JPH0752031B2 - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH0752031B2
JPH0752031B2 JP62076916A JP7691687A JPH0752031B2 JP H0752031 B2 JPH0752031 B2 JP H0752031B2 JP 62076916 A JP62076916 A JP 62076916A JP 7691687 A JP7691687 A JP 7691687A JP H0752031 B2 JPH0752031 B2 JP H0752031B2
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
heating operation
defrosting
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62076916A
Other languages
Japanese (ja)
Other versions
JPS63243648A (en
Inventor
英二 中角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62076916A priority Critical patent/JPH0752031B2/en
Publication of JPS63243648A publication Critical patent/JPS63243648A/en
Publication of JPH0752031B2 publication Critical patent/JPH0752031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気を熱源とするヒートポンプ式空調機に関
するもので、詳しくは低外気時に室外熱交換器に付着す
る霜を融解する除霜制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner using air as a heat source, and more particularly to a defrost control device for melting frost adhering to an outdoor heat exchanger during low outdoor air. It is a thing.

従来の技術 従来空気熱源ヒートポンプ式空調機の室外熱交換器の除
霜方式は、大半が四方弁を切換えて冷房サイクルとし、
室外熱交換器を濃縮器、室内熱交換器を蒸発器とする逆
サイクル除霜方式で、この時コールドドラフト防止の為
に、室内ファンを停止していた。この方式では基本的に
冷媒循環が少なく圧縮機入力の増大がそれほど期待でき
ないので、除霜時間が長くなること、並びに除霜運転中
の数分間は室内ファンが停止するので暖房感が欠如し、
快適性が損なわれること、さらには除霜運転終了後の四
方弁が切換わって暖房運転に復帰してからも室内熱交換
器の温度が上昇するまでに時間を要するなど使用者から
すれば満足できるものではなかった。
BACKGROUND ART Most conventional defrosting methods for outdoor heat exchangers of air-heat source heat pump type air conditioners switch the four-way valve to a cooling cycle,
The reverse cycle defrosting method uses an outdoor heat exchanger as a concentrator and an indoor heat exchanger as an evaporator. At this time, the indoor fan was stopped to prevent cold draft. In this method, basically, the refrigerant circulation is small and an increase in the compressor input cannot be expected so much, so the defrosting time becomes long, and the indoor fan stops for a few minutes during the defrosting operation, so there is a lack of heating feeling,
Comfort is impaired, and it takes time for the temperature of the indoor heat exchanger to rise even after the four-way valve switches after defrosting operation and returns to heating operation. It wasn't possible.

近年このような欠点を有する逆サイクル除霜方式に代わ
って、除霜運転時にも四方弁は暖房運転時のままとし、
圧縮機からの吐出ガスの一部を室内熱交換器に流して若
干暖房能力を維持しながら、吐出ガスの残りを室外熱交
換器の入口に導き除霜を行なうホットガスバイパス除霜
方式が提案されている(例えば、「日本冷凍協会講演論
文集」、S59−11、P53)。
In recent years, in place of the reverse cycle defrosting method that has such drawbacks, the four-way valve remains in the heating operation even during the defrosting operation,
A hot gas bypass defrosting method is proposed in which part of the gas discharged from the compressor is supplied to the indoor heat exchanger to maintain some heating capacity, while the rest of the discharged gas is introduced to the inlet of the outdoor heat exchanger for defrosting. (For example, “Proceedings of the Japan Refrigeration Society”, S59-11, P53).

以下図面を参照しながら上述の従来のヒートポンプ式空
調機の一例について説明する。
An example of the conventional heat pump type air conditioner described above will be described below with reference to the drawings.

第3図は従来のヒートポンプ式空調機の冷凍サイクル図
を示すものである。同図において、1は容量制御可能な
周波数可変圧縮機、2は四方弁、3は室内熱交換器、4
は電磁力で弁開度を可変できる電動膨張弁、5は室外熱
交換器、6はバイパス回路、7はバイパス回路に設けら
れた開閉弁である。通常の暖房運転時には二方弁7は閉
の状態で暖房サイクルを形成するが、低外気時に室外熱
交換器5に着霜が生じ、暖房能力が低下して除霜運転が
必要になると二方弁7を開くと同時に圧縮機1の運転周
波数を最大運転周波数まで一気に上げ高温の吐出ガスの
一部をホットガスバイパス回路を経て室外熱交換器5の
出口側へ導く。同時に高温の吐出ガスの残りを暖房運転
時と同様に四方弁2、室内熱交換器3、電磁膨張弁4と
流し暖房運転を継続して行ない、室外熱交換器5の出口
側にて高圧側で分岐した冷媒と合流させる。上記構成に
より、冷媒は室外熱交換器5を除霜した後四方弁2を経
て周波数可変圧縮機1に戻り除霜サイクルを完結する。
FIG. 3 shows a refrigeration cycle diagram of a conventional heat pump type air conditioner. In the figure, 1 is a variable frequency compressor capable of capacity control, 2 is a four-way valve, 3 is an indoor heat exchanger, 4
Is an electric expansion valve whose valve opening can be varied by electromagnetic force, 5 is an outdoor heat exchanger, 6 is a bypass circuit, and 7 is an opening / closing valve provided in the bypass circuit. During the normal heating operation, the two-way valve 7 is closed to form a heating cycle. However, when the outdoor heat exchanger 5 is frosted when the outside air is low, the heating capacity is lowered and the defrosting operation becomes necessary. At the same time when the valve 7 is opened, the operating frequency of the compressor 1 is raised to the maximum operating frequency all at once, and part of the high-temperature discharge gas is guided to the outlet side of the outdoor heat exchanger 5 via the hot gas bypass circuit. At the same time, the rest of the high-temperature discharge gas is allowed to flow through the four-way valve 2, the indoor heat exchanger 3 and the electromagnetic expansion valve 4 as in the heating operation to continue the heating operation, and the high pressure side at the outlet side of the outdoor heat exchanger 5 It joins with the refrigerant branched at. With the above configuration, the refrigerant defrosts the outdoor heat exchanger 5 and then returns to the frequency variable compressor 1 via the four-way valve 2 to complete the defrost cycle.

発明が解決しようとする問題点 しかしながら上記構成では以下のような問題点があっ
た。第4図は除霜運転直前、除霜運転中、除霜終了後の
圧縮機1の運転周波数を示したものである。同図に示す
ように、除霜運転が開始されると同時に圧縮機1の運転
周波数は除霜運転開始直前の運転周波数から一気に最大
運転周波数まで上がる。同時に二方弁7が開き高温の吐
出ガスの一部がホットガスバイパス回路を経て室外熱交
換器5の出口側へバイパスされるため、第5図に示すよ
うに一瞬に高低圧差がなくなり、その結果冷媒が低圧発
泡し圧縮機オイルが冷媒とともに圧縮機1の外へ吐出さ
れオイル面が急激に低下するが、それと同時に圧縮機1
の周波数も一気に最大周波数まで上がるためさらにオイ
ルレベルが減少し、圧縮機の寿命及び信頼性が著しく低
下する欠点を有している。さらに、除霜運転終了間ぎわ
に除霜運転終了を早めるため圧縮機1の周波数が最大周
波数から定格周波数(通常60Hz付近)まで落ちる再高低
圧差が縮まるため、前記と同様冷媒が低圧発泡し圧縮機
オイルが冷媒とともに圧縮機1の外へ吐出されオイル面
が急激に低下するが、それと同時に除霜運転終了後、再
び圧縮機1の運転周波数を最大周波数付近まで上げるた
めさらにオイルレベルが減少し圧縮機の寿命及び信頼性
が著しく低下する欠点を有していた。
Problems to be Solved by the Invention However, the above configuration has the following problems. FIG. 4 shows operating frequencies of the compressor 1 immediately before defrosting operation, during defrosting operation, and after completion of defrosting. As shown in the figure, at the same time when the defrosting operation is started, the operating frequency of the compressor 1 is suddenly increased from the operating frequency immediately before the start of the defrosting operation to the maximum operating frequency. At the same time, the two-way valve 7 is opened and a part of the high-temperature discharge gas is bypassed to the outlet side of the outdoor heat exchanger 5 through the hot gas bypass circuit, so as shown in FIG. As a result, the refrigerant is low-pressure foamed and the compressor oil is discharged to the outside of the compressor 1 together with the refrigerant to drastically lower the oil level.
Since the frequency of No. 1 also suddenly rises to the maximum frequency, the oil level is further reduced, and the life and reliability of the compressor are remarkably reduced. Furthermore, since the frequency of the compressor 1 drops from the maximum frequency to the rated frequency (usually around 60 Hz) in order to expedite the end of the defrosting operation between the end of the defrosting operation, the re-high and low pressure difference is reduced. The oil is discharged to the outside of the compressor 1 together with the refrigerant, and the oil level drops sharply. At the same time, however, after the defrosting operation is finished, the operating frequency of the compressor 1 is raised again to near the maximum frequency, and the oil level is further reduced and compressed. It had a drawback that the life and reliability of the machine were significantly reduced.

本発明は上記問題に鑑み、空気調和機の除霜時の圧縮機
オイルレベルを確保し圧縮機信頼性の向上を目的とする
ものである。
In view of the above problems, it is an object of the present invention to secure a compressor oil level during defrosting of an air conditioner and improve compressor reliability.

問題点を解決するための手段 上記問題を解決するために本発明のヒートポンプ式空気
調和機は、圧縮機、四方弁、室内熱交換器、絞り量を可
変とした絞り装置、室外熱交換器等を順次環状に配管で
連結して冷凍サイクルを構成し、暖房運転時に高圧とな
る前記圧縮機より前記室内熱交換器に至る配管と、同じ
く暖房運転時に低圧となる前記室外熱交換器より圧縮機
に至る配管とを結ぶバイパス回路を形成し、前記バイパ
ス回路に開閉弁を設けて、前記室外熱交換器の除霜運転
開始時には前記絞り装置の絞り量を暖房運転時の絞り量
よりも小さくし、さらに前記開閉弁を開とし、除霜時の
圧縮機の周波数を段階的に上昇せしめ、また除霜運転終
了時に一定時間圧縮機を停止後再び暖房運転をするよう
にしたものである。
Means for Solving the Problems In order to solve the above problems, a heat pump type air conditioner of the present invention includes a compressor, a four-way valve, an indoor heat exchanger, a throttle device with a variable throttle amount, an outdoor heat exchanger, etc. To form a refrigerating cycle by sequentially connecting with a pipe in an annular shape, and a pipe from the compressor that becomes high pressure during heating operation to the indoor heat exchanger, and a compressor that includes the outdoor heat exchanger that also becomes low pressure during heating operation. By forming a bypass circuit connecting to the pipe leading to, and providing an opening / closing valve in the bypass circuit, the throttle amount of the expansion device at the start of the defrosting operation of the outdoor heat exchanger is made smaller than the throttle amount during the heating operation. Further, the on-off valve is opened to increase the frequency of the compressor in defrosting stepwise, and after the defrosting operation is finished, the compressor is stopped for a certain time and then the heating operation is performed again.

作用 本発明は上記構成により、除霜運転開始時圧縮機運転周
波数を一気に最高周波数まで上げず段階的に上げて行く
ため、除霜開始直後の急激なオイル飛び出しを防ぐこと
ができ、かつ圧縮機内の液レベルも確保できる。さら
に、除霜運転終了と同時に圧縮機運転周波数を最大周波
数付近まで上げずに一端一定時間圧縮機を停止後再び暖
房運転を行なうため、除霜運転終了後の急激なオイル飛
び出しを防ぐことができ、圧縮機寿命及び信頼性の向上
を図ることができる。
Action The present invention has the above-described configuration, and since the compressor operating frequency at the time of defrosting operation start is not raised at once to the highest frequency but is increased stepwise, it is possible to prevent a sudden oil jump out immediately after the start of defrosting, and The liquid level of can be secured. Furthermore, since the compressor operation frequency is not raised to near the maximum frequency when the defrosting operation ends and the compressor is stopped for a certain period of time and then the heating operation is performed again, it is possible to prevent a sudden oil jump after the defrosting operation ends. The compressor life and reliability can be improved.

実施例 以下本発明の一実施例のヒートポンプ式空気調和機につ
いて図面を参照しながら説明する。ここで冷凍サイクル
については従来例と同じであるため第3図にて説明す
る。同図において、1は圧縮機、2は四方弁、3は室内
熱交換器、4は電磁力で弁開度を可変できる電動膨張弁
5は室外熱交換器、6はバイパス回路、7はバイパス回
路に設けられた開閉弁8は室内熱交換器3と熱交換した
空気を室内に吹き出す室内ファン、9はこの室内ファン
を駆動するトランジスタモータ等の速度可変の駆動モー
タである。また、10は室内熱交換器5の温度を検知する
室内温度検出素子、11は室外熱交換器5の温度を検知す
る室外温度検出素子であり、12はこの室内温度検出素子
10、室外温度検出素子11の温度記号を受けて電動膨張弁
4、開閉弁7、駆動モータ9を制御する制御回路であ
る。そして、圧縮機1、四方弁2、室内熱交換器3、電
動膨張弁4、室外熱交換器5を順次環状に連結し、さら
に圧縮機1の吐出側と、室外熱交換器5の暖房運転時の
出口側とを結び、その途中に開閉弁7を備えたバイパス
回路6を設けたものである。
Embodiment A heat pump type air conditioner according to an embodiment of the present invention will be described below with reference to the drawings. Here, the refrigeration cycle is the same as that of the conventional example and will be described with reference to FIG. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is an electric expansion valve whose valve opening can be varied by electromagnetic force, 5 is an outdoor heat exchanger, 6 is a bypass circuit, and 7 is a bypass. The on-off valve 8 provided in the circuit is an indoor fan that blows out the air that has exchanged heat with the indoor heat exchanger 3 into the room, and 9 is a variable speed drive motor such as a transistor motor that drives this indoor fan. Further, 10 is an indoor temperature detecting element for detecting the temperature of the indoor heat exchanger 5, 11 is an outdoor temperature detecting element for detecting the temperature of the outdoor heat exchanger 5, and 12 is this indoor temperature detecting element.
10, a control circuit for controlling the electric expansion valve 4, the opening / closing valve 7, and the drive motor 9 by receiving the temperature symbol of the outdoor temperature detecting element 11. Then, the compressor 1, the four-way valve 2, the indoor heat exchanger 3, the electric expansion valve 4, and the outdoor heat exchanger 5 are sequentially connected in an annular shape, and the discharge side of the compressor 1 and the heating operation of the outdoor heat exchanger 5 are performed. The bypass circuit 6 provided with the opening / closing valve 7 is provided in the middle of the connection with the outlet side.

次に、以上のように構成されたヒートポンプ式空調和機
についてその動作を説明する。
Next, the operation of the heat pump type air conditioner configured as above will be described.

通常の暖房運転時には開閉弁7は閉の状態となってお
り、冷媒は圧縮機1、四方弁2、室内熱交換器3、電動
膨張弁4、室外熱交換器5、四方弁2と流れて圧縮機1
に戻り暖房サイクルを形成し、バイパス回路6には冷媒
は流れない。
During the normal heating operation, the on-off valve 7 is closed, and the refrigerant flows through the compressor 1, the four-way valve 2, the indoor heat exchanger 3, the electric expansion valve 4, the outdoor heat exchanger 5, and the four-way valve 2. Compressor 1
To form a heating cycle, and no refrigerant flows in the bypass circuit 6.

ところが低外気温時には、室外熱交換器5に着霜が生
じ、室外温度検出素子11の温度信号が設定値まで下がる
と制御回路12が除霜開始指令を発し、四方弁2はそのま
まの状態で開閉弁7を開とし、高温の吐出ガスを点a′
で分岐させ、一部はそのまま室内熱交換器3へ流し、残
りは室外熱交換器5の出口側へ導くとともに、電磁膨張
弁4の弁開度を全開気味にすることで絞り量をほぼゼロ
とし、駆動モータ9の回転数すなわち室内ファン8の回
転数を暖房運転時より低下させて室内へ吹き出す風量を
低下させて除霜を開始する。
However, when the outside air temperature is low, when the outdoor heat exchanger 5 is frosted and the temperature signal of the outdoor temperature detecting element 11 falls to the set value, the control circuit 12 issues a defrosting start command, and the four-way valve 2 remains in that state. The on-off valve 7 is opened, and the hot discharge gas is turned to the point a '.
And a part of it flows to the indoor heat exchanger 3 as it is, the rest is led to the outlet side of the outdoor heat exchanger 5, and the throttle opening amount is almost zero by making the valve opening of the electromagnetic expansion valve 4 fully open. Then, the number of rotations of the drive motor 9, that is, the number of rotations of the indoor fan 8 is made lower than that during the heating operation to reduce the amount of air blown into the room to start defrosting.

第1図は、第3図に示すヒートポンプ式空調機の一実施
例の除霜運転時におけるサイクルをモリエル線図に示し
たものである。
FIG. 1 is a Mollier diagram showing a cycle during the defrosting operation of the heat pump type air conditioner shown in FIG.

同図に示す記号a′〜e′は第3図に示したものと対応
する。すなわち除霜運転時に点a′からそのまま室内熱
交換器3へ流した高温の吐出ガスは、電動膨張弁4の弁
開度が全開気味になっているので比較的低い温度(約30
〜40℃)で凝縮放熱し点b′に移り室内ファンを低速回
転させて暖房運転継続可能となる。途中の配管や電動膨
張弁4の若干の絞りで減圧して点c′となり室外熱交換
器5に流入して、さらに霜の融解温度である約0℃で凝
縮放熱して除霜し点d′に至る。この時の除霜に利用す
る冷媒のエンタルピ差はΔidef=ic′−id′となり、室
外熱交換器5への流入冷媒状態は点c′に示すように既
に二相となっている。ちなみに室内暖房に利用する冷媒
のエンタルピ差は途中の熱ロスを無視すればia′−ib′
となる。
The symbols a'to e'shown in the figure correspond to those shown in FIG. That is, the high-temperature discharge gas that has flowed from the point a ′ to the indoor heat exchanger 3 as it is during the defrosting operation has a relatively low temperature (about 30 ° C.) because the valve opening of the electric expansion valve 4 is almost open.
(About -40 ° C), the heat is condensed and released to the point b ', and the indoor fan can be rotated at a low speed to continue the heating operation. The pressure is reduced by piping on the way or a slight throttle of the electric expansion valve 4 to a point c ', which then flows into the outdoor heat exchanger 5, and is further condensed and radiated at about 0 ° C, which is the melting temperature of frost, to defrost point d. ’ At this time, the enthalpy difference of the refrigerant used for defrosting is Δidef = ic′−id ′, and the state of the refrigerant flowing into the outdoor heat exchanger 5 is already in two phases as indicated by point c ′. By the way, the enthalpy difference of the refrigerant used for indoor heating is ia'-ib 'if the heat loss in the middle is ignored.
Becomes

一方山りの高温の吐出ガスは室外熱交換器5の出口側に
導かれるのでほゞエンタルピ変化後、主回路を流れてき
た液分の多い冷媒と合流し混合して点e′となり、圧縮
機1に吸入される。この点e′は二相状態にあるものの
冷媒乾き度▲X ▼が大きく液分が少ないので液戻り
や液圧縮を軽減または実質的に回避することができる。
さらにまた除霜運転時に室外熱交換器5へ流入している
冷媒は基本的に二相状態であるため冷媒温度つまり室外
熱交換器5の表面温度も一定になり、同表面温度にむら
がないため均一除霜が実現できる。
On the other hand, the high-temperature discharge gas in the mountain is guided to the outlet side of the outdoor heat exchanger 5, so after the enthalpy changes, it merges with the liquid-rich refrigerant flowing in the main circuit and becomes point e ', where it is compressed. Inhaled into machine 1. This point e 'is two-phase refrigerant dryness of the state Some ▲ X' may be reduced or substantially avoided because e ▼ is less large liquid component liquid return or liquid compression.
Furthermore, since the refrigerant flowing into the outdoor heat exchanger 5 during the defrosting operation is basically in a two-phase state, the refrigerant temperature, that is, the surface temperature of the outdoor heat exchanger 5 is also constant, and there is no unevenness in the surface temperature. Therefore, uniform defrosting can be realized.

第2図に除霜運転直前、除霜運転中、除霜終了後の圧縮
機1の運転周波数を示す。同図に示すように、除霜開始
と同時に圧縮機1の周波数を除霜開始直前の運転周波数
から一気に最大運転周波数まで上げずに段階的に上昇せ
しめている。その結果除霜開始直後に二方弁7が開き一
瞬に高低圧差がなくなり冷媒が低圧発泡し、圧縮機オイ
ルが冷媒とともに圧縮機1の外へ吐出されオイル面が急
激に低下するが、それと同時に圧縮機1の周波数は一気
に最大周波数まで上がらず段階的に上昇するためオイル
面のそれ以上の減少を防ぐことができ、圧縮機の信頼性
を著しく向上することができる。なお、第2図に示した
Δt0及びΔfは実験結果ではΔt0≒20〜30秒、Δf≒5H
zが望ましい。さらに、除霜運転終了と同時に圧縮機1
の運転周波数を最大周波数付近まで上げずに一端一定時
間圧縮機1を停止後再び暖房運転を行なうため、除霜運
転終了後の急激なオイル飛び出しを防ぐことができ、圧
縮機寿命及び信頼性の向上を図ることができる。なお第
2図に示したΔt1は実験結果では最少30秒程度である。
また、本発明は絞り装置の最良の形態として電磁力を駆
動源として弁開度を可変とした電動膨張弁4を用いて説
明したが、キャピラリ等の絞りを複数個用いて構成し、
適宜切換により制御してもよく、さらに弁開度を可変す
る手段としてバイメタル若しくは形状記憶合金等を用い
てもよい。
FIG. 2 shows operating frequencies of the compressor 1 immediately before defrosting operation, during defrosting operation, and after completion of defrosting. As shown in the figure, the frequency of the compressor 1 is increased stepwise from the operating frequency immediately before the start of defrosting to the maximum operating frequency at the same time as the start of defrosting. As a result, the two-way valve 7 opens immediately after the start of defrosting, the high-low pressure difference disappears momentarily, the low-pressure refrigerant foams, the compressor oil is discharged to the outside of the compressor 1 together with the refrigerant, and the oil level sharply decreases, but at the same time. Since the frequency of the compressor 1 does not rise to the maximum frequency at once and rises in stages, it is possible to prevent further reduction of the oil surface, and it is possible to significantly improve the reliability of the compressor. In addition, Δt 0 and Δf shown in FIG. 2 are Δt 0 ≈20 to 30 seconds and Δf≈5H in the experimental results.
z is desirable. Further, at the same time as the defrosting operation ends, the compressor 1
Since the compressor 1 is stopped for a certain time and the heating operation is performed again without raising the operating frequency of the compressor to near the maximum frequency, it is possible to prevent sudden oil spillage after the defrosting operation is completed, and to improve the compressor life and reliability. It is possible to improve. The Δt 1 shown in FIG. 2 is a minimum of about 30 seconds in the experimental results.
Further, the present invention has been described using the electric expansion valve 4 in which the valve opening is variable by using the electromagnetic force as a drive source as the best mode of the throttle device, but it is configured by using a plurality of throttles such as capillaries,
It may be controlled by appropriate switching, and a bimetal, a shape memory alloy, or the like may be used as a means for varying the valve opening degree.

発明の効果 以上のように本発明のヒートポンプ式空気調和機は、圧
縮機、四方弁、室内熱交換器、絞り量を可変とした第1
の絞り装置、室外熱交換器等を順次環状に配管で連結し
て冷凍サイクルを構成し、暖房運転時に高圧となる前記
圧縮機より前記室内熱交換器に至る配管と、同じく暖房
運転時に低圧となる前記室外熱交換器より圧縮機に至る
配管とを結ぶバイパス回路を形成し、前記バイパス回路
に開閉弁を設けて前記室外熱交換器の除霜運転開始時に
は前記絞り装置の絞り量を暖房運転時の絞り量よりも小
さくし、さらに前記開閉弁を開とし、また除霜運転終了
時に一定時間圧縮機を停止後再び暖房運転を行なうよう
にしたもので、除霜運転時にも室内熱交換器に高温の吐
出ガスの一部を流して暖房運転継続可能とし、圧縮機へ
の多量の液戻りや液圧縮を軽減し、かつ圧縮機内のオイ
ルレベルを確保でき、長期にわたって信頼性が高い除霜
運転を行なうことができ等、種々の利点を有するもので
ある。
EFFECTS OF THE INVENTION As described above, the heat pump type air conditioner of the present invention has a compressor, a four-way valve, an indoor heat exchanger, and a variable throttle amount.
The expansion device, the outdoor heat exchanger, etc. are sequentially connected to each other with a pipe to form a refrigeration cycle, and a pipe from the compressor that becomes high pressure during heating operation to the indoor heat exchanger, and a low pressure during heating operation as well. A bypass circuit is formed that connects the pipe from the outdoor heat exchanger to the compressor, and an opening / closing valve is provided in the bypass circuit to heat the expansion amount of the expansion device at the start of defrosting operation of the outdoor heat exchanger. When the defrosting operation is completed, the compressor is stopped for a certain period of time and the heating operation is performed again after the defrosting operation is completed.The indoor heat exchanger is also operated during the defrosting operation. A portion of the high-temperature discharge gas is allowed to flow into the heating chamber to continue heating operation, a large amount of liquid return to the compressor and liquid compression can be reduced, and the oil level inside the compressor can be secured. To drive Can or the like, and have various advantages.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の除霜運転時のサイクルもモリエル線図上にあら
わした特性図、第2図は同空気調和機の除霜運転時の周
波数変化を示す説明図、第3図は冷凍サイクル図、第4
図は従来の除霜運転時の周波数変化を示す説明図、第5
図は除霜運転時の高低圧圧力変化を示す説明図である。 1……圧縮機、2……四方弁、3……室内熱交換器、4
……電動膨張弁、5……室外熱交換器、6……バイパス
回路。
FIG. 1 is a characteristic diagram showing a cycle of defrosting operation of a heat pump type air conditioner in one embodiment of the present invention on the Mollier diagram, and FIG. 2 is a frequency change during defrosting operation of the air conditioner. FIG. 3 is a diagram showing a refrigerating cycle, FIG.
The figure is an explanatory view showing the frequency change during the conventional defrosting operation,
The figure is an explanatory view showing high and low pressure changes during defrosting operation. 1 ... Compressor, 2 ... Four-way valve, 3 ... Indoor heat exchanger, 4
...... Electric expansion valve, 5 ... Outdoor heat exchanger, 6 ... Bypass circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】周波数可変形圧縮機、四方弁、室内熱交換
器、暖房運転時と除霜運転時に絞り量の異なる絞り装
置、室外熱交換器等を順次環状に配管で連結して、冷凍
サイクルを構成し、暖房運転時に高圧となる前記周波数
可変形圧縮機より前記室内熱交換器に至る配管と、同じ
く暖房運転時に低圧となる前記室外熱交換器より圧縮機
に至る配管とを結ぶバイパス回路を形成し、前記バイパ
ス回路に開閉弁を設け、かつ前記室外熱交換器の除霜運
転開始時には、前記絞り装置の絞り量を暖房運転時の絞
り量よりも小さくして、前記開閉弁を開とし、さらに室
内ファンの風量を暖房運転時より低下させ、除霜運転時
には前記室内ファンの風量を変化させるとともに、前記
周波数可変圧縮機の周波数を段階的に上昇せしめ、除霜
運転終了時に一定時間前記周波数可変形圧縮機を停止後
再び暖房運転を行なうようにする制御回路を設けたヒー
トポンプ式空気調和機。
1. A variable frequency compressor, a four-way valve, an indoor heat exchanger, a throttling device having different throttling amounts during heating operation and defrosting operation, an outdoor heat exchanger, etc. are sequentially connected by an annular pipe for refrigeration. A bypass that forms a cycle and connects a pipe from the variable frequency compressor, which has a high pressure during heating operation, to the indoor heat exchanger, and a pipe, which also has a low pressure during heating operation, from the outdoor heat exchanger to the compressor A circuit is formed, an opening / closing valve is provided in the bypass circuit, and at the start of the defrosting operation of the outdoor heat exchanger, the throttle amount of the expansion device is made smaller than the throttle amount during the heating operation to open the opening / closing valve. The air volume of the indoor fan is decreased from that during the heating operation, the air volume of the indoor fan is changed during the defrosting operation, and the frequency of the frequency variable compressor is increased stepwise so that the defrosting operation is completed. Regular time The heat pump type air conditioner provided with a control circuit to perform the stop after heating operation again the frequency deformable compressor.
JP62076916A 1987-03-30 1987-03-30 Heat pump type air conditioner Expired - Fee Related JPH0752031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076916A JPH0752031B2 (en) 1987-03-30 1987-03-30 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076916A JPH0752031B2 (en) 1987-03-30 1987-03-30 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS63243648A JPS63243648A (en) 1988-10-11
JPH0752031B2 true JPH0752031B2 (en) 1995-06-05

Family

ID=13619012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076916A Expired - Fee Related JPH0752031B2 (en) 1987-03-30 1987-03-30 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH0752031B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739050B2 (en) 2016-08-08 2020-08-11 Mitsubishi Electric Corporation Air-conditioning apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164209A (en) * 2003-12-05 2005-06-23 Denso Corp Heat-pump water heater
CN104296434A (en) * 2014-10-29 2015-01-21 珠海格力电器股份有限公司 Defrosting control method and system for air conditioner
CN111322723A (en) * 2020-03-11 2020-06-23 广东美的暖通设备有限公司 Multi-split air conditioning system, control method and control device thereof, and storage medium
CN112460848A (en) * 2020-11-24 2021-03-09 无锡同方人工环境有限公司 Air source heat pump unit with heat pipe defrosting function and defrosting method thereof
CN115978718A (en) * 2022-12-06 2023-04-18 珠海格力电器股份有限公司 Defrosting control method and device, electronic equipment and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184168U (en) * 1982-05-31 1983-12-07 ダイキン工業株式会社 Heat pump type refrigeration equipment
JPH0823427B2 (en) * 1986-11-18 1996-03-06 松下電器産業株式会社 Defrost control device for heat pump type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739050B2 (en) 2016-08-08 2020-08-11 Mitsubishi Electric Corporation Air-conditioning apparatus

Also Published As

Publication number Publication date
JPS63243648A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JPH079331B2 (en) Operation control method for heat pump type air conditioner
US4326868A (en) Refrigeration system utilizing a gaseous refrigerant bypass
JP4538892B2 (en) Air conditioner using CO2 refrigerant
JP2010121801A (en) Method of controlling air conditioner, and air conditioner
US7475557B2 (en) Refrigerator
JP4622901B2 (en) Air conditioner
JPH0752031B2 (en) Heat pump type air conditioner
JP4269476B2 (en) Refrigeration equipment
JPH10205933A (en) Air conditioner
JP4023387B2 (en) Refrigeration equipment
JPH0823427B2 (en) Defrost control device for heat pump type air conditioner
JP5313467B2 (en) Air conditioning system and control method thereof
JP2007051840A (en) Air conditioner
JPS61262560A (en) Heat pump type air conditioner
JPH0320571A (en) Air conditioner
JPH04136669A (en) Multi-room air conditioner
JPS6057164A (en) Defroster for refrigeration cycle
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS6346350B2 (en)
JPH0579901B2 (en)
JP2002061994A (en) Air conditioner
JPS61256159A (en) Heat pump type air conditioner
JP2762605B2 (en) Heating and cooling machine
JPH07294041A (en) Refrigerator
JPH0373794B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees