JPS61253369A - Surface coating method for sintered hard alloy - Google Patents

Surface coating method for sintered hard alloy

Info

Publication number
JPS61253369A
JPS61253369A JP9515785A JP9515785A JPS61253369A JP S61253369 A JPS61253369 A JP S61253369A JP 9515785 A JP9515785 A JP 9515785A JP 9515785 A JP9515785 A JP 9515785A JP S61253369 A JPS61253369 A JP S61253369A
Authority
JP
Japan
Prior art keywords
power source
hard alloy
coating
cemented carbide
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9515785A
Other languages
Japanese (ja)
Inventor
Akihiko Ikegaya
池ケ谷 明彦
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9515785A priority Critical patent/JPS61253369A/en
Priority to US06/849,523 priority patent/US4675206A/en
Priority to EP86302815A priority patent/EP0199527B2/en
Priority to DE8686302815T priority patent/DE3664490D1/en
Publication of JPS61253369A publication Critical patent/JPS61253369A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute the surface coating of a sintered hard alloy which withstands heavy cutting at a low cost by using a high-frequency power source and DC power source in combination for a plasma excitation source, holding a sintered hard alloy base material at negative potential with the DC power source and subjecting the base material to the coating treatment under specific conditions. CONSTITUTION:The high-frequency power source and DC power source are used in combination as the plasma excitation source and the sintered hard alloy base material is maintained at the negative potential in the stage of forming the hard coating film on the surface of the sintered hard alloy by a plasma CVD method. An RF wave power source or microwave power source is adequate as the high-frequency power source. The coating treatment is executed in this state by setting the electric power density of the high-frequency power source in a 0.01-1.0W/cm<3> range, the absolute value of the voltage of the DC power source at <=1,500V and the pressure of the gaseous atmosphere in a 0.05-5Torr range. The surface-coated sintered hard alloy which is adequately improved in the resistance to exfoliation and chipping as a cutting tool is thus obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、超硬合金の表面被覆法に関し、特に切削工
具としての被覆超硬合金工具の、表面被覆法として好適
な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of surface coating a cemented carbide, and particularly to a method suitable as a surface coating method for a coated cemented carbide tool used as a cutting tool.

〈従来の技術〉 従来より、切削工具については、超硬合金を母材として
、その表面に硬質被覆膜を形成したものが普及している
<Prior Art> Conventionally, cutting tools having a cemented carbide base material and a hard coating film formed on the surface thereof have been widely used.

上記被覆膜の形成方法としては、CVD法およびPVD
法が採用されており、特に切削工具においては、CVD
法が中心的地位を占めている。
The method for forming the above-mentioned coating film includes CVD method and PVD method.
CVD method is adopted, especially for cutting tools.
Law occupies a central position.

〈発明が解決しようとする問題点〉 しかし、CVD法によれば、被覆処理後、超硬合金母材
の強度が低下し、重切削等の苛酷な使用条件下において
刃先の欠損を生じ易く、顕著な寿命の向上が認められな
いことから、かかる重切削用の工具の被覆法としては、
採用し難いものである。
<Problems to be solved by the invention> However, according to the CVD method, the strength of the cemented carbide base material decreases after coating treatment, and the cutting edge is likely to break under severe usage conditions such as heavy cutting. Since no significant improvement in service life has been observed, the coating method for heavy cutting tools is as follows:
It is difficult to adopt.

この点PVD法によれば、母材の強度低下が生じず、重
切削においても欠損が生じ難く、被覆層元来の働きであ
る被剛材の溶着防止効果により、工具寿命を向上し得る
という利点がある。
In this regard, according to the PVD method, the strength of the base material does not decrease, chipping is less likely to occur even during heavy cutting, and the tool life can be improved by preventing welding of the rigid material, which is the original function of the coating layer. There are advantages.

しかし、PVD法は、設備コストが高くつくほか、被覆
膜のつきまわりが悪いために、母材を回転させるための
特別の機構を必要とし、したがって、CVD法に比べて
生産性が著しく低く、処理費用が高価となるという欠点
がある。
However, in addition to high equipment costs, the PVD method requires a special mechanism to rotate the base material due to poor coverage of the coating film, and therefore has significantly lower productivity than the CVD method. However, the disadvantage is that the processing cost is high.

この発明は、上記問題点に鑑みてなされたものであり、
コスト安価で、かつ、重切削にも充分耐え得る超硬合金
の表面被覆法を提供することを目的とする。
This invention was made in view of the above problems, and
The purpose of the present invention is to provide a surface coating method for cemented carbide that is inexpensive and can sufficiently withstand heavy cutting.

ところで、CVD法による超硬合金の被覆処理後におけ
る強度低下に看目し、かかる強度低下を防止すべく、被
覆処理温度を低下させるための研究を行なった結果、以
下の知見が得られた。
By the way, in view of the decrease in strength after coating treatment of cemented carbide by the CVD method, research was conducted to lower the coating treatment temperature in order to prevent such decrease in strength, and the following findings were obtained.

即ち、 ■ 被覆処理温度を低下させると、被覆後の超硬合金母
材の強度の低下度合が少なく、耐欠損性を向上させ得る
こと、 ■ 被覆膜のつきまわりの良いCVD法の利点を生かし
、被覆温度を低下させ得る方法としては、プラズマCV
D法が好適であること、■ 被′X1ff1度を低下さ
せ、かつ、被覆超硬合金としての使用に耐え得る被覆膜
を形成するためには、プラズマ形成空間に投入される電
力で規制されるプラズマ強度と、被覆処理温度を、所定
の範囲に設定する必要があること、■ 被覆超硬合金の
強度は、被覆温度に依存し、被覆温度が低いほど被覆膜
接着強度が低下することは、従来から知られており、被
覆超硬合金の強度のみに注目すれば、被覆膜が形成され
る範囲で被覆温度をできるだけ低下させる方が好ましい
が、被覆処理温度を下げ過ぎると、超硬合金母材に対す
る被覆膜接着強度が弱(、被覆膜が剥離し易くなって、
切削工具としての使用に耐えなくなること、つまり、被
覆温度の低下による切削特性の改良には、自ずと限界が
あること。
In other words, (1) lowering the coating treatment temperature reduces the degree of decrease in strength of the cemented carbide base material after coating and improves chipping resistance; (2) the advantages of the CVD method in that the coating film has good coverage; Plasma CV
Method D is preferable; ■ In order to reduce the thermal resistance and form a coating film that can withstand use as a coated cemented carbide, it is necessary to It is necessary to set the plasma intensity and coating treatment temperature within a predetermined range; ■ The strength of the coated cemented carbide depends on the coating temperature, and the lower the coating temperature, the lower the coating film adhesion strength. has been known for a long time, and if we focus only on the strength of the coated cemented carbide, it is preferable to lower the coating temperature as much as possible within the range where a coating film is formed, but if the coating treatment temperature is lowered too much, The adhesion strength of the coating film to the hard metal base material is weak (the coating film peels off easily,
It becomes impossible to use it as a cutting tool, that is, there is a limit to the improvement of cutting characteristics by lowering the coating temperature.

以上の知見を踏まえて鋭意研究の結果、被覆超硬合金の
切削特性の改良するのに好適なプラズマCVD法を開発
するに至った。
As a result of intensive research based on the above knowledge, we have developed a plasma CVD method suitable for improving the cutting characteristics of coated cemented carbide.

く問題点を解決するための手段〉 この発明の超硬合金の表面被覆法としては、プラズマ励
起源として高周波電源および直流電源を併用し、直流電
源により超硬合金を負電位に保持し、かつ、高周波電源
の電力密度を0.01〜1.0W/−の範囲に設定し、
直流電源の電圧の絶対値を1500V以下に設定し、ガ
ス雰囲気の圧力を0.05〜5Torrの範囲に設定し
て被覆処理を行なうものである。
Means for Solving the Problems> The method of coating the surface of cemented carbide according to the present invention uses both a high frequency power source and a DC power source as a plasma excitation source, holds the cemented carbide at a negative potential with the DC power source, and , the power density of the high frequency power source is set in the range of 0.01 to 1.0 W/-,
The coating process is performed by setting the absolute value of the voltage of the DC power supply to 1500 V or less and setting the pressure of the gas atmosphere to a range of 0.05 to 5 Torr.

但し、高周波電源としては、特にRF波電源若しくはマ
イクロ波電源が好適であり、また、超硬合金を負電位に
保持するに際して、超硬合金母材は、高周波電源から絶
縁された位置にある場合、高周波電源の導入側の極に接
続されている場合、接地側の極に接続されている場合の
何れの場合であってもよい。
However, as a high frequency power source, an RF wave power source or a microwave power source is particularly suitable, and when holding the cemented carbide at a negative potential, the cemented carbide base material is in a position insulated from the high frequency power source. , it may be connected to the introduction side pole of the high frequency power supply, or it may be connected to the ground side pole.

く作 用〉 上記超硬合金の表面被覆法によれば、 ■ プラズマ励起源として、高周波電源を使用すること
により、被覆膜用の原料ガスやキャリヤガスの放電によ
りプラズマを形成するに際して、直流電源にて励起する
場合よりも化学的活性種が生じ易く、かつ、広範囲のガ
ス雰囲気圧力および電源出力、種々の電極構造に対して
も安定したプラズマの形成、維持を可能とすることがで
きる。
According to the surface coating method for cemented carbide mentioned above, ■ By using a high frequency power source as a plasma excitation source, direct current is Chemically active species are more likely to be generated than when excited by a power source, and stable plasma formation and maintenance can be achieved over a wide range of gas atmosphere pressures, power source outputs, and various electrode structures.

■ 上記プラズマの形成により、イオン化或いは活性化
された原料ガスが、超硬合金良材の表面において化学反
応を起し、硬質被覆膜が形成されるが、この際、超硬合
金母材を負電位に保持することにより、超硬合金表面に
おける化学反応に関与する正イオンを優先的に母材表面
に引寄せることができる。
■ Due to the above plasma formation, the ionized or activated raw material gas causes a chemical reaction on the surface of the cemented carbide material, forming a hard coating film, but at this time, the cemented carbide base material is negatively affected. By maintaining the potential, positive ions involved in chemical reactions on the surface of the cemented carbide can be preferentially attracted to the surface of the base material.

■ 高周波電源の電力密度を0.01〜1.OWW2O
範囲に設定することにより、被覆膜を確実安価に形成す
ることができる。即ち、電力密度が0.01 W/−未
満であれば、被覆膜の形成は不可能であり、また、1 
、014/ cjよりも大きいと、イオンスパッタリン
グ現象が発生し、被覆処理に悪影響を及ぼすとともに、
大出力の電源を必要とし、コストが高くつ(ことになる
■ Adjust the power density of the high frequency power source to 0.01 to 1. OWW2O
By setting within this range, the coating film can be reliably formed at low cost. That is, if the power density is less than 0.01 W/-, it is impossible to form a coating film;
, 014/cj, ion sputtering phenomenon occurs, which adversely affects the coating process, and
It requires a high-output power source and is expensive.

■ ガス雰囲気の圧力を0.05〜5Torrの範囲と
することにより、均一な被覆膜を形成し、かつ、プラズ
マを安定状態に維持させることができる。即ち、ガス雰
囲気の圧力が0.05Torr未満であると、平均自由
工程が長くなり、蒸着に方向性を持つため、均一被覆と
いう観点から好ましくなく、また、5Torrよりも高
いと、プラズマを安定状態に維持することが困難となる
(2) By setting the pressure of the gas atmosphere in the range of 0.05 to 5 Torr, a uniform coating film can be formed and the plasma can be maintained in a stable state. That is, if the pressure of the gas atmosphere is less than 0.05 Torr, the mean free path becomes long and the vapor deposition becomes directional, which is undesirable from the viewpoint of uniform coating.If the pressure is higher than 5 Torr, the plasma becomes stable. It becomes difficult to maintain the

■ 直流電源により超硬合金母材に付加する負の電位の
絶対値が1500Vよりも大きいと、局部的に異常放電
を生じるが、1soov以下とすることにより、異常放
電が生じず、安定した放電状態を維持することができる
■ If the absolute value of the negative potential applied to the cemented carbide base material by a DC power source is larger than 1500V, abnormal discharge will occur locally, but by keeping it below 1soov, no abnormal discharge will occur and stable discharge will occur. condition can be maintained.

そして、以上により、被覆超硬合金工具の耐剥離性、耐
欠損性を著しく改善することができる。
As a result of the above, the peeling resistance and chipping resistance of the coated cemented carbide tool can be significantly improved.

〈比較例1〉 超硬合金母材として、市販のISOP−30(型番5P
CH42TR)を用い、表1に示す各種条件にてこの発
明を適用して被覆処理を行なった。ただし、被覆膜とし
ては、T i C?lIl覆膜であり、その形成厚みと
しては2pに設定しである。また、励起Hglとしては
、13.56 M HzのRF波を使用した。
<Comparative Example 1> Commercially available ISOP-30 (model number 5P) was used as the cemented carbide base material.
CH42TR) was used for coating according to the present invention under various conditions shown in Table 1. However, as a coating film, T i C? It is a lIl coating film, and its formation thickness is set to 2p. Further, as the excitation Hgl, a 13.56 MHz RF wave was used.

表1より明らかなように、TiC被覆膜が得られたのは
、試料NO2〜7および試料NO9であり、試料NO1
については成膜せず、また、試料NO8およびNO9に
ついては、プラズマの安定維持が困難であって、良好な
被覆ができなかった。
As is clear from Table 1, TiC coating films were obtained in samples NO2 to NO7 and sample NO9, and in sample NO1.
No film was formed on samples No. 8 and No. 9, and it was difficult to maintain stable plasma, and good coating could not be achieved on samples No. 8 and No. 9.

次に、上記により得られた被覆チップをカッターに取付
1ノで表2に示す条件にて切削試験を行なった。この際
、比較のために、市販のP V D 二I −ティング
チップ(商品名AC330:住友電気工業株式会社!m
l)についても同一条件で切削試験を行なった。
Next, the coated chip obtained above was attached to a cutter and a cutting test was conducted under the conditions shown in Table 2. At this time, for comparison, a commercially available PVD2I-Ting tip (product name AC330: Sumitomo Electric Industries, Ltd.) was used.
A cutting test was also conducted under the same conditions for 1).

上記切削試験の結果、12分間切削した時点において、
何れのチップも刃先の欠損は生じなかった。また、12
分間切削後のフランク摩耗幅は、PVDコーティングチ
ップが0.070mmであるのに対して、 試料NO2が0.131mm、試料NO3が0.103
mm。
As a result of the above cutting test, at the time of cutting for 12 minutes,
No chipping occurred on the cutting edge of any of the chips. Also, 12
The flank wear width after cutting for 1 minute is 0.070 mm for the PVD coated tip, 0.131 mm for sample NO2, and 0.103 mm for sample NO3.
mm.

試料N04が0.111mm1試料NO5が0.093
mm。
Sample No. 4 is 0.111 mm 1 Sample No. 5 is 0.093 mm
mm.

試料N06が0.074mm、試料NO7が0.065
mm。
Sample No. 6 is 0.074 mm, sample No. 7 is 0.065 mm.
mm.

試料NO9が0.146mm であった。Sample No.9 is 0.146mm Met.

第1表 第2表 く比較例2〉 超硬合金母材として、市販のISOP−30(型番5N
HN432 )を用い、表3に示す各種条件にてこの発
明を適用して被覆処理を行なった。ただし、被覆膜とし
ては、TiN、Ti (CN)被覆膜であり、その形成
厚みとしては2pに設定しである。また、励起電源とし
ては、13.56 M l−I ZのRF波を使用した
Comparative Example 2 shown in Table 1 and Table 2> Commercially available ISOP-30 (model number 5N) was used as the cemented carbide base material.
HN432) was used for coating according to the present invention under various conditions shown in Table 3. However, the coating film is a TiN or Ti (CN) coating film, and its formation thickness is set to 2p. Further, as an excitation power source, an RF wave of 13.56 M l-I Z was used.

表3より明らかなように、何れの条件下においても被覆
膜が得られた。そして上記により得られた被覆チップを
カッターに取付Cプて表4に示す条件で切削試験を行な
った。この際、比較のために、市販のPVDコーティン
グチップ(商品名AC330;住友電気工業株式会社製
)についても同一条件で切削試験を行なった。
As is clear from Table 3, coating films were obtained under all conditions. Then, the coated chips obtained above were attached to a cutter and a cutting test was conducted under the conditions shown in Table 4. At this time, for comparison, a cutting test was also conducted on a commercially available PVD coated chip (trade name AC330; manufactured by Sumitomo Electric Industries, Ltd.) under the same conditions.

上記切削試験の結果、20分間切削した時点において、
何れのチップも刃先の欠損は生じなかった。また、20
分間切削後のフランク摩耗幅は、PVDコーディングチ
ップが0.095mmであるのに対して、 試料N○11が0.138mm、試料NO12が0.1
32mm。
As a result of the above cutting test, at the time of cutting for 20 minutes,
No chipping occurred on the cutting edge of any of the chips. Also, 20
The flank wear width after cutting for one minute is 0.095 mm for the PVD coated tip, 0.138 mm for sample No. 11, and 0.1 mm for sample No. 12.
32mm.

試料N013が0.126mm、試料N014が0.1
16mm。
Sample N013 is 0.126 mm, sample N014 is 0.1
16mm.

試料N015が0.102mm、試料N016が0.1
12mm。
Sample N015 is 0.102 mm, sample N016 is 0.1
12mm.

試料N017が0.100mm、試料N018が0.0
93mm。
Sample N017 is 0.100mm, sample N018 is 0.0mm
93mm.

試料N019が0.116mm、試料NO2Oが0.0
90mmであった。
Sample N019 is 0.116 mm, sample NO2O is 0.0
It was 90mm.

以上の比較例より、この発明の表面液NF1は、PVD
法に略四敵する被覆膜が得られることが明らかである。
From the above comparative examples, the surface liquid NF1 of the present invention is PVD
It is clear that a coating film that is approximately four times better than the method can be obtained.

第3表 第4表 〈発明の効果〉 以上のように、この発明の超硬合金の表面被覆法によれ
ば、プラズマCVD法による被覆超硬合金工具の耐剥離
性、耐欠損性を著しく改善でき、PVD法による被覆超
硬合金工具に匹敵する切削性能が得られ、しかも、被覆
処理費用が安価であるという特有の効果を奏する。
Table 3 Table 4 <Effects of the Invention> As described above, according to the cemented carbide surface coating method of the present invention, the peeling resistance and chipping resistance of the coated cemented carbide tool by plasma CVD method are significantly improved. The cutting performance is comparable to that of a coated cemented carbide tool made by the PVD method, and the coating process cost is low.

Claims (1)

【特許請求の範囲】 1、プラズマCVD法にて超硬合金の表面 に硬質被覆膜を形成する方法において、 プラズマ励起源として高周波電源および 直流電源を併用し、直流電源により超硬 合金母材を負電位に保持し、かつ、以下 の(1)〜(3)の条件で被覆処理を行なうことを特徴
とする超硬合金の表面被覆法。 (1)高周波電源の電力密度が0.01〜 1.0W/cm^3の範囲であること、 (2)直流電源の電圧の絶対値が1500V以下である
こと、 (3)ガス雰囲気圧力が0.05〜5Torrの範囲で
あること。
[Claims] 1. In a method of forming a hard coating film on the surface of a cemented carbide using a plasma CVD method, a high frequency power source and a DC power source are used together as a plasma excitation source, and the DC power source is used to form a hard coating film on a cemented carbide base material. A method for coating the surface of a cemented carbide, characterized in that the surface of the cemented carbide is maintained at a negative potential and the coating treatment is carried out under the following conditions (1) to (3). (1) The power density of the high frequency power supply is in the range of 0.01 to 1.0W/cm^3, (2) The absolute value of the voltage of the DC power supply is 1500V or less, (3) The gas atmosphere pressure is Must be in the range of 0.05 to 5 Torr.
JP9515785A 1985-04-19 1985-05-02 Surface coating method for sintered hard alloy Pending JPS61253369A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9515785A JPS61253369A (en) 1985-05-02 1985-05-02 Surface coating method for sintered hard alloy
US06/849,523 US4675206A (en) 1985-04-19 1986-04-08 Process for the production of a surface-coated article
EP86302815A EP0199527B2 (en) 1985-04-19 1986-04-15 A process for the production of a surface-coated article
DE8686302815T DE3664490D1 (en) 1985-04-19 1986-04-15 A process for the production of a surface-coated article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9515785A JPS61253369A (en) 1985-05-02 1985-05-02 Surface coating method for sintered hard alloy

Publications (1)

Publication Number Publication Date
JPS61253369A true JPS61253369A (en) 1986-11-11

Family

ID=14129947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9515785A Pending JPS61253369A (en) 1985-04-19 1985-05-02 Surface coating method for sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS61253369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660342B1 (en) * 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610379A (en) * 1979-07-04 1981-02-02 Satake Eng Co Ltd Duster for color selector
JPS59229479A (en) * 1983-05-24 1984-12-22 Mitsubishi Metal Corp Production of surface coated sintered hard member for cutting tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610379A (en) * 1979-07-04 1981-02-02 Satake Eng Co Ltd Duster for color selector
JPS59229479A (en) * 1983-05-24 1984-12-22 Mitsubishi Metal Corp Production of surface coated sintered hard member for cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660342B1 (en) * 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
US7125588B2 (en) 1990-09-25 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Pulsed plasma CVD method for forming a film

Similar Documents

Publication Publication Date Title
US5770023A (en) Etch process employing asymmetric bipolar pulsed DC
KR100586803B1 (en) A method of coating edges with diamond-like carbon
US4675206A (en) Process for the production of a surface-coated article
CA2846434C (en) Stripping process for hard carbon coatings
JPH06145975A (en) Method of spattering carbon film and its product
US20050136656A1 (en) Process for depositing composite coating on a surface
US20030012890A1 (en) Method for producing a plasma by microwave irradiation
EP0686708A4 (en) Film forming method and film forming apparatus
US6019876A (en) Pulsed DC sputtering method of thin film magnetic disks
JPS61253369A (en) Surface coating method for sintered hard alloy
US6083356A (en) Method and device for pre-treatment of substrates
JP2004332003A (en) METHOD OF PRODUCING ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, AND METHOD OF PRODUCING MEMBER COATED WITH ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE
JP2002306957A (en) Plasma treating device
JP3143252B2 (en) Hard carbon thin film forming apparatus and its forming method
JPH06158331A (en) Coating film forming device
KR20020078618A (en) Inductively Coupled Plasma Assisted Sputtering System with Multiple Coils And Method Thereby
JP3180332B2 (en) Method of cleaning apparatus for forming carbon or carbon-based coating
JPH04341558A (en) Article with diamondlike protective film and its production
JPH06136544A (en) Plasma treatment device
US9230778B2 (en) Method for removing hard carbon layers
JP3438977B2 (en) Film forming method using plasma CVD device
JP2002030432A (en) System and method for sputtering
JPS6333561A (en) Thin film forming method
JPS63195260A (en) Coating material and its production
JPS63307254A (en) Apparatus for forming thin oxide film