Next, the operation of the heat pump air conditioner configured as described above will be explained.

通常の暖房運転時には開閉弁17は閉の状咀となってお
り、冷媒は圧縮機11、四方弁12、室内熱交換器13
、電動膨張弁14、室外熱交換器15、四方弁12と流
れて圧縮機11に戻り暖房サイクルを形成し、バイパス
回路16には冷媒は流れない。
During normal heating operation, the on-off valve 17 is in a closed state, and the refrigerant flows through the compressor 11, four-way valve 12, and indoor heat exchanger 13.
, the electric expansion valve 14, the outdoor heat exchanger 15, and the four-way valve 12, and returns to the compressor 11 to form a heating cycle, and no refrigerant flows into the bypass circuit 16.

ところが低外気温時には、室外熱交換器15に着霜が生
じ、室外温度検出素子21の温度信号が設定値まで下が
ると制御回路22が除霜開始指令を発し、四方弁12け
そのままの状態で開閉弁17を開とし、高温の吐出ガス
を点a′で分岐させ、一部はそのまま室内熱交換器13
へ流し、残りは室外熱交換器15の出口側へ導くととも
に、電動膨張弁14の弁開度を全開気味にすることで絞
り量をほぼゼロとし、駆動モータ19の回転数すなわち
室内ファン18の回転数を暖房運転時より低下させて室
内へ吹き出す風量を低下させて除霜を開始する。
However, when the outside temperature is low, frost forms on the outdoor heat exchanger 15, and when the temperature signal of the outdoor temperature detection element 21 drops to the set value, the control circuit 22 issues a command to start defrosting, and the four-way valve 12 remains in the same state. The on-off valve 17 is opened and the high-temperature discharged gas is branched at point a', and a portion is directly sent to the indoor heat exchanger 13.
The remainder is guided to the outlet side of the outdoor heat exchanger 15, and the amount of throttling is made almost zero by setting the valve opening of the electric expansion valve 14 to a slightly full open position, thereby reducing the rotation speed of the drive motor 19, that is, the indoor fan 18. Defrosting is started by lowering the rotation speed compared to during heating operation to reduce the amount of air blown into the room.

第2図は、第1図に示すヒートポンプ式空調機の一実施
例の除霜運転時におけるサイクルをモリエル線図に示し
たものである。
FIG. 2 is a Mollier diagram showing a cycle during defrosting operation of one embodiment of the heat pump type air conditioner shown in FIG.

同図に示す記号a′〜e′は第1図に示したものと対応
する。すなわち除霜運転時に点a′からそのまま室内熱
交換器13へ流した高温の吐出ガスは、電動膨張弁14
の弁開度が全開気味になっているので比較的低い温度(
約30〜40℃)で凝縮放熱し点b′に移り室内ファン
を低速回転させて暖房運転継続可能となる。途中の配管
や電動膨張弁14の若干の絞りで減圧して点C′となり
室外熱交換器15に流入して、さらに霜の融解温度であ
る約0℃で凝縮放熱して除霜し点d′に至る。この時の
除霜に利用する冷媒のエンタルピ差はΔ’def”1c
”d’となり、室外熱交換器15への流入冷媒状態は点
C′に示すように既に二相となっている。ちなみに室内
暖房に利用する冷媒のエンタルピ差は途中の熱ロスを無
視すればi al−i blとなる。
Symbols a' to e' shown in the figure correspond to those shown in FIG. That is, during the defrosting operation, the high temperature discharge gas that flows directly from point a' to the indoor heat exchanger 13 is transferred to the electric expansion valve 14.
Since the valve opening degree is almost fully open, the temperature is relatively low (
The heat is condensed and radiated at a temperature of about 30 to 40° C.), and the indoor fan is rotated at a low speed to continue the heating operation. The pressure is reduced by the pipes along the way and a slight restriction of the electric expansion valve 14, and the temperature reaches point C', which flows into the outdoor heat exchanger 15, where it is further condensed and radiated heat at about 0°C, which is the melting temperature of frost, to defrost it to point d. ′. The enthalpy difference of the refrigerant used for defrosting at this time is Δ'def"1c
d', and the state of the refrigerant flowing into the outdoor heat exchanger 15 is already two-phase as shown at point C'.By the way, the enthalpy difference of the refrigerant used for indoor heating is, if heat loss on the way is ignored. i al-i bl.

一方残りの高温の吐出ガスは室外熱交換器15の出口側
に導かれるのではソ等エンクルピ変化後、主回路を流れ
てきた液分の多い冷媒と合流し混合して点e′となり、
圧縮機11に吸入される。この点e′は二相状態にある
ものの冷媒乾き度xe’が大きく液分が少ないので液戻
りや液圧縮を軒減または実質的に回避することができる
。さらにまた除霜運転時に室外熱交換器15へ流入して
いる冷媒は基本的に二相状態であるため冷媒温度つまり
室外熱交換器15の表面温度も一定となり、同表面温度
にむらがないため均一除霜が実現できる。
On the other hand, the remaining high-temperature discharged gas is guided to the outlet side of the outdoor heat exchanger 15, and after undergoing an energy change, it joins and mixes with the liquid-rich refrigerant that has flowed through the main circuit and reaches point e'.
It is sucked into the compressor 11. At this point e', although the refrigerant is in a two-phase state, the refrigerant dryness xe' is large and the liquid content is small, so that liquid return and liquid compression can be reduced or substantially avoided. Furthermore, since the refrigerant flowing into the outdoor heat exchanger 15 during defrosting operation is basically in a two-phase state, the refrigerant temperature, that is, the surface temperature of the outdoor heat exchanger 15, is also constant, and there is no unevenness in the surface temperature. Uniform defrosting can be achieved.

また除霜運転開始時、開閉弁17を開くことで高圧側圧
力が大きく低下して暖房能力が急激に低下するが、室内
ファン18の回転数を暖房運転時より低下させるので、
室内側熱交換器13と熱交換して室内に吹き出す空気の
温度の低下を少なくすることができ、居住者に不快感を
与えない。さらに、除霜が進行するにしたがって従来例
で示したのと同様に、次第に高圧側圧力が高くなって暖
房能力が大きくなるが、室内温度検出素子21の温度信
号が設定値まで上昇すると制御回路22により駆動モー
タ19の回転数すなわち室内ファン18の回転数を低下
させ、暖房能力の増加を押さえることで室外熱交換器1
5の除霜能力を増加させ、したがってさらに除霜効率の
改善が可能となる。
Furthermore, when the defrosting operation starts, opening the on-off valve 17 greatly reduces the high-pressure side pressure and rapidly reduces the heating capacity, but since the rotation speed of the indoor fan 18 is lower than during heating operation,
It is possible to reduce the decrease in the temperature of the air blown into the room by exchanging heat with the indoor heat exchanger 13, so that the occupant does not feel uncomfortable. Furthermore, as defrosting progresses, the high-pressure side pressure gradually increases and the heating capacity increases, as shown in the conventional example, but when the temperature signal from the indoor temperature detection element 21 rises to the set value, the control circuit 22 reduces the rotation speed of the drive motor 19, that is, the rotation speed of the indoor fan 18, and suppresses an increase in heating capacity, thereby increasing the outdoor heat exchanger 1.
5, thereby making it possible to further improve the defrosting efficiency.

第3図の実線は、本発明の一実施例におけるヒートポン
プ式空調機の除霜運転時の暖房能力の変化を示すもので
、前記のように室内ファン18の回転数を変化させるこ
とで破線で示す従来例のヒートポンプ式空調機の除霜時
の暖房能力の変化と比較して除霜終了時近くで不必要な
暖房を行なうことがない。
The solid line in FIG. 3 shows the change in heating capacity during defrosting operation of the heat pump type air conditioner in one embodiment of the present invention. Compared to the change in heating capacity during defrosting of the conventional heat pump air conditioner shown in FIG. 1, unnecessary heating is not performed near the end of defrosting.

なお1.本発明は絞り装置の最良の形態として電磁力を
駆動源として弁開度を可変とした電動膨張弁14を用い
て説明したが、キャピラリ等の絞りを複数個用いて構成
し、適宜切換により制御してもよく、さらに弁開度を可
変する手段としてバイメタル若しくは形状記憶合金等を
用いてもよい。
Note 1. The present invention has been described using an electric expansion valve 14 that uses electromagnetic force as a drive source to vary the valve opening as the best form of the throttle device. Furthermore, a bimetal, a shape memory alloy, or the like may be used as a means for varying the valve opening degree.

また、暖房能力の増加を室内熱交換器13の温度を用い
て検知したが、本発明はそれに限定されるものではなく
、暖房能力の増加を検知できるものであれば、検出する
圧力、温度等の位置およびその手段は任意である。まだ
、除霜開始時期の決定についても同様である。
Further, although the increase in heating capacity is detected using the temperature of the indoor heat exchanger 13, the present invention is not limited to this, and any pressure, temperature, etc. to be detected may be used as long as an increase in heating capacity can be detected. The location and means thereof are arbitrary. The same applies to the determination of when to start defrosting.

発明の効果 以上のように本発明のヒートポンプ式空調機は、圧縮機
、四方弁、室内熱交換器、絞り量を可変と転時に高圧と
なる前記圧縮機より前記室内熱交換器に至る配管と、同
じく暖房運転時に低圧となる前記室外熱交換器より圧縮
機に至る配管とを結ぶバイパス回路を形成し、前記バイ
パス回路に開閉弁を設け′て、前記室外熱交換器の除霜
運転開始時には前記絞り装置の絞り量を暖房運転時の絞
り量よりも小さくして前記開閉弁を開とし、室内ファン
の除霜運転開始時には前記絞り低下させ、除霜運転時に
前記室内ファンの風量を変化させたもので、除霜運転時
にも室内熱交換器に高温の吐出ガスの一部を流して暖房
運転継続可能として、圧縮機への多量の液戻りや液圧縮
を軽減し、室外熱交換器表面の温度分布を改善して一様
温度とする均一除霜を実現し、さらに室内ファンの風量
を可変として、長期にわたって信頼性が高く、しかも居
住者に不快感を与えることなく除霜効率を改善できる等
の種々の効果を有する。
Effects of the Invention As described above, the heat pump air conditioner of the present invention includes a compressor, a four-way valve, an indoor heat exchanger, and piping from the compressor to the indoor heat exchanger that has a variable throttling amount and becomes high pressure when turned. Similarly, a bypass circuit is formed that connects the outdoor heat exchanger to the compressor, which has a low pressure during heating operation, and an on-off valve is provided in the bypass circuit, so that when the outdoor heat exchanger starts defrosting operation, The opening/closing valve is opened by making the throttling amount of the throttling device smaller than the throttling amount during heating operation, the throttling is lowered when defrosting operation of the indoor fan is started, and the air volume of the indoor fan is changed during defrosting operation. Even during defrosting operation, a portion of the high-temperature discharged gas is allowed to flow through the indoor heat exchanger to allow heating operation to continue, reducing the amount of liquid returned to the compressor and liquid compression, and reducing the amount of liquid on the outdoor heat exchanger surface. Improved temperature distribution to achieve uniform defrosting with a uniform temperature, and variable indoor fan air volume to improve defrosting efficiency with high reliability over a long period of time and without causing discomfort to occupants. It has various effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるヒートポンプ式空調
機の冷凍サイクル図、第2図は同ヒートポンプ式空調機
の除霜運転時のサイクルをモリエル線図上にあられした
図、第3図は同ヒートポンプ式空調機の除霜運転時の暖
房能力の変化を示す説明図、第4図は従来のヒートポン
プ式空調機の冷凍サイクル図、第5図は第4図に示す従
来のヒートポンプ式空調機の除霜運転時のサイクルをモ
リエル線図上にあられした図、第6図は同じ〈従来のヒ
ートポンプ式空調機の除霜運転時の暖房能力の変化を示
す説明図、第7図は同じ〈従来のヒートポンプ式空調機
の除霜運転時の高圧側圧力と低圧側圧力の変化を示す説
明図である。 11・・・・・・圧縮機、12・・・・・・四方弁、1
3・・・・・・室内熱交換器、14・・・・・・鵡=電
動膨張弁(低±酋絞り装置)、15・・・・・・室外熱
交換器、16・・・・・・バイパス回路、17・・・・
・・開閉弁、18・・・・・・室内ファン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/1
−−−スE犀り1イク梵 /z−−−+v方升 /3−一一室内数欠、7夫芥 /4−−一嘩乞動A紗匁ヒ書゛(紋)範L)A5−一一
室タト熊夕;月(S特訓 柩 1 図             7ロ一−−八イ
ハ゛人121外/7−−−開r114T /l−m−室内77) 第2図 緯閏 /−−一用;L恢′;r麦り績目彎 2・・−ツ亨升 どi・−t 7) ! タ;(季(1嘔16−−シトフ
トク゛入ハ゛イバ入I!ll落第5図 第6図 吋関
Fig. 1 is a refrigeration cycle diagram of a heat pump air conditioner according to an embodiment of the present invention, Fig. 2 is a diagram showing the cycle during defrosting operation of the heat pump air conditioner on a Mollier diagram, and Fig. 3 is a diagram showing the cycle during defrosting operation of the heat pump air conditioner. An explanatory diagram showing changes in heating capacity during defrosting operation of the heat pump air conditioner, Figure 4 is a refrigeration cycle diagram of a conventional heat pump air conditioner, and Figure 5 is a diagram of the conventional heat pump air conditioner shown in Figure 4. Figure 6 shows the cycle during defrosting operation on a Mollier diagram. Figure 6 is the same. Figure 7 is an explanatory diagram showing changes in heating capacity during defrosting operation of a conventional heat pump air conditioner. FIG. 2 is an explanatory diagram showing changes in high-pressure side pressure and low-pressure side pressure during defrosting operation of a conventional heat pump air conditioner. 11...Compressor, 12...Four-way valve, 1
3... Indoor heat exchanger, 14... Paramotor = electric expansion valve (low ± 100% throttle device), 15... Outdoor heat exchanger, 16...・Bypass circuit, 17...
...Opening/closing valve, 18...Indoor fan. Name of agent: Patent attorney Toshio Nakao and 1 other person
---Su E 犀り 1 Ikubon / z --- + v square / 3-11 room number missing, 7 husband / 4--Ichigobebe A samonhi sho ゛ (crest) range L) A5-Room 11 Tato Kumasu; Moon (S training coffin 1 Figure 7 Ro 1--8 high person 121 outside/7---Open r114T/l-m-Indoor 77) Figure 2 Latitude leap/--1用;L 恢′;r 彯恢目彎2...-ツ亨升DOi・-t 7)! Ta;

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、四方弁、室内熱交換器、暖房運転時と除
霜運転時に絞り量の異なる絞り装置、室外熱交換器等を
順次環状に配管で連結して冷凍サイクルを構成し、暖房
運転時に高圧となる前記圧縮機より前記室内熱交換器に
至る配管と、同じく暖房運転時に低圧となる前記室外熱
交換器より圧縮機に至る配管とを結ぶバイパス回路を形
成し、前記バイパス回路に開閉弁を設けて、前記室外熱
交換器の除霜運転開始時には前記絞り装置の絞り量を暖
房運転時の絞り量よりも小さくして前記開閉弁を開とし
、さらに室内ファンの風量を暖房運転時より低下させ、
除霜運転時には前記室内ファンの風量を変化させるヒー
トポンプ式空調機。
(1) Compressor, four-way valve, indoor heat exchanger, throttling device with different throttling amounts during heating operation and defrosting operation, outdoor heat exchanger, etc. are connected in a ring in order to form a refrigeration cycle, and heating A bypass circuit is formed that connects piping from the compressor to the indoor heat exchanger, which is at high pressure during operation, and piping from the outdoor heat exchanger to the compressor, which is also at low pressure during heating operation, and the bypass circuit is connected to An on-off valve is provided, and when the outdoor heat exchanger starts defrosting operation, the throttling amount of the throttling device is made smaller than the throttling amount during heating operation to open the on-off valve, and the air volume of the indoor fan is changed to heating operation. lower than time,
A heat pump air conditioner that changes the air volume of the indoor fan during defrosting operation.
(2)除霜運転時、暖房能力が設定値以上になると前記
室内ファンの風量を除霜開始時より低下させる特許請求
の範囲第1項記載のヒートポンプ式空調機。
(2) The heat pump air conditioner according to claim 1, wherein during defrosting operation, when the heating capacity exceeds a set value, the air volume of the indoor fan is lowered than when defrosting is started.
JP60098342A 1985-05-09 1985-05-09 Heat pump type air conditioner Granted JPS61256160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098342A JPS61256160A (en) 1985-05-09 1985-05-09 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098342A JPS61256160A (en) 1985-05-09 1985-05-09 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS61256160A true JPS61256160A (en) 1986-11-13
JPH0373794B2 JPH0373794B2 (en) 1991-11-22

Family

ID=14217229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098342A Granted JPS61256160A (en) 1985-05-09 1985-05-09 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS61256160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163751A (en) * 1986-12-26 1988-07-07 松下電器産業株式会社 Operation control method of heat pump type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163751A (en) * 1986-12-26 1988-07-07 松下電器産業株式会社 Operation control method of heat pump type air conditioner

Also Published As

Publication number Publication date
JPH0373794B2 (en) 1991-11-22

Similar Documents

Publication Publication Date Title
JPS63163751A (en) Operation control method of heat pump type air conditioner
JPS63210577A (en) Integrated heat pump and hot-water supply device
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
JP2008082589A (en) Air conditioner
JP2003185307A (en) Control apparatus of air conditioner
JPS6155018B2 (en)
JP2989491B2 (en) Air conditioner
JPH01118080A (en) Heat pump type air conditioner
JP2667741B2 (en) Air conditioner
JPS63129238A (en) Defrosting control device for air conditioner of heat pump type
JPS61256160A (en) Heat pump type air conditioner
JPS61262560A (en) Heat pump type air conditioner
JPH0752031B2 (en) Heat pump type air conditioner
JPH1038422A (en) Air conditioner
JPS61256159A (en) Heat pump type air conditioner
JPH05340643A (en) Air conditioner
JPH08285393A (en) Air conditioner for multi-room
JPH0510191Y2 (en)
JPH04136669A (en) Multi-room air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS63153378A (en) Refrigerator
JP2001330347A (en) Air-conditioner
JPH0431505Y2 (en)
JP2002061994A (en) Air conditioner
JPS6233268A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees