JPS6125474B2 - - Google Patents

Info

Publication number
JPS6125474B2
JPS6125474B2 JP52044830A JP4483077A JPS6125474B2 JP S6125474 B2 JPS6125474 B2 JP S6125474B2 JP 52044830 A JP52044830 A JP 52044830A JP 4483077 A JP4483077 A JP 4483077A JP S6125474 B2 JPS6125474 B2 JP S6125474B2
Authority
JP
Japan
Prior art keywords
content
flux
wire
welding
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52044830A
Other languages
Japanese (ja)
Other versions
JPS53129138A (en
Inventor
Shoji Minato
Katsushi Nishimura
Takamichi Hamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4483077A priority Critical patent/JPS53129138A/en
Publication of JPS53129138A publication Critical patent/JPS53129138A/en
Publication of JPS6125474B2 publication Critical patent/JPS6125474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は良好な溶接金属を得る為のフラツクス
入り複合ワイヤに関するものである。 不活性ガスアーク溶接殊にMIG溶接に使用され
る溶接用ワイヤについては、通電性及び送給性が
考慮され、表面を可及的平滑に仕上げることが必
要であるとされている。従つてソリツドワイヤで
あつても製造コストがかなり高いものになるとい
う欠点がある。 ところで、炭酸ガスアーク溶接においては、早
くからフラツクス入り複合ワイヤが使用されてお
り、合金元素やスラグ形成剤等の配合が自由且つ
容易に行ない得るという利点があり、しかも製造
コストも低いのでその利用価値が次第に高まりつ
つある。その一例が不活性ガスアーク溶接殊に
MIG溶接用の複合ワイヤである。 他方従来汎用されているMIG溶接用のソリツド
ワイヤについては前述の如き表面仕上げ上の要求
が強く、一般的な溶接用ソリツドワイヤ例えば炭
酸ガスアーク溶接用ソリツドワイヤやサブマージ
アーク溶接用ソリツドワイヤ等に比べて製造コス
トが高い。しかもMIG溶接の好適溶接対象の1つ
であるステンレス鋼用のワイヤでは上述の傾向が
特に強く、更に下記の如き特有の欠点も存在す
る。即ちステンレス鋼用のMIG溶接ワイヤには、
母材の化学成分と一致させるべく合金元素として
のCrが配合されているが、一般的な溶接作業性
を向上させるために不活性ガス(Arもしくは
He)中に数%の酸素を混合してガスシールドす
ることが多いので、溶接金属表面に高融点のクロ
ム酸化物が付着する。ところがこのクロム酸化物
は非常に硬く又その除去も容易ではないので、ク
ロム酸化物を残したままで多層盛溶接を行なつて
いくと、溶接金属中にブロホールや融合不良等の
欠点を残し、極めて不都合である。 このようなところから、MIG溶接にもフラツク
ス入り複合ワイヤを利用しようという気運が高ま
つている。このワイヤは従来のMIG溶接用ソリツ
ドワイヤに比べて安価に製造できるだけでなく合
金元素の配合を自由に変更でき、しかもスラグ形
成剤をフラツクス中に配合してクロム酸化物等の
スケール生成を防止できるという利点がある。し
かし複合ワイヤは、その断面形状の如何にかかわ
らずフラツクスを包み込む様にして断面の外形が
円形若しくは矩形状になる様に帯鋼を折曲げつつ
長手方向の合わせ目を密着させようとするもので
あるから、合わせ目が不連続になつている箇所や
フラツクスの充填密度が不均一になる箇所もあ
り、MIG溶接を行なうにあたつてはアークが安定
しにくいという欠点がある。 本発明はこの様な事情に着目してなされたもの
であつて、その目的はフラツクス入り複合ワイヤ
中に効果的なアーク安定剤や合金元素を配合する
ことによつて溶接表面にスラグがほとんど付着し
ないようにし、スラグ除去を行なうことなく連続
溶接を良好且つ安定して行なうことができる様な
複合ワイヤを提供しようとするものである。 しかして本発明の複合ワイヤの要旨は下記(1)〜
(4)点の夫々に集約することができる。 (1) 不活性ガスアーク溶接に用いるフラツクス入
り複合ワイヤであつて、フラツクス中にはワイ
ヤ全重量に対し炭酸塩をCO2に換算して、0.05
%以下におさえたもので、かつ0.01〜1.5重量
%のアルカリ性無機弗化物を含有し、残部は主
として溶接用の合金元素又は溶接用の合金元素
と鉄粉とからなり、且つCr、Mn、Siよりなる
合金元素がワイヤ外皮及びフラツクスの一方又
は双方に配合され、更にワイヤ外皮中の Cr含有率をC(Ce) Mn+Si含有率をC(Mn+Si) フラツクス中の Cr含有率をF(Cr) Mn+Si含有率をF(Mn+Si) ワイヤ全重量に対するフラツクス比をf と表示した時において f≦0.5 電極全重量に対する合金元素の割合が 11%≦fF(Cr)+(1−f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1−f)C(Mn +Si)≦10% なる式を満足するものである点。 (2) 不活性ガスアーク溶接に用いるフラツクス入
り複合ワイヤであつて、フラツクス中にはワイ
ヤ全重量に対し炭酸塩をCO2に換算して、0.05
%以下におさえたもので、かつ0.01〜1.5重量
%のアルカリ性無機弗化物を含有し、残部は主
として溶接用の合金元素又は溶接用の合金元素
と鉄粉とからなり、且つCr、Mn、Siよりなる
合金元素がワイヤ外皮及びフラツクスの一方又
は双方に配合され、更にワイヤ外皮中のNi含
有率をC(Ni) Cr含有率をC(Cr) Mn+Si含有率をC(Mn+Si) フラツクス中のNi含有率をF(Ni) Cr含有率をF(Cr) Mn+Si含有率をF(Mn+Si) ワイヤ全重量に対するフラツクス比をf と表示した時において f≦0.5 電極全重量に対する合金元素の割合が fF(Ni)+(1−f)C(Ni)≦15% 11%≦fF(Cr)+(1−f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1−f)C(Mn +Si)≦10% なる式を満足するものである点。 (3) 不活性ガスアーク溶接に用いるフラツクス入
り複合ワイヤであつて、フラツクス中にはワイ
ヤ全重量に対してCO2に換算して、0.05%以下
におさえたもので、かつ0.01〜1.5重量%のア
ルカリ性無機弗化物を含有し、残部は主として
溶接用の合金元素又は溶接用の合金元素と鉄粉
とからなり、且つCr、Mn、Siよりなる合金元
素がワイヤ外皮及びフラツクスの一方又は双方
に配合され、更にワイヤ外皮中の Cr含有率をC(Cr) Mn+Si含有率をC(Mn+Si) Mo含有率をC(Mo) フラツクス中の Cr含有率をF(Cr) Mn+Si含有率をF(Mn+Si) Mo含有率をF(Mo) ワイヤ全重量に対するフラツクス比をf と表示した時において f≦0.5 電極全重量に対する合金元素の割合が 11%≦fF(Cr)+(1−f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1−f)C(Mn +Si)≦10% fF(Mo)+(1−f)C(Mo)≦7% なる式を満足するものである点。 (4) 不活性ガスアーク溶接に用いるフラツクス入
り複合ワイヤであつて、フラツクス中にはワイ
ヤ全重量に対し炭酸塩をCO2に換算して、0.05
%以下におさえたもので、かつ0.01〜1.5重量
%のアルカリ性無機弗化物を含有し、残部は主
として溶接用の合金元素又は溶接用の合金元素
と鉄粉とからなり、且つCr、Mn、Siよりなる
合金元素がワイヤ外皮及びフラツクスの一方又
は双方に配合され、更にワイヤ外皮中のNi含
有率をC(Ni) Cr含有率をC(Cr) Mn+Si含有率をC(Mn+Si) Mo含有率をC(Mo) フラツクス中のNi含有率をF(Ni) Cr含有率をF(Cr) Mn+Si含有率をF(Mn+Si) Mo含有率をF(Mo) ワイヤ全重量に対するフラツクス比をf と表示した時において f≦0.5 電極全重量に対する合金元素の割合が fF(Ni)+(1−f)C(Ni)≦15% 11%≦fF(Cr)+(1−f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1−f)C(Mn +Si)≦10% fF(Mo)+(1−f)C(Mo)≦7% なる式を満足するものである点。 CaCO3、MnCO3、SrCO3、BaCO3等の炭酸塩
から発生するCO2ガスはアークの安定性を著じる
しく阻害し、ブロホールや融合不良の原因となる
ので炭酸塩はCO2量に換算して0.05%以下におさ
えることが望ましい。 まずアーク安定剤として作用するアルカリ性無
機弗化物であるが、本発明では特に制限を受けな
いものの、代表的なものを例示すると、NaF、
KF、LiF、K2TiF6、Na3AlF3、Li2SiF6
Na2SiF6、K2SiF6、BaF2、AlF3等の如く〜
族元素殊にアルカリ金属、アルカリ土類金属、ア
ルミニウム族等の弗化物を挙げることができる。
しかしてこれら弗化物は通常フラツクス中に配合
されるが、ワイヤ全重量に対して0.01〜1.5重量
%とすべきである。尚フラツクス中における配合
比率は、フラツクス率によつて変更すべきである
が、後述する如く本発明におけるフラツクス率
(f)としては50重量%以下と規定されるので、
[f×フラツクス中の配合率]が0.01〜1.5重量%
になる様に配慮すればよい。アルカリ性無機弗化
物は例えばアルカリ金属の安定供給源となり、ア
ーク雰囲気中の電離電圧を下げるものであるか
ら、本発明のワイヤを使用すればアークの安定性
は極めて良好になるが、前記配合率を越えると却
つてアーク電圧が低下しすぎ、アークが短絡気味
になるから好ましくない。尚この弗化物配合量の
下限については設定し難く、該弗化物がたとえ微
量でも存在すれば前記効果を享受することができ
る。しかし確実な効果を得る為には、0.01重量%
以上配合することが必要である。 次にアルカリ性無機弗化物の前記効果を確実な
ものとする為には、フラツクス比(ワイヤ全重量
に占めるフラツクス重量の割合:f)を0.5以下
に調整することが望ましい。この理由は、フラツ
クス率が0.5を越えると、フラツクス中での前記
弗化物の分散度が低下しその効果が小さくなるか
らである。又その下限も設定し難いが、一般的に
は0.1とすることが推奨される。 ところでこの様な弗化物を使用すると、前記ア
ーク安定効果の他に、Arガス単独のシールドで
もステンレス鋼のMIG溶接を良好に実施できると
いう効果が得られることを知つた。即ちソリツド
ワイヤを使用するMIG溶接では、Arガスだけで
シールドしても安定なアークを持続することが困
難であり、前述の如く数%の酸素ガスを混合する
ことによつてこの欠点に対処していた。しかしそ
の為にクロム酸化物の付着を招き問題となつてい
た。これに対し本発明の前記弗化物入り複合ワイ
ヤを使用すると、酸素ガスを併用しなくとも安定
なアークが持続的に得られ、後記するスラグ生成
剤の併用によるクロム酸化物生成の抑制効果と相
俟つて、公知技術の欠点を大幅に解消し得ること
となつた。 次に本発明ワイヤに添加される合金元素につい
て説明する。この合金元素とは、Ni、Cr、Mn、
Si及びMoであり、これらのうちCr、Mn、Siは何
れの複合ワイヤにおいても必須的に配合される。
そしてこれら必須的の配合合金元素は、ワイヤ外
皮及びフラツクスの一方若しくは双方に添加して
行なわれるが、これらは前記各式に示した範囲を
満足するものでなくてはならない。 まずNiは特に溶接部の靭性と耐食性を向上さ
せたい場合に加えるが、前式に示した如く(溶接
金属中に移行する合金元素が)15%を越える様に
添加すると耐割れ性が劣化する傾向を示すので実
用的な上限は15%と定めたが、被溶接金属の鋼種
や用途等によつては加えなくとも良い場合があ
る。又Crは溶接部の耐食性を向上させる機能が
あり、特に溶接対象がステンレス鋼である時はそ
の作用が最も有効に発揮される。その上・下限は
前記式に示した範囲を満足しなければならず、下
限は耐食性を発揮させるに必要な量であり、上限
を越えて配合すると靭性及び高温での脆化におい
て難点が生じる。次にMn及びSiは上述の如く複
合ワイヤ中に必ず含有させなければならず、前記
式に示した含有率範囲は脱酸能力及びスラグ生成
能力の双方を考慮して定めたものである。尚上限
は特に設定する必要もなかつたが、余り多いとス
ラグ量が多くなつて溶接作業性を阻害することも
あるので一応10%を上限と定めた。尚前記説明中
で述べたスラグ生成剤は主として本合金元素のこ
とを意味するが、必要であればこれ以外の、例え
ば後記実施例におけるような酸化物からなるスラ
グ生成剤を併用しても良いことは当然である。但
し、添加量としては、ワイヤ重量比で1.25%以
下、フラツクス配合比で5%以下にすることが好
ましい。即ち、酸化物がフラツクス配合比で5%
を越えるとスラグがビード表面を覆う率が高くな
つて、クレータの溶着を妨げるようになり、その
為溶接欠陥のない健全な溶接部が得られ難くなる
からであり、更にそのような場合には次パス溶接
時にスラグ除去が必要となつて所期の目的が達成
できなくなるからである。最後にMoは、非酸化
性環境下での耐食性付与効果がある。しかし前記
式で定めた上限を越えると却つて靭性を低下させ
る恐れもあるので一応7%を上限と定めたが被溶
接金属の鋼種や用途等によつては加えなくとも良
い場合がある。 以上述べた如く、ワイヤ外皮及び/又はフラツ
クス中に配合される元素は、前述の式を満足する
ものでなければならないが、不活性ガス溶接の場
合、ワイヤの合金成分はほとんど100%溶接金属
になるため前記各式が溶接金属中の化学組成にほ
ぼ相当するものであることは容易に理解されると
ころであろう。 次に本発明の実施例を説明する。尚以下の%は
いずれも重量%を意味する。 実施例 1 幅12mm、厚さ0.7mmの軟鋼フープに、第1表に
示す組成のフラツクスを乗せ、折曲げ成形後線引
きし1.6mmφの複合ワイヤを製造した(フラツク
ス比:0.25)。純Arをシールドガスとし(流量:
20/min)、DCRP(溶接電流:350A、溶接電
圧:28V)で突合わせ溶接を行なつた。尚開先部
の形状は、板厚:19mm、V開先、開先角度:45
度、ルート高さ:3mm、ルートギヤツプ:ほぼ零
であり、母材はSUS410を使用した。又ワイヤ外
皮中の合金元素含有率は第2表の通りであり、溶
接金属中の化学成分は第3表に示す結果を得た。
The present invention relates to a flux-cored composite wire for obtaining good weld metal. Regarding welding wires used for inert gas arc welding, particularly MIG welding, it is considered necessary to have a surface as smooth as possible in consideration of current conductivity and feedability. Therefore, even if it is a solid wire, it has the disadvantage that the manufacturing cost is quite high. By the way, flux-cored composite wires have been used in carbon dioxide arc welding for a long time, and they have the advantage of being able to mix alloying elements, slag forming agents, etc. freely and easily, and their manufacturing costs are low, so their utility value is high. It is gradually increasing. One example is inert gas arc welding, especially
Composite wire for MIG welding. On the other hand, solid wires for MIG welding, which have been widely used in the past, have strong requirements for surface finish as mentioned above, and their manufacturing costs are higher than general welding solid wires, such as solid wires for carbon dioxide arc welding and solid wires for submerged arc welding. . Moreover, the above-mentioned tendency is particularly strong in wires for stainless steel, which is one of the preferred welding targets for MIG welding, and also has the following specific drawbacks. In other words, MIG welding wire for stainless steel has
Cr is added as an alloying element to match the chemical composition of the base metal, but inert gas (Ar or
Since a few percent of oxygen is often mixed into He) for gas shielding, high melting point chromium oxide adheres to the weld metal surface. However, this chromium oxide is very hard and it is not easy to remove it, so if multi-layer welding is performed with the chromium oxide remaining, defects such as blowholes and poor fusion will remain in the weld metal, resulting in extremely poor welding. It's inconvenient. For this reason, there is a growing trend to use flux-cored composite wires in MIG welding as well. This wire can not only be manufactured at a lower cost than conventional MIG welding solid wires, but also the composition of alloying elements can be changed freely, and a slag-forming agent can be added to the flux to prevent the formation of scales such as chromium oxide. There are advantages. However, composite wires are made by bending the steel strip so that the cross-sectional shape is circular or rectangular so as to wrap around the flux, regardless of its cross-sectional shape, and making the joints in the longitudinal direction stick together. Because of this, there are places where the joints are discontinuous and where the flux packing density is uneven, making it difficult to stabilize the arc when performing MIG welding. The present invention was developed in view of these circumstances, and its purpose is to prevent most of the slag from adhering to the welding surface by incorporating effective arc stabilizers and alloying elements into the flux-cored composite wire. It is an object of the present invention to provide a composite wire that can perform continuous welding satisfactorily and stably without slag removal. However, the gist of the composite wire of the present invention is as follows (1) ~
(4) It can be summarized into each point. (1) A flux-cored composite wire used for inert gas arc welding, in which the flux contains 0.05 carbonates, calculated as CO 2 based on the total weight of the wire.
% or less, and contains 0.01 to 1.5% by weight of alkaline inorganic fluoride, and the remainder mainly consists of alloying elements for welding or alloying elements for welding and iron powder, and contains Cr, Mn, Si. The following alloying elements are blended into one or both of the wire sheath and flux, and the Cr content in the wire sheath is C (Ce), the Mn + Si content is C (Mn + Si), and the Cr content in the flux is F (Cr) Mn + Si. When the content is F (Mn + Si) and the flux ratio to the total weight of the wire is expressed as f ≦ 0.5 The proportion of alloying elements to the total electrode weight is 11% ≦ fF (Cr) + (1 - f) C (Cr) ≦ 26% 0.1%≦fF(Mn+Si)+(1-f)C(Mn+Si)≦10%. (2) A flux-cored composite wire used for inert gas arc welding, where the flux contains 0.05 carbonates, calculated as CO 2 based on the total weight of the wire.
% or less, and contains 0.01 to 1.5% by weight of alkaline inorganic fluoride, and the remainder mainly consists of alloying elements for welding or alloying elements for welding and iron powder, and contains Cr, Mn, Si. Alloying elements consisting of the following are mixed in one or both of the wire sheath and the flux, and the Ni content in the wire sheath is C (Ni), the Cr content is C (Cr), the Mn + Si content is C (Mn + Si), and the Ni in the flux is Content rate is F (Ni) Cr content rate is F (Cr) Mn + Si content rate is F (Mn + Si) When the flux ratio to the total weight of the wire is expressed as f ≦ 0.5 The proportion of alloying elements to the total weight of the electrode is fF ( Ni)+(1-f)C(Ni)≦15% 11%≦fF(Cr)+(1-f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1-f)C( It satisfies the formula: Mn + Si)≦10%. (3) A flux-cored composite wire used for inert gas arc welding, in which the flux contains less than 0.05% CO 2 based on the total weight of the wire, and 0.01 to 1.5% by weight. Contains alkaline inorganic fluoride, the remainder mainly consists of alloy elements for welding or alloy elements for welding and iron powder, and alloy elements consisting of Cr, Mn, and Si are blended in one or both of the wire sheath and flux. Furthermore, the Cr content in the wire sheath is C (Cr), the Mn + Si content is C (Mn + Si), the Mo content is C (Mo), the Cr content in flux is F (Cr), the Mn + Si content is F (Mn + Si) When the Mo content is expressed as F (Mo) and the flux ratio to the total weight of the wire is expressed as f, f≦0.5 The proportion of alloying elements to the total electrode weight is 11%≦fF (Cr) + (1-f)C (Cr) ≦26% 0.1%≦fF(Mn+Si)+(1-f)C(Mn+Si)≦10% fF(Mo)+(1-f)C(Mo)≦7% . (4) A flux-cored composite wire used for inert gas arc welding, where the flux contains 0.05 carbonates, calculated as CO 2 based on the total weight of the wire.
% or less, and contains 0.01 to 1.5% by weight of alkaline inorganic fluoride, and the remainder mainly consists of alloying elements for welding or alloying elements for welding and iron powder, and contains Cr, Mn, Si. The following alloying elements are blended into one or both of the wire sheath and flux, and the Ni content in the wire sheath is C (Ni), the Cr content is C (Cr), the Mn + Si content is C (Mn + Si), and the Mo content is C (Mo) Ni content in flux is F (Ni) Cr content is F (Cr) Mn + Si content is F (Mn + Si) Mo content is F (Mo) Flux ratio to total wire weight is expressed as f When f≦0.5, the ratio of alloying elements to the total electrode weight is fF(Ni)+(1-f)C(Ni)≦15% 11%≦fF(Cr)+(1-f)C(Cr)≦26 %0.1%≦fF(Mn+Si)+(1-f)C(Mn+Si)≦10% fF(Mo)+(1-f)C(Mo)≦7%. CO 2 gas generated from carbonates such as CaCO 3 , MnCO 3 , SrCO 3 , BaCO 3 etc. significantly inhibits the stability of the arc and causes blowholes and poor fusion . It is desirable to keep it below 0.05%. First, alkaline inorganic fluorides that act as arc stabilizers are not particularly limited in the present invention, but representative examples include NaF,
KF, LiF , K2TiF6 , Na3AlF3 , Li2SiF6 ,
Such as Na 2 SiF 6 , K 2 SiF 6 , BaF 2 , AlF 3 etc.
Mention may be made of the fluorides of group elements, in particular of alkali metals, alkaline earth metals, aluminum group and the like.
These fluorides are usually incorporated into the flux, but should be in an amount of 0.01 to 1.5% by weight based on the total weight of the wire. The blending ratio in the flux should be changed depending on the flux rate, but as described later, the flux rate (f) in the present invention is defined as 50% by weight or less, so
[Blending ratio in f x flux] is 0.01 to 1.5% by weight
You should take care to ensure that. For example, alkaline inorganic fluoride serves as a stable source of alkali metals and lowers the ionization voltage in the arc atmosphere, so if the wire of the present invention is used, arc stability will be extremely good. If it exceeds this, the arc voltage will drop too much and the arc will tend to be short-circuited, which is not preferable. It is difficult to set a lower limit for the amount of fluoride to be added, and the above effects can be obtained if the fluoride is present even in a small amount. However, in order to obtain a reliable effect, 0.01% by weight is required.
It is necessary to mix the above. Next, in order to ensure the above-mentioned effect of the alkaline inorganic fluoride, it is desirable to adjust the flux ratio (ratio of flux weight to total wire weight: f) to 0.5 or less. The reason for this is that when the flux ratio exceeds 0.5, the degree of dispersion of the fluoride in the flux decreases and its effect becomes smaller. Although it is difficult to set the lower limit, it is generally recommended to set it to 0.1. By the way, it has been found that when such a fluoride is used, in addition to the above-mentioned arc stabilizing effect, it is possible to obtain the effect that MIG welding of stainless steel can be performed satisfactorily even when shielding with Ar gas alone. In other words, in MIG welding using solid wire, it is difficult to maintain a stable arc even if shielded with Ar gas alone, and this drawback has been addressed by mixing several percent oxygen gas as mentioned above. Ta. However, this caused problems due to the adhesion of chromium oxide. On the other hand, when the fluoride-containing composite wire of the present invention is used, a stable arc can be obtained continuously without using oxygen gas, and this is compatible with the effect of suppressing chromium oxide production by using a slag forming agent as described later. As a result, it has become possible to largely eliminate the drawbacks of known techniques. Next, alloy elements added to the wire of the present invention will be explained. These alloying elements include Ni, Cr, Mn,
These are Si and Mo, and among these, Cr, Mn, and Si are essentially blended in any composite wire.
These essential alloying elements are added to one or both of the wire sheath and flux, but they must satisfy the ranges shown in the above formulas. First, Ni is added especially when it is desired to improve the toughness and corrosion resistance of the weld zone, but as shown in the previous equation, if it is added in an amount exceeding 15% (alloying elements transferred into the weld metal), cracking resistance will deteriorate. The practical upper limit was set at 15% to show the tendency, but depending on the steel type of the metal to be welded and the purpose, it may not be necessary to add it. Cr also has the function of improving the corrosion resistance of welded parts, and this effect is most effectively exhibited especially when the object to be welded is stainless steel. The upper and lower limits must satisfy the range shown in the above formula, and the lower limit is the amount necessary to exhibit corrosion resistance, and if the upper limit is exceeded, problems will arise in terms of toughness and embrittlement at high temperatures. Next, Mn and Si must be included in the composite wire as described above, and the content range shown in the above formula is determined by taking into consideration both the deoxidizing ability and the slag forming ability. Although there was no need to set an upper limit, if it was too large, the amount of slag would increase, which could impede welding workability, so an upper limit of 10% was set for the time being. The slag forming agent mentioned in the above description mainly refers to the present alloy element, but if necessary, other slag forming agents consisting of oxides such as those in the examples below may be used in combination. Of course. However, the amount added is preferably 1.25% or less in wire weight ratio and 5% or less in flux blending ratio. That is, the oxide content is 5% in the flux blending ratio.
This is because if the slag exceeds the bead surface, the rate of slag covering the bead surface will increase, which will hinder the welding of the crater, making it difficult to obtain a sound weld without welding defects. This is because slag removal becomes necessary during the next pass welding, making it impossible to achieve the intended purpose. Finally, Mo has the effect of imparting corrosion resistance in a non-oxidizing environment. However, if the upper limit determined by the above formula is exceeded, there is a risk that the toughness may deteriorate, so although the upper limit was set at 7%, it may not be necessary to add it depending on the steel type of the metal to be welded, the application, etc. As mentioned above, the elements contained in the wire sheath and/or flux must satisfy the above formula, but in the case of inert gas welding, the alloy components of the wire are almost 100% in the weld metal. Therefore, it is easy to understand that each of the above formulas approximately corresponds to the chemical composition of the weld metal. Next, embodiments of the present invention will be described. Note that all percentages below mean percentages by weight. Example 1 A flux having the composition shown in Table 1 was placed on a mild steel hoop having a width of 12 mm and a thickness of 0.7 mm, and after bending and forming, a composite wire of 1.6 mmφ was manufactured (flux ratio: 0.25). Pure Ar is used as shielding gas (flow rate:
20/min), butt welding was performed using DCRP (welding current: 350A, welding voltage: 28V). The shape of the groove is: plate thickness: 19mm, V-groove, groove angle: 45
root height: 3 mm, root gap: almost zero, and the base material was SUS410. The alloying element content in the wire sheath is as shown in Table 2, and the chemical composition in the weld metal is shown in Table 3.

【表】【table】

【表】【table】

【表】 本実施例においてはアーク安定性は極めて良好
であり、溶接作業性は優秀であつた。又X線性能
はJIS1級であり又溶接部のサイドベンド、フエー
スベンド、ルートベンドとも良好であり、割れの
発生は皆無であつた。更に全溶着金属片による引
張試験の結果を第4表に示す。
[Table] In this example, the arc stability was extremely good and the welding workability was excellent. Moreover, the X-ray performance was JIS class 1, and the side bend, face bend, and root bend of the welded part were all good, and no cracking occurred. Furthermore, Table 4 shows the results of a tensile test using all welded metal pieces.

【表】 実施例 2 第5表に示す組成のフラツクスを用い、実施例
1と同様にして1.6mmφの複合ワイヤを製造した
(フラツクス比:0.25)。純Arガスをシールドガ
スとし(流量:20/min)、実施例1と全く同様
の条件で同一の母材を突合わせ溶接した。第6表
はワイヤ外皮中の合金含有率、第7表は溶接金属
中の化学成分である。
[Table] Example 2 A composite wire with a diameter of 1.6 mm was manufactured in the same manner as in Example 1 using the flux having the composition shown in Table 5 (flux ratio: 0.25). The same base metals were butt-welded under exactly the same conditions as in Example 1, using pure Ar gas as a shielding gas (flow rate: 20/min). Table 6 shows the alloy content in the wire sheath, and Table 7 shows the chemical components in the weld metal.

【表】【table】

【表】【table】

【表】 溶接作業性、X線性能、溶接部のベンドは実施
例1の場合と同様であり、極めて良好であつた。
又全溶着金属片による引張試験の結果は第8表の
通りである。
[Table] Welding workability, X-ray performance, and bending of the welded part were the same as in Example 1, and were extremely good.
Table 8 shows the results of a tensile test using all welded metal pieces.

【表】 実施例 3 幅12mm、厚さ0.9mmのSUS304鋼フープを使用
し、1.6mmφの複合ワイヤを製造した。フラツク
スの組成は第9表に示す通りであり、フラツクス
比は0.12%とした。被溶接材をSUS304鋼とした
他は実施例1と同一の条件で突き合わせ溶接を行
なつた。尚第10表はワイヤ外皮中の合金元素成
分、第11表は溶接金属中の化学成分である。
[Table] Example 3 A composite wire with a diameter of 1.6 mm was manufactured using a SUS304 steel hoop with a width of 12 mm and a thickness of 0.9 mm. The composition of the flux is as shown in Table 9, and the flux ratio was 0.12%. Butt welding was performed under the same conditions as in Example 1, except that the material to be welded was SUS304 steel. Table 10 shows the alloying element components in the wire sheath, and Table 11 shows the chemical components in the weld metal.

【表】【table】

【表】【table】

【表】 溶接作業性、継手性能等は実施例1及び2と同
様極めて良好であり、又引張試験結果は第12表の
通りである。
[Table] Welding workability, joint performance, etc. were extremely good as in Examples 1 and 2, and the tensile test results are shown in Table 12.

【表】 本発明は以上の如く構成されているので、溶接
金属表面にCr酸化物等のスラグの付着を招くこ
となく、従つて従来のようなスラグ除去作業を要
することなく、且つ極めて安定なアークを連続的
に得ることができる様になつた。しかも、スラグ
の付着回避効果によりクレータの溶着は良好に行
なわれるので、溶接欠陥のない健全な溶接部を確
保できることとなつた。又ステンレス鋼の場合に
おいて純Arだけでも良好な溶接作業性を発揮す
ることができ、スラグ生成剤の併用とも相俟つて
良好な溶接継手が得られる様になつた。
[Table] Since the present invention is constructed as described above, it does not cause slag such as Cr oxide to adhere to the surface of the weld metal, does not require the conventional slag removal work, and is extremely stable. It is now possible to obtain arcs continuously. Moreover, the effect of avoiding slag adhesion allows for good welding of the crater, making it possible to ensure a sound welded portion free of welding defects. In addition, in the case of stainless steel, pure Ar alone can provide good welding workability, and when combined with the use of a slag forming agent, it has become possible to obtain good welded joints.

Claims (1)

【特許請求の範囲】 1 不活性ガスアーク溶接に用いるフラツクス入
り複合ワイヤであつて、フラツクス中にはワイヤ
全重量に対し炭酸塩をCO2に換算して、0.05%以
下におさえたもので、かつ0.01〜1.5重量%のア
ルカリ性無機弗化物を含有し、残部は主として溶
接用の合金元素又は溶接用の合金元素と鉄粉とか
らなり、且つCr、Mn、Siよりなる合金元素がワ
イヤ外皮及びフラツクスの一方又は双方に配合さ
れ、更にワイヤ外皮中の Cr含有率をC(Cr) Mn+Si含有率をC(Mn+Si) フラツクス中の Cr含有率をF(Cr) Mn+Si含有率をF(Mn+Si) ワイヤ全重量に対するフラツクス比をf と表示した時において f≦0.5 電極全重量に対する合金元素の割合が 11%≦fF(Cr)+(1−f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1−f)C(Mn +Si)≦10% なる式を満足するものであることを特徴とする複
合ワイヤ。 2 不活性ガスアーク溶接に用いるフラツクス入
り複合ワイヤであつて、フラツクス中にはワイヤ
全重量に対し炭酸塩をCO2に換算して、0.05%以
下におさえたもので、かつ0.01〜1.5重量%のア
ルカリ性無機弗化物を含有し、残部は主として溶
接用の合金元素又は溶接用の合金元素と鉄粉とか
らなり、且つCr、Mn、Siよりなる合金元素がワ
イヤ外皮及びフラツクスの一方又は双方に配合さ
れ、更にワイヤ外皮中のNi含有率をC(Ni) Cr含有率をC(Cr) Mn+Si含有率をC(Mn+Si) フラツクス中のNi含有率をF(Ni) Cr含有率をF(Cr) Mn+Si含有率をF(Mn+Si) ワイヤ全重量に対するフラツクス比をf と表示した時において f≦0.5 電極全重量に対する合金元素の割合が fF(Ni)+(1−f)C(Ni)≦15% 11%≦fF(Cr)+(1−f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1−f)C(Mn +Si)≦10% なる式を満足するものであることを特徴とする複
合ワイヤ。 3 不活性ガスアーク溶接に用いるフラツクス入
り複合ワイヤであつて、フラツクス中にはワイヤ
全重量に対し炭酸塩をCO2に換算して、0.05%以
下におさえたもので、かつ0.01〜1.5重量%のア
ルカリ性無機弗化物を含有し、残部は主として溶
接用の合金元素又は溶接用の合金元素と鉄粉とか
らなり、且つCr、Mn、Siよりなる合金元素がワ
イヤ外皮及びフラツクスの一方又は双方に配合さ
れ、更にワイヤ外皮中の Cr含有率をC(Cr) Mn+Si含有率をC(Mn+Si) Mo含有率をC(Mo) フラツクス中の Cr含有率をF(Cr) Mn+Si含有率をF(Mn+Si) Mo含有率をF(Mo) ワイヤ全重量に対するフラツクス比をf と表示した時において f≦0.5 電極全重量に対する合金元素の割合が 11%≦fF(Cr)+(1−f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1−f)C(Mn +Si)≦10% fF(Mo)+(1−f)C(Mo)≦7% なる式を満足するものであることを特徴とする複
合ワイヤ。 4 不活性ガスアーク溶接に用いるフラツクス入
り複合ワイヤであつて、フラツクス中にはワイヤ
全重量に対して炭酸塩をCO2に換算して、0.05%
以下におさえたもので、かつ0.01〜1.5重量%の
アルカリ性無機弗化物を含有し、残部は主として
溶接用の合金元素又は溶接用の合金元素と鉄粉と
からなり、且つCr、Mn、Siよりなる合金元素が
ワイヤ外皮及びフラツクスの一方又は双方に配合
され、更にワイヤ外皮中のNi含有率をC(Ni) Cr含有率をC(Cr) Mn+Si含有率をC(Mn+Si) Mo含有率をC(Mo) フラツクス中のNi含有率をF(Ni) Cr含有率をF(Cr) Mn+Si含有率をF(Mn+Si) Mo含有率をF(Mo) ワイヤ全重量に対するフラツクス比をf と表示した時において f≦0.5 電極全重量に対する合金元素の割合が fF(Ni)+(1−f)C(Ni)≦15% 11%≦fF(Cr)+(1−f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1−f)C(Mn +Si)≦10% fF(Mo)+(1−f)C(Mo)≦7% なる式を満足するものであることを特徴とする複
合ワイヤ。
[Scope of Claims] 1. A flux-cored composite wire used for inert gas arc welding, the flux containing carbonate in an amount of 0.05% or less calculated as CO 2 based on the total weight of the wire, and Contains 0.01 to 1.5% by weight of alkaline inorganic fluoride, the remainder mainly consists of alloying elements for welding or alloying elements for welding and iron powder, and alloying elements consisting of Cr, Mn, and Si are used for the wire sheath and flux. Cr content in the wire sheath is C (Cr) Mn + Si content is C (Mn + Si) Cr content in the flux is F (Cr) Mn + Si content is F (Mn + Si) When the flux ratio to weight is expressed as f, f≦0.5 The ratio of alloying elements to the total electrode weight is 11%≦fF(Cr)+(1-f)C(Cr)≦26% 0.1%≦fF(Mn+Si) A composite wire characterized by satisfying the following formula: +(1-f)C(Mn+Si)≦10%. 2 Flux-cored composite wire used for inert gas arc welding, in which the flux contains less than 0.05% carbonate, calculated as CO2 , based on the total weight of the wire, and contains 0.01 to 1.5% by weight of carbonate. Contains alkaline inorganic fluoride, the remainder mainly consists of alloy elements for welding or alloy elements for welding and iron powder, and alloy elements consisting of Cr, Mn, and Si are blended in one or both of the wire sheath and flux. Furthermore, the Ni content in the wire sheath is C (Ni), the Cr content is C (Cr), the Mn + Si content is C (Mn + Si), the Ni content in flux is F (Ni), the Cr content is F (Cr) When the Mn + Si content is expressed as F (Mn + Si) and the flux ratio to the total weight of the wire is expressed as f ≦ 0.5 The proportion of alloying elements to the total electrode weight is fF (Ni) + (1 - f) C (Ni) ≦ 15% The following formula must be satisfied: 11%≦fF(Cr)+(1-f)C(Cr)≦26% 0.1%≦fF(Mn+Si)+(1-f)C(Mn+Si)≦10% A composite wire featuring: 3 Flux-cored composite wire used for inert gas arc welding, in which the flux contains less than 0.05% carbonate, calculated as CO 2 based on the total weight of the wire, and 0.01 to 1.5% by weight. Contains alkaline inorganic fluoride, the remainder mainly consists of alloy elements for welding or alloy elements for welding and iron powder, and alloy elements consisting of Cr, Mn, and Si are blended in one or both of the wire sheath and flux. Furthermore, the Cr content in the wire sheath is C (Cr), the Mn + Si content is C (Mn + Si), the Mo content is C (Mo), the Cr content in flux is F (Cr), the Mn + Si content is F (Mn + Si) When the Mo content is expressed as F (Mo) and the flux ratio to the total weight of the wire is expressed as f, f≦0.5 The proportion of alloying elements to the total electrode weight is 11%≦fF (Cr) + (1-f)C (Cr) ≦26% 0.1%≦fF(Mn+Si)+(1-f)C(Mn+Si)≦10% fF(Mo)+(1-f)C(Mo)≦7% A composite wire featuring: 4 Flux-cored composite wire used for inert gas arc welding, the flux contains 0.05% carbonate, calculated as CO2 , based on the total weight of the wire.
Contains 0.01 to 1.5% by weight of alkaline inorganic fluoride, and the remainder mainly consists of alloying elements for welding or alloying elements for welding and iron powder, and contains less than Cr, Mn, and Si. The following alloying elements are blended into one or both of the wire sheath and flux, and the Ni content in the wire sheath is C (Ni), the Cr content is C (Cr), the Mn+Si content is C (Mn+Si), the Mo content is C (Mo) Ni content in flux is F (Ni) Cr content is F (Cr) Mn + Si content is F (Mn + Si) Mo content is F (Mo) Flux ratio to total wire weight is expressed as f In f≦0.5, the ratio of alloying elements to the total electrode weight is fF(Ni)+(1-f)C(Ni)≦15% 11%≦fF(Cr)+(1-f)C(Cr)≦26% It is characterized by satisfying the formula: 0.1%≦fF(Mn+Si)+(1-f)C(Mn+Si)≦10% fF(Mo)+(1-f)C(Mo)≦7% composite wire.
JP4483077A 1977-04-18 1977-04-18 Composite wire for inactive gas arc welding Granted JPS53129138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4483077A JPS53129138A (en) 1977-04-18 1977-04-18 Composite wire for inactive gas arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4483077A JPS53129138A (en) 1977-04-18 1977-04-18 Composite wire for inactive gas arc welding

Publications (2)

Publication Number Publication Date
JPS53129138A JPS53129138A (en) 1978-11-10
JPS6125474B2 true JPS6125474B2 (en) 1986-06-16

Family

ID=12702368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4483077A Granted JPS53129138A (en) 1977-04-18 1977-04-18 Composite wire for inactive gas arc welding

Country Status (1)

Country Link
JP (1) JPS53129138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197098A (en) * 1988-02-02 1989-08-08 Nippon Steel Corp Build-up submerged arc welding method
JP2024039483A (en) * 2022-09-09 2024-03-22 四国溶材株式会社 Flux-cored wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411820B2 (en) * 2010-09-06 2014-02-12 株式会社神戸製鋼所 Flux-cored welding wire and overlay welding arc welding method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017304A (en) * 1973-06-19 1975-02-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017304A (en) * 1973-06-19 1975-02-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197098A (en) * 1988-02-02 1989-08-08 Nippon Steel Corp Build-up submerged arc welding method
JP2024039483A (en) * 2022-09-09 2024-03-22 四国溶材株式会社 Flux-cored wire

Also Published As

Publication number Publication date
JPS53129138A (en) 1978-11-10

Similar Documents

Publication Publication Date Title
KR880002508B1 (en) Flux cored wire for gas shielded arc welding
JP3017059B2 (en) High nitrogen flux cored wire for welding Cr-Ni stainless steel
US4072845A (en) Welding electrode
JPS5915756B2 (en) Flux-cored wire for gas shield arc welding
US3560702A (en) Composite electrode for consumable electrode arc welding process
US4449031A (en) Tubular composite arc welding electrode for vertical up welding of stainless steel and nickel-base alloys
US3221136A (en) Method and electrode for electric arc welding
US4314136A (en) Tubular composite arc welding electrode for vertical up welding of stainless steel
US4345140A (en) Composite wire for stainless steel welding
JP2500020B2 (en) Basic flux-cored wire for gas shield arc welding
JP2005186138A (en) Metal based flux-containing wire for gas-shielded arc welding, and gas shielded arc welding method
JPH09277087A (en) Flux cored wire for arc welding
JPS6125474B2 (en)
EP0067494A1 (en) Welding electrode
JP2014184481A (en) Flux-cored wire for gas shield arc welding
JPS58128295A (en) Flux for submerged arc welding
JP2756088B2 (en) Flux-cored wire for gas shielded arc welding
JPH09262693A (en) Flux cored wire for arc welding
JPS6216747B2 (en)
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal
JPH01271098A (en) Flux cored wire for gas shielded arc welding
JPH0460755B2 (en)
JPS59110495A (en) Low hydrogen type coated arc welding electrode for fillet welding
JPH0122080B2 (en)
JPH11239880A (en) Arc welding method for galvanized steel sheet