JPS61255328A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPS61255328A
JPS61255328A JP9721785A JP9721785A JPS61255328A JP S61255328 A JPS61255328 A JP S61255328A JP 9721785 A JP9721785 A JP 9721785A JP 9721785 A JP9721785 A JP 9721785A JP S61255328 A JPS61255328 A JP S61255328A
Authority
JP
Japan
Prior art keywords
electrodes
characteristic impedance
line
optical
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9721785A
Other languages
Japanese (ja)
Other versions
JPH063509B2 (en
Inventor
Toshihiko Makino
俊彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9721785A priority Critical patent/JPH063509B2/en
Publication of JPS61255328A publication Critical patent/JPS61255328A/en
Publication of JPH063509B2 publication Critical patent/JPH063509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make possible extra-high speed optical modulation with the smaller electric power for an electric signal by selecting adequately the length in the crossed part of optical waveguides, operating electrodes as progressive wave electrodes and disposing a dielectric substrate formed with a microstrip line terminating at a chip resistor near the electrodes of the optical modulator. CONSTITUTION:The electrodes 21, 22 are provided to the part where the four waveguides 15-18 intersect. The electrodes form the asymmetrical coplanar strip line. The characteristic impedance of the asymmetrical coplanar strip line is determined by the dielectric constant of the substrate 14, the width of the electrode 21 and the gap width between the electrodes 21 and 22 and can be therefore made equal to the characteristic impedance of a coaxial cable by determining adequately the size of the electrodes 21 and 22 with respect to the given substrate 14. The characteristic impedance of the microstrip line is made equal to the characteristic impedance of the coaxial cable by selecting adequately the dielectric constant and thickness of the dielectric substrate 23 and the widths of central conductors 24, 27.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は光集積回路において導波された光波の強度を
電気的に制御する光変調器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an optical modulator that electrically controls the intensity of light waves guided in an optical integrated circuit.

従来の技術 交差光導波路を用いた光変調器の従来例を第2図に示す
。電気光学効果を有する基板1の表面に、光導波路2と
3が交差するように作成されている。
BACKGROUND OF THE INVENTION A conventional example of an optical modulator using crossed optical waveguides is shown in FIG. Optical waveguides 2 and 3 are formed so as to intersect on the surface of a substrate 1 having an electro-optic effect.

これら光導波路の交差部分に電極8,9が設けられ、さ
らに、これらの電極は基板の端の電極パッド10.11
に接続され、これらの電極パッド10゜11の間に抵抗
12を介して信号源13からの電圧が印加されるように
なっている。例えば、アール・ニー・ベッカートタブリ
ニ・ニス・シー・チャン“コンピュータ通信線のための
薄膜導波路における電気−光学スイッチ”ニアブライド
・オプテイクス、第18巻、第19番、3296〜33
0゜ページ19ア9年10月(R,ム、Becker 
andW。
Electrodes 8, 9 are provided at the intersections of these optical waveguides, and these electrodes are further connected to electrode pads 10, 11 at the ends of the substrate.
A voltage from a signal source 13 is applied through a resistor 12 between these electrode pads 10 and 11. See, for example, R. N. Beckert, Tablini Nis., See Chan, “Electro-optical switches in thin film waveguides for computer communication lines,” Nearbride Optics, Vol. 18, No. 19, 3296-33.
0゜Page 19A October 9 (R, M, Becker
andW.

S、C,Chang、  IC1ectvooptic
al stitching 1nthin fillo
 waveguiaas f’or a comput
ercommunication  bus”、 人p
plied  0ptics 。
S, C, Chang, IC1ectvooptic
al stitching 1nth fillo
Waveguias f'or a compute
ercommunication bus”, person p
plied 0ptics.

vol、1s 、NO,19、PP、3296−330
0 、Oct、1979 )がある。
vol, 1s, NO, 19, PP, 3296-330
0, Oct. 1979).

このような構造の素子は光スィッチあるいは光変調器と
して動作することはよく知られている。
It is well known that an element having such a structure operates as an optical switch or an optical modulator.

すなわち、例えば端子4から光を入射すると外部から電
圧が印加されない場合、光は端子5の方へ直進する。一
方、外部から電圧が印加されると電極8.9の間に発生
する電界によって光導波路の交差部分に電気光学効果に
基づく屈折率変化が生じ、端子4から入射した光は端子
7の方へ出るようになる。従って光スイッチングが可能
となる。
That is, for example, when light is incident from the terminal 4, the light travels straight toward the terminal 5 when no voltage is applied from the outside. On the other hand, when a voltage is applied from the outside, the electric field generated between the electrodes 8 and 9 causes a change in the refractive index based on the electro-optic effect at the intersection of the optical waveguides, and the light incident from the terminal 4 is directed toward the terminal 7. It starts to come out. Therefore, optical switching becomes possible.

また、端子5の出力光に着目すると、強度変調された光
が取出されることになり、光変調器としても用いること
ができる。
Further, when focusing on the output light from the terminal 5, intensity-modulated light is extracted, and it can also be used as an optical modulator.

発明が解決しようとする問題点 従来例のような交差導波路を用いる光スィッチにおいて
は、例えば端子4から光を入れた場合、端子5から取出
される光をオン(ON)からオフ(OFF)にするのに
必要なスイッチング電圧は、方向性結合器タイプの光ス
ィッチに比べると高くなることが知られている。これは
方向性結合器タイプの光スィッチでは結合長を長くとる
ことによってスイッチング電圧を低くすることができる
のに対して、交差導波路タイプでは、交差部分のみが結
合長として働くため本質的に結合長を長くとることがで
きないことによる。
Problems to be Solved by the Invention In an optical switch using crossed waveguides like the conventional example, for example, when light is input from terminal 4, the light extracted from terminal 5 is changed from on (ON) to off (OFF). It is known that the switching voltage required to achieve this is higher than that of a directional coupler type optical switch. This is because in a directional coupler type optical switch, the switching voltage can be lowered by increasing the coupling length, whereas in a crossed waveguide type, only the crossing portion acts as the coupling length, so the coupling length is essentially the same. This is due to the inability to keep the hair long.

また、従来例のような光スィッチの電極構成では、変調
信号の周波数が高くなると、電極8,9に加わる電界は
電極容量と負荷抵抗によって決まる時定数のために、外
部電圧の変化に追従できなくなる。さらに、高周波の電
気信号は通常同軸ケーブルを用いて供給されるので、こ
のような電極構成では同軸ケーブルとの接続がむずかし
く、仮りに接続したとしても電極パッドと同軸ケーブル
との間でインピーダンスの不整合が起こり、外部スイッ
チング信号の電力は効率よく電極部に供給されなくなる
。従って、このような構成の素子では超高速変調は不可
能である。
Furthermore, in the electrode configuration of a conventional optical switch, when the frequency of the modulation signal increases, the electric field applied to the electrodes 8 and 9 cannot follow changes in the external voltage due to the time constant determined by the electrode capacitance and load resistance. It disappears. Furthermore, since high-frequency electrical signals are usually supplied using coaxial cables, it is difficult to connect them to coaxial cables with this type of electrode configuration, and even if they are connected, there will be an impedance difference between the electrode pads and the coaxial cables. Matching occurs and the power of the external switching signal is no longer efficiently supplied to the electrode section. Therefore, ultrahigh-speed modulation is impossible with an element having such a configuration.

本発明はかかる点に鑑みてなされたもので、より小さい
電気信号電力で超高速光変調を可能にする構成の光変調
器を提供することを目的としている。
The present invention has been made in view of these points, and an object of the present invention is to provide an optical modulator having a configuration that enables ultrahigh-speed optical modulation with smaller electric signal power.

問題点を解決するだめの手段 本発明は上記問題点を解決するため、交差導波路の交差
部分を長くすることにより結合長を長くしてスイッチン
グ電圧を低くし、また、交差部分のほぼ中央部にギャッ
プ部分が重なるように非対称コプレナー・スl−IJツ
ブ線路を設けて進行波電極とし、さらに、チップ抵抗で
終端したマイクロストリップ線路が形成された誘電体基
板を光変調器の電極近傍に配置させ、上記マイクロスI
−IJツブ線路から電気信号を効率よく供給するもので
ある。
Means for Solving the Problems The present invention solves the above problems by increasing the length of the intersection of the crossed waveguides to increase the coupling length and lowering the switching voltage. An asymmetrical coplanar sl-IJ tube line is provided so that the gap portion overlaps with the electrode to serve as a traveling wave electrode, and a dielectric substrate on which a microstrip line terminated with a chip resistor is formed is placed near the electrode of the optical modulator. The above micros I
- Electrical signals are efficiently supplied from the IJ tube line.

作用 本発明の構成においては、交差導波路の交差部分の長さ
を適当に選んで結合長を最適にし、スイッチング電圧を
低くすることができ、また、非対称コプレナー・ストリ
ップ線路を用いて進行波電極を形成して電極容量による
変調帯域制限をなくすることができる。また、マイクロ
ストリップ線路を介して電極に高周波電気信号を供給す
るようにしており、マイクロストリップ線路と同軸ケー
ブルとの接続は容易に行えることはよく知られているの
で、外部信号源から同軸ケーブルを用いて電極に高周波
電気信号を供給することができる。
Operation In the configuration of the present invention, the length of the crossing portion of the crossing waveguides can be appropriately selected to optimize the coupling length and the switching voltage can be lowered. It is possible to eliminate the modulation band limitation due to electrode capacitance by forming the electrode capacitance. In addition, high-frequency electrical signals are supplied to the electrodes via microstrip lines, and it is well known that connecting microstrip lines and coaxial cables is easy. can be used to supply high frequency electrical signals to the electrodes.

さらに、非対称コプレナー、ストリップ線路とマイクロ
ストリップ線路の特性インピーダンスおよびチップ抵抗
の抵抗値を同軸ケーブルの特性インピーダンスに等しく
選ぶことによって、外部信号源と電極との間のインピー
ダンス不整合を小さくすることができ、広い周波数範囲
にわたって超高速変調動作を可能にすることができる。
Furthermore, by choosing the characteristic impedance of the asymmetric coplanar, the strip line and microstrip line, and the resistance value of the chip resistor equal to the characteristic impedance of the coaxial cable, the impedance mismatch between the external signal source and the electrodes can be reduced. , can enable ultra-fast modulation operation over a wide frequency range.

実施例 本発明の一実施例を第1図に示す。第1図人は上面図、
第1図Bは五−ム線断面図である。第1図において、1
4は電気光学効果を有する物質から成る基板、15.1
6は直線光導波路、17゜18は分岐光導波路である。
Embodiment An embodiment of the present invention is shown in FIG. Figure 1: The person is a top view.
FIG. 1B is a sectional view taken along the line 5-5. In Figure 1, 1
4 is a substrate made of a substance having an electro-optical effect; 15.1
6 is a straight optical waveguide, and 17° and 18 are branched optical waveguides.

従来例では交差部の長さは一つの導波路の幅と交差角で
一意的に決まるが、本発明では交差部の長さを自由に設
定することができる。すなわち、スイッチング電圧が低
くなるように交差部の長さを選ぶことが可能である。4
つの導波路15116,17.18が交差する部分には
電極21.22が設けられ、これは非対称コプレナー・
ストリップ線路を形成する。
In the conventional example, the length of the intersection is uniquely determined by the width of one waveguide and the intersection angle, but in the present invention, the length of the intersection can be freely set. That is, it is possible to choose the length of the intersection so that the switching voltage is low. 4
An electrode 21.22 is provided at the intersection of the two waveguides 15116, 17.18, which is an asymmetric coplanar
form a strip line.

誘電体基板23の上面には2つのマイクロストリップ線
路24.27が設けられ、下面にはマイクロスI−IJ
ツブ線路の接地導体3oが設けられている。また、接地
導体3oと電気的に接続された導体部分26とマイクロ
ストリップ線路27との間にはチップ抵抗26が接続さ
れている。電極21とマイクロストリップ線路24.2
7はそれぞれリードワイヤ28・29により接続され、
電極22と接地導体3oは接するように置かれ、圧着ま
たは導電性接着剤によって電気的に接続されている。
Two microstrip lines 24 and 27 are provided on the upper surface of the dielectric substrate 23, and microstrip lines 24 and 27 are provided on the lower surface.
A ground conductor 3o of a tubular line is provided. Further, a chip resistor 26 is connected between the microstrip line 27 and a conductor portion 26 electrically connected to the ground conductor 3o. Electrode 21 and microstrip line 24.2
7 are connected by lead wires 28 and 29, respectively,
The electrode 22 and the ground conductor 3o are placed in contact with each other and are electrically connected by pressure bonding or conductive adhesive.

電気信号は電気信号入力端子31から供給され、マイク
ロストリップ線路24、非対称コプレナーストリップ線
路21、終端マイクロストリップ線路27を経て、チッ
プ抵抗26に吸収される。非対称コプレナー・ストリッ
プ線路の特性インピーダンスは基板14の誘電率、電極
21の幅、電極21と22の間のギャップ幅によって決
まるため、与えられた基板14に対しては電極21と2
2の寸法を適当に定めて同軸ケーブルの特性インピーダ
ンス(例えば50Ω)に等しくすることができる。また
、マイクロストリップ線路の特性インピーダンスは誘電
体基板23の誘電率、厚み、および中心導体24.27
の幅を適当に選ぶことによ□って同軸ケーブルの特性イ
ンピーダンスに等しくすることができる。さらに、チッ
プ抵抗25の抵抗値を同軸ケーブルの特性インピーダン
スに等しくすれば、広帯域にわたって電気的整合状態で
動作させることができる。この方法によれば、電極容量
による帯域制限がないため、光変調器の変調帯域幅は光
導波路の交差部分の長さに起因する走、−1時間効果に
よって決まり、数10GHz以上の変調帯域幅が期待で
きる。なお、光は端子19または2oのいずれかから入
射し、残りの端子から強度変調された光が取出される。
The electrical signal is supplied from the electrical signal input terminal 31, passes through the microstrip line 24, the asymmetric coplanar strip line 21, and the terminal microstrip line 27, and is absorbed by the chip resistor 26. The characteristic impedance of an asymmetric coplanar strip line is determined by the dielectric constant of the substrate 14, the width of the electrode 21, and the gap width between the electrodes 21 and 22.
2 can be appropriately determined to be equal to the characteristic impedance of the coaxial cable (for example, 50Ω). In addition, the characteristic impedance of the microstrip line depends on the dielectric constant and thickness of the dielectric substrate 23, and the center conductor 24.
By appropriately selecting the width of □, it can be made equal to the characteristic impedance of the coaxial cable. Furthermore, by making the resistance value of the chip resistor 25 equal to the characteristic impedance of the coaxial cable, it is possible to operate in an electrically matched state over a wide band. According to this method, since there is no band limitation due to electrode capacitance, the modulation bandwidth of the optical modulator is determined by the travel time effect caused by the length of the intersection of the optical waveguides, and the modulation bandwidth of several tens of GHz or more is achieved. can be expected. Note that light enters from either terminal 19 or 2o, and intensity-modulated light is extracted from the remaining terminals.

発明の効果 本発明は、光導波路の交差部分の長さを適当に選ぶこと
によってスイッチング電圧を低下させることができ、超
高周波においても低電力の電気信号によって変調を行わ
せることができる。また、電極を進行波電極として動作
させるようにしているので電極容量による変調帯域幅の
制限を受けることなく超広帯域で変調動作を行わせるこ
とができる。さらに、チップ抵抗で終端したマイクロス
トリップ線路が形成された誘電体基板を光変調器の電極
近傍に配置させ、マイクロストリップ線路から変調信号
を供給するようにしているので、接続部の不連続による
反射なしに超高周波の変調信号を電極に効率よく供給で
き、超高速の変調動作を行うことができる。また、マイ
クロストリップ線路と同軸ケーブルの接続は容易である
ため、同軸ケーブルを用いて超高周波の電気信号を容易
に光変調器に供給することができる。
Effects of the Invention According to the present invention, the switching voltage can be lowered by appropriately selecting the length of the intersection of the optical waveguides, and modulation can be performed using a low-power electrical signal even at extremely high frequencies. Furthermore, since the electrode is operated as a traveling wave electrode, the modulation operation can be performed in an ultra-wide band without being limited by the modulation bandwidth due to the electrode capacitance. Furthermore, a dielectric substrate on which a microstrip line terminated with a chip resistor is formed is placed near the electrode of the optical modulator, and the modulation signal is supplied from the microstrip line, so reflections due to discontinuities at the connection part can be avoided. Ultrahigh frequency modulation signals can be efficiently supplied to the electrodes without the need for ultrahigh-speed modulation operations. Furthermore, since it is easy to connect a microstrip line and a coaxial cable, it is possible to easily supply an ultra-high frequency electrical signal to an optical modulator using a coaxial cable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図人、Bはそれぞれ本発明の一実施例の光変調器の
上面図、ムーム線断面図、第2図は従来の光変調器の基
本構成図である。 14・・・・・・電気光学効果を有する物質から成る基
板、21.22・・・・・・非対称コプレナー・スl−
IJツブ線路、23・・・・・・誘電体基板、24・・
・・・・入力マイクロストリップ線路、25・・・・・
・チップ抵抗、26・・・・・・マイクロストリップ線
路の接地導体。 代理人の氏名 弁理士 中 尾 敏 男 はか1名1’
/、 20 、 、 、χ、入& a 146 211
.2’?−+)−ドワイヤ第2図
FIG. 1 and B are a top view and a sectional view along the Moum line of an optical modulator according to an embodiment of the present invention, respectively, and FIG. 2 is a basic configuration diagram of a conventional optical modulator. 14... Substrate made of a substance having an electro-optic effect, 21.22... Asymmetric coplanar sl-
IJ tube line, 23...Dielectric substrate, 24...
...Input microstrip line, 25...
・Chip resistance, 26...Grounding conductor of microstrip line. Name of agent: Patent attorney Toshi Nakao
/, 20, , χ, enter & a 146 211
.. 2'? -+)-Dwyer Figure 2

Claims (1)

【特許請求の範囲】[Claims] 電気光学効果を有する物質から成る基板の表面近傍に、
互いに一定距離隔った2つのY分岐光導波路を有する直
線光導波路を形成し、上記Y分岐光導波路の2つの分岐
点の間の直線光導波路のほぼ中央部にギャップ部分が重
なるように、非対称コプレナー・ストリップ線路を設け
、2つのマイクロストリップ線路が形成された誘電体基
板を上記マイクロストリップ線路の接地導体と上記非対
称コプレナー・ストリップ線路の接地導体とが接するよ
うに配置し、上記マイクロストリップ線路と上記非対称
コプレナー・ストリップ線路とを電気的に接続して1つ
の伝送線路を形成し、上記2つのマイクロストリップ線
路の一方から電気信号を供給するようにし、もう一方の
マイクロストリップ線路をチップ抵抗で終端するように
して構成したことを特徴とする光変調器。
Near the surface of a substrate made of a substance that has an electro-optic effect,
A straight optical waveguide having two Y-branch optical waveguides separated by a certain distance from each other is formed, and an asymmetrical waveguide is formed so that the gap portion overlaps approximately the center of the straight optical waveguide between the two branch points of the Y-branch optical waveguide. A coplanar strip line is provided, and a dielectric substrate on which two microstrip lines are formed is arranged so that the ground conductor of the microstrip line and the ground conductor of the asymmetric coplanar strip line are in contact with each other. The asymmetric coplanar strip line is electrically connected to form one transmission line, an electric signal is supplied from one of the two microstrip lines, and the other microstrip line is terminated with a chip resistor. An optical modulator characterized in that it is configured as follows.
JP9721785A 1985-05-08 1985-05-08 Light modulator Expired - Fee Related JPH063509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9721785A JPH063509B2 (en) 1985-05-08 1985-05-08 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9721785A JPH063509B2 (en) 1985-05-08 1985-05-08 Light modulator

Publications (2)

Publication Number Publication Date
JPS61255328A true JPS61255328A (en) 1986-11-13
JPH063509B2 JPH063509B2 (en) 1994-01-12

Family

ID=14186458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9721785A Expired - Fee Related JPH063509B2 (en) 1985-05-08 1985-05-08 Light modulator

Country Status (1)

Country Link
JP (1) JPH063509B2 (en)

Also Published As

Publication number Publication date
JPH063509B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US9069223B2 (en) Mach-Zehnder optical modulator using a balanced coplanar stripline with lateral ground planes
US6310700B1 (en) Velocity matching electrode structure for electro-optic modulators
US5138480A (en) Traveling wave optical modulator
US5675673A (en) Integrated optic modulator with segmented electrodes and sloped waveguides
US8917958B2 (en) Electrical waveguide transmission device for use with a mach-zehnder optical modulator
EP0287537B1 (en) Electrode arrangement for optoelectronic devices
CN108780235A (en) Optical modulator
US6304685B1 (en) Low drive voltage LiNbO3 intensity modulator with reduced electrode loss
JP2003015096A (en) Optical modulator
US5671302A (en) Linearized optic modulator with segmented electrodes
US5515463A (en) Multi-branch microwave line for electro-optical devices
JPS60114821A (en) Integrated light device
JPS61255328A (en) Optical modulator
US5729378A (en) Optical device
JPS61190322A (en) Optical switch
JP2885218B2 (en) Light control device
JPH0798442A (en) Waveguide type optical device
JP2000241780A (en) Waveguide optical modulator
JPS6266222A (en) Light modulator
JPS61249027A (en) Optical switch
JPS61121043A (en) Optical switch
JPS61162031A (en) Optical switch
JP3731622B2 (en) Optical waveguide device
Langmann et al. Capacitively Loaded Transmission Line for Subnanosecond Stepped Delta beta Operation of an Integrated Optical Directional Coupler Switch
JPS6242116A (en) Optical modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees