JPS61251511A - Production of lithium carbonate powder - Google Patents

Production of lithium carbonate powder

Info

Publication number
JPS61251511A
JPS61251511A JP9439685A JP9439685A JPS61251511A JP S61251511 A JPS61251511 A JP S61251511A JP 9439685 A JP9439685 A JP 9439685A JP 9439685 A JP9439685 A JP 9439685A JP S61251511 A JPS61251511 A JP S61251511A
Authority
JP
Japan
Prior art keywords
lithium carbonate
lithium
aqueous solution
crystallization
carbonate powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9439685A
Other languages
Japanese (ja)
Other versions
JPH0360773B2 (en
Inventor
Kenji Niwa
健二 丹羽
Ichiro Ichikawa
一郎 市川
Yutaka Suzuki
豊 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP9439685A priority Critical patent/JPS61251511A/en
Publication of JPS61251511A publication Critical patent/JPS61251511A/en
Publication of JPH0360773B2 publication Critical patent/JPH0360773B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain lithium carbonate powder of high purity with a low content of ignition loss components by a simple and economical method, by controlling the solution temperature of a crystallization solution in obtaining the lithium carbonate powder from an aqueous solution containing an Li compound by crystallization. CONSTITUTION:An aqueous solution containing crude lithium carbonate or water-soluble Li compound is treated by recrystallization, reprecipitation, ion exchange method, etc. to give an aqueous solution containing the purified Li compound, e.g. lithium hydroxide, which is used. The resultant aqueous solution is charged into a pressure- resistant crystallization tank having an agitator, heating jacket, CO2 blowing inlet and taking outlet of lithium carbonate slurry, and then heated to >=90 deg.C solution temperature of the above-mentioned aqueous solution. CO2 in a volume of 1/2 equivalent or more based on the lithium hydroxide is continuously blown into the crystallization tank while keeping the solution temperature at >=90 deg.C to deposit the lithium carbonate as crystals. The resultant lithium carbonate is then separated and recovered from the lithium carbonate slurry, washed and dried while heating. Thus, the aimed lithium carbonate of high purity with about <=0.1wt% content of ignition loss components is obtained.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は高純度炭酸リチウム粉末の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application Field The present invention relates to a method for producing high purity lithium carbonate powder.

さらに詳しくは加熱減量成分の少ない高純度炭酸リチウ
ム粉末の製造方法に関するものである。
More specifically, the present invention relates to a method for producing high-purity lithium carbonate powder with a small amount of components that lose weight on heating.

最近の電子工業の発展は目覚ましく、新しい原理に基づ
(機能性素子、ニューセラミックスがつぎつぎと開発さ
れている。これにともない使用される原料である素材も
よりいっそう高純度高品質であることが要求されている
The recent development of the electronics industry is remarkable, and based on new principles (functional elements and new ceramics) are being developed one after another.As a result, the raw materials used must also be of even higher purity and quality. requested.

炭酸リチウムは近年表面弾性波フィルター、温度・温度
センサー、オプトエレクトロニクス素子等の構成部材で
あるタンタル酸リチウム、ニオブ酸リチウム等の単結晶
あるいは薄膜の原料として注目されているものであり、
より一層、高純度、高品質であることが望まれている。
Lithium carbonate has recently attracted attention as a raw material for single crystals or thin films such as lithium tantalate and lithium niobate, which are components of surface acoustic wave filters, temperature/temperature sensors, optoelectronic devices, etc.
Even higher purity and higher quality are desired.

この目的に供される炭酸リチウムはアルカリ金属、アル
カリ土類金属、遷移金属等の金属不純物、塩素、硫M根
等の陰イオン不純物の含有量が少ないこととともに加熱
減量成分が少ないことが重要である。すなわち炭酸リチ
ウムと五酸化タンタルあるいは五酸化ニオブとを原料と
し白金型のルツボを用いチョクラルスキー法でタンタル
酸リチウム、ニオブ酸リチウム等の単結晶を製造する場
合、炭酸リチウムと他の成分の重量比をコングルエンド
メルト組成として知られる特定の比率に厳密に制御する
必要があり、この比率よりずれると得られる製品の特性
の変動、結晶のクランクの発生による収率の低下をもた
らすため加熱減量成分の少ない炭酸リチウムが望まれて
いる。
It is important that the lithium carbonate used for this purpose has a low content of metal impurities such as alkali metals, alkaline earth metals, and transition metals, anionic impurities such as chlorine and sulfur, and has a low content of components lost on heating. be. In other words, when producing a single crystal of lithium tantalate, lithium niobate, etc. using lithium carbonate and tantalum pentoxide or niobium pentoxide as raw materials using a platinum crucible using the Czochralski method, the weight of lithium carbonate and other components is The ratio must be strictly controlled to a specific ratio, known as the congruent melt composition, and any deviation from this ratio will result in variations in the properties of the resulting product and a decrease in yield due to the occurrence of crystal cranks, resulting in reduced heating loss. Lithium carbonate with fewer components is desired.

しかしながら、従来炭酸リチウムには炭酸リチウムの融
点以下の温度、たとえば300〜550℃の温度範囲で
消失減量する炭酸リチウム以外の成分が0.5%から数
%存在し、かつその量が原料ロフト間、原料の使用部分
によって変動し、炭酸リチウム仕込量の誤差の原因とな
り、前述の組成比の制御を困難にし、性能、収率の低下
をもたらしていた。
However, conventional lithium carbonate contains 0.5% to several% of components other than lithium carbonate that disappear and lose weight at temperatures below the melting point of lithium carbonate, for example, in the temperature range of 300 to 550°C, and the amount of these components varies between raw material lofts. , which varies depending on the portion of the raw material used, causing errors in the amount of lithium carbonate charged, making it difficult to control the aforementioned composition ratio, and causing a decline in performance and yield.

〈従来の技術および発明が解決しようとする問題点〉 粗リチウム化合物、一般には粗炭酸リチウムより高純度
の炭酸リチウムを得る方法として再結晶法、再沈殿法、
隔膜電解法等が知られている。
<Problems to be solved by the prior art and the invention> Recrystallization, reprecipitation,
Diaphragm electrolysis methods and the like are known.

再結晶法の例としては炭酸リチウム水溶液を蒸発濃縮し
炭酸リチウムを析出させるとともに不純物を除去する方
法が知られている。再沈殿法の例としては炭酸リチウム
水溶液と石灰乳を反応させ水酸化リチウムにし不純物を
炭酸塩として除去したのち二酸化炭素と反応させ炭酸リ
チウムを析出させる方法(米国特許4207297号)
が知られている。また隔膜電解法の例としては硫酸リチ
ウム水溶液を隔膜電解し高純度水酸化リチウムを得て二
酸化炭素と反応させ炭酸リチウムを析出させる方法(特
開昭54−43174号)が知られている。
As an example of a recrystallization method, a method is known in which an aqueous lithium carbonate solution is evaporated and concentrated to precipitate lithium carbonate and remove impurities. An example of the reprecipitation method is a method in which an aqueous lithium carbonate solution and milk of lime are reacted to form lithium hydroxide, impurities are removed as carbonate, and then reacted with carbon dioxide to precipitate lithium carbonate (US Pat. No. 4,207,297).
It has been known. Further, as an example of the diaphragm electrolysis method, a method is known in which a lithium sulfate aqueous solution is electrolyzed through a diaphragm to obtain high purity lithium hydroxide, which is then reacted with carbon dioxide to precipitate lithium carbonate (Japanese Patent Laid-Open No. 43174/1983).

しかしながらこれらの方法はいずれも炭酸リチウム中の
金属不純物、陰イオン不純物を除去する方法に間するも
のであり、現在まで前述したチョクラルスキー法でニオ
ブ酸リチウム、タンタル酸リチウム等の単結晶を製造す
る際、反応生成物の組成をくるわし、性能、収率に悪影
響を及ぼす加熱減量成分の少ない高純度炭酸リチウムの
製造方法についてはなんら効果的な提案が成されていな
かった。やむをえず、高価な装置と費用を費やし精製し
た炭酸リチウムを再汚染させながら500〜600℃の
温度で炭酸リチウムを焼成し加熱減量成分を除去してい
るのが実情である。
However, all of these methods are methods for removing metal impurities and anion impurities from lithium carbonate, and until now single crystals of lithium niobate, lithium tantalate, etc. have been produced using the Czochralski method described above. However, considering the composition of the reaction product, no effective proposals have been made regarding a method for producing high-purity lithium carbonate with few components that lose heat on heating and have a negative effect on performance and yield. The reality is that lithium carbonate, which has been refined using expensive equipment and costs, is unavoidably burned at a temperature of 500 to 600° C. while recontaminating the purified lithium carbonate to remove components lost by heating.

このため加熱減量成分の少ない、少なくとも0゜1重量
%以下の高純度炭酸リチウムの提供が望まれている。
Therefore, it is desired to provide high-purity lithium carbonate having a content of at least 0.1% by weight or less, which has a small amount of components lost on heating.

〈問題点を解決するための手段と作用〉本発明者らは前
述した問題点を解消し加熱減量成分の少ない高純度炭酸
リチウムの経済的な製造方法を開発すべく鋭意検討を重
ねた結果、加熱減量成分はリチウム化合物水溶液より炭
酸リチウムの結晶を析出させる晶析操作中に生成し、そ
の主要成分が水分であることを見出した。さらに加熱減
量成分は晶析時間の延長、晶析槽内の攪拌の強化、晶析
時の加圧あるいは減圧等の手段によってはほとんど減少
できないが、リチウム化合物水溶液の再結晶、再沈殿等
により炭酸リチウムの結晶を析出させる際、該水溶液の
液温を90℃以上に加温し晶析することにより炭酸リチ
ウム中の加熱減量成分を0.1重量%以下に減少できる
ことを見出した。
<Means and effects for solving the problems> As a result of intensive studies by the present inventors to solve the above-mentioned problems and develop an economical method for producing high-purity lithium carbonate with a small amount of heat loss components, It was found that the heating loss component is generated during the crystallization operation of precipitating lithium carbonate crystals from an aqueous lithium compound solution, and its main component is water. Furthermore, the components lost on heating cannot be reduced by prolonging the crystallization time, strengthening the stirring in the crystallization tank, increasing or decreasing pressure during crystallization, etc., but they can be reduced by recrystallization, reprecipitation, etc. of the lithium compound aqueous solution. It has been found that when crystals of lithium are precipitated, by heating the aqueous solution to a temperature of 90° C. or higher for crystallization, the component lost on heating in lithium carbonate can be reduced to 0.1% by weight or less.

この高い液温での晶析という容易な手段により加熱減量
成分の少ない高純度炭酸リチウムが得られるということ
は従来知られていなかったものである。そして晶析によ
りえられた炭酸リチウム粉末に対し焼成等の処理は不必
要であり、単なる乾燥のみで良(、また晶析°時の炭酸
リチウムの著しい収率向上ももたらされる。
It was not previously known that high-purity lithium carbonate with a small amount of components lost on heating could be obtained by the simple means of crystallization at a high liquid temperature. The lithium carbonate powder obtained by crystallization does not require any treatment such as calcination, and only simple drying is sufficient (and a significant improvement in the yield of lithium carbonate during crystallization is also achieved).

以下こ〆〆の方法の構成について説明する。The configuration of this method will be explained below.

リチウム化合物を含有する水溶液としては、粗炭酸リチ
ウムを原料とする炭酸リチウム水溶液あるいはよく知ら
れた粗な水溶性リチウム化合物を含有する水溶液、これ
ら水溶液をよくしられた再結晶法、再沈殿法、イオン交
換法等により処理した精製リチウム化合物水溶液等が用
いられる。
Examples of aqueous solutions containing lithium compounds include lithium carbonate aqueous solutions made from crude lithium carbonate, well-known aqueous solutions containing crude water-soluble lithium compounds, well-known recrystallization methods, reprecipitation methods, A purified lithium compound aqueous solution treated by an ion exchange method or the like is used.

リチウム化合物を含有する水溶液中のリチウム化合物の
種類は晶析時の反応により炭酸リチウムに変化し結晶を
析出するものであれば種類をとわないが、水酸化リチウ
ム、飽和濃度以下の炭酸リチウム、炭酸水素リチウム等
が好適である。
The type of lithium compound in the aqueous solution containing the lithium compound is not limited to any type as long as it changes to lithium carbonate and precipitates crystals through the reaction during crystallization, but lithium hydroxide, lithium carbonate below the saturated concentration, Lithium hydrogen carbonate and the like are preferred.

水酸化リチウムの場合、攪拌機、加熱ジャケット、二酸
化炭素吹き込み口、炭酸リチウムスラリー取り出し口を
備えた耐圧晶析槽に5〜10重量%重量%水酸化リチウ
ム水溶液を入れ、該水溶液の液温か90℃以上になるま
で加温し、ついで液温を90℃以上に保ちながら水酸化
リチウムの2分の1当量以上の二酸化炭素を晶析槽内へ
連続的に吹き込み水酸化リチウムを炭酸リチウムに変え
結晶として析出させる。得られた炭酸リチウムスラリー
より炭酸リチウムを公知の分離手段により分離回収し、
洗浄後よくルられた乾燥方法で60℃〜120℃で乾燥
する。得られる炭酸リチウム中の加熱it成分は晶析時
の水酸化リチウム水溶液の液温により異なり液温が高温
であるほど少ない、即ち液温90℃以上では加熱減量成
分0.1重量%以下の、液温120℃以上では加熱減量
成分0.05重量%以下の高純度炭酸リチウムを得るこ
とができる。
In the case of lithium hydroxide, a 5-10% by weight aqueous lithium hydroxide solution is placed in a pressure-resistant crystallization tank equipped with a stirrer, a heating jacket, a carbon dioxide inlet, and a lithium carbonate slurry outlet, and the temperature of the aqueous solution is 90°C. Then, while keeping the liquid temperature at 90°C or higher, carbon dioxide equivalent to more than half of lithium hydroxide is continuously blown into the crystallization tank to convert lithium hydroxide into lithium carbonate and crystallize it. It is precipitated as Lithium carbonate is separated and recovered from the obtained lithium carbonate slurry by a known separation means,
After washing, dry at 60°C to 120°C using a well-defined drying method. The heating component in the obtained lithium carbonate varies depending on the liquid temperature of the lithium hydroxide aqueous solution at the time of crystallization, and the higher the liquid temperature is, the smaller the heating component is. At a liquid temperature of 120° C. or higher, high purity lithium carbonate with a heating loss component of 0.05% by weight or less can be obtained.

なお晶析槽内においては結晶として析出した炭酸リチウ
ム粉末が槽下部に沈積することなく十分浮遊分散するよ
うに攪拌等の手段により分散させる。分散が不十分で炭
酸リチウム粉末が沈積する場合は得られる炭酸リチウム
中の加熱減量成分は増加する。
In the crystallization tank, the lithium carbonate powder precipitated as crystals is dispersed by means such as stirring so that it is sufficiently suspended and dispersed without being deposited at the bottom of the tank. If the lithium carbonate powder is deposited due to insufficient dispersion, the amount of components lost on heating in the obtained lithium carbonate increases.

二酸化炭素の供給速度は晶析時間が少なくとも1時間以
上、好ましくは3時間以上となるよう連続的に供給する
。晶析が1時間以内に完了するよう二酸化炭素を急速に
供給し炭酸リチウムの結晶を析出させると得られる炭酸
リチウム粉末の加熱減量成分は増加する。
Carbon dioxide is supplied continuously so that the crystallization time is at least 1 hour, preferably 3 hours or more. When carbon dioxide is rapidly supplied to precipitate lithium carbonate crystals so that the crystallization is completed within one hour, the amount of loss on heating of the resulting lithium carbonate powder increases.

この方法において晶析に供する水溶液中のリチウム化合
物が炭酸リチウム、炭酸水素リチウムであっても、加熱
減量成分は炭酸リチウムの析出挙動によるため、水酸化
リチウムの場合と同様の効果が得られる。
Even if the lithium compound in the aqueous solution subjected to crystallization in this method is lithium carbonate or lithium hydrogen carbonate, the same effect as in the case of lithium hydroxide can be obtained because the component that loses weight on heating depends on the precipitation behavior of lithium carbonate.

例えば、飽和濃度以下の炭酸リチウム水溶液の場合では
、該水溶液を晶析槽に入れ水を減圧除去し炭酸リチウム
濃度を飽和濃度以上に濃縮し、第1の方法では予め該水
溶液の液温を90℃以上に加温し晶析する。加熱減量成
分が0.1重量%以下の炭酸リチウム粉末が得られる。
For example, in the case of a lithium carbonate aqueous solution having a saturated concentration or less, the aqueous solution is placed in a crystallization tank and the water is removed under reduced pressure to concentrate the lithium carbonate concentration to a saturated concentration or higher. Crystallize by heating above ℃. A lithium carbonate powder having a heating loss component of 0.1% by weight or less is obtained.

また炭酸水素リチウムの場合では、濃度5〜8重量%の
炭酸水素リチウム水溶液を晶析槽に入れ減圧あるいは窒
素ガスフィードにより二酸化炭素を脱離させ炭酸リチウ
ムにし炭酸リチウムの結晶を析出させるに際し、該水溶
液の液温を90℃以上に保ちながら減圧分解させ晶析す
る。加熱減量成分が0.1重量%以下の炭酸リチウム粉
末を得ることができる。
In the case of lithium hydrogen carbonate, a lithium hydrogen carbonate aqueous solution with a concentration of 5 to 8% by weight is placed in a crystallization tank and carbon dioxide is desorbed by reducing pressure or nitrogen gas feed to convert it into lithium carbonate and precipitate lithium carbonate crystals. The aqueous solution is decomposed under reduced pressure while maintaining the temperature of the aqueous solution at 90° C. or higher to crystallize. Lithium carbonate powder having a heating loss component of 0.1% by weight or less can be obtained.

〈本発明の効果〉 本発明は以下に述べる効果を有する。<Effects of the present invention> The present invention has the following effects.

■晶析液の液温制御という簡単かつ経済的な方法により
加熱減量成分0.1重量%以下の高純度炭酸リチウムが
得られる。
(2) High purity lithium carbonate with a heating loss component of 0.1% by weight or less can be obtained by a simple and economical method of controlling the temperature of the crystallization solution.

■炭酸リチウムの水に対する溶解度は高温はど減少する
ため、晶析操作での炭酸リチウムの収率が大きく改善さ
れる。
■Since the solubility of lithium carbonate in water decreases at high temperatures, the yield of lithium carbonate in crystallization operations is greatly improved.

■特別な焼成装置は不要であり、焼成操作に付随する炭
酸リチウムの汚染がなく、製品価値の高い高純度炭酸リ
チウムをえることができる。
■No special firing equipment is required, there is no lithium carbonate contamination associated with the firing operation, and high-purity lithium carbonate with high product value can be obtained.

実施例1 晶析槽として攪拌機、加熱用スチームジャケット、リチ
ウム化合物水溶液フィードロ、炭酸リチウム粉末添加口
、ガス吹き込み口、排気口、炭酸リチウムスラリーぬき
だし口、圧力ゲージ等を備えた内容積301の耐圧オー
トクレーブを用いた。
Example 1 A pressure-resistant crystallization tank with an internal volume of 301 equipped with a stirrer, a heating steam jacket, a lithium compound aqueous solution feeder, a lithium carbonate powder addition port, a gas injection port, an exhaust port, a lithium carbonate slurry outlet, a pressure gauge, etc. An autoclave was used.

精製した濃度5.2重量%の水酸化リチウム水溶液を2
01水溶液フイードロより晶析槽にいれ回転数600r
pmで十分攪拌しながら約30分かけて液温を90℃に
昇温した。十分攪拌し液温を90℃に保ちながらガス吹
き込み口より二酸化炭素ガスを毎分2,21の流量で4
時間連続的に槽内に供給し、水酸化リチウムと反応させ
炭酸リチウムの結晶を晶析した。
A purified aqueous lithium hydroxide solution with a concentration of 5.2% by weight was
01 Aqueous solution feed into crystallization tank and rotation speed 600r
The liquid temperature was raised to 90° C. over about 30 minutes while stirring thoroughly at pm. While stirring thoroughly and keeping the liquid temperature at 90°C, inject carbon dioxide gas from the gas inlet at a flow rate of 2.21 per minute.
It was continuously supplied into the tank for a certain period of time, and reacted with lithium hydroxide to crystallize lithium carbonate crystals.

チウムケーキを80℃の温水101で洗浄し該炭酸リチ
ウムケーキを60℃で12時間真空乾燥した。
The lithium cake was washed with 80°C hot water 101, and the lithium carbonate cake was vacuum dried at 60°C for 12 hours.

熱天秤により乾燥炭酸リチウムの加熱重量変化を測定し
550℃までの加熱減少量の全体に占める割合を加熱減
量成分とした。
The weight change on heating of the dry lithium carbonate was measured using a thermobalance, and the proportion of the weight loss on heating up to 550° C. was defined as the weight loss component on heating.

得られた炭酸リチウム粉末の収率は74.4%、平均粒
径47μm、加熱減量成分は0.092%であった。
The yield of the obtained lithium carbonate powder was 74.4%, the average particle size was 47 μm, and the weight loss component on heating was 0.092%.

実施例2〜3 実施例1と同じ晶析槽を用い、液温をかえた以外は実施
例1と同様にして晶析、回収をおこなった。
Examples 2 to 3 Crystallization and recovery were performed in the same manner as in Example 1 except that the same crystallization tank as in Example 1 was used and the liquid temperature was changed.

ヒリチウム “の゛ (℃) 実施例2     100℃ 実施例3     120℃ 実施例2 76.7  45    0.073実施例
3 81.3  45    0.049実施例4 実施例1で用いたのと同じ晶析槽を用い、濃度1.1重
量%の炭酸リチウム水溶液を20m!水溶液フィードロ
より晶析槽にいれ十分攪拌しなから液温を95℃に昇温
した。十分攪拌し液温を95℃に保ちながら排気口より
排気し4時間かけて液量が約101となるまで水分を蒸
発させ炭酸リチウムの析出を行った。
Hylithium (℃) Example 2 100℃ Example 3 120℃ Example 2 76.7 45 0.073Example 3 81.3 45 0.049Example 4 Same crystal as used in Example 1 Using a crystallization tank, a lithium carbonate aqueous solution with a concentration of 1.1% by weight was poured into the crystallization tank from a 20 m!aqueous solution feeder, and the liquid temperature was raised to 95°C with sufficient stirring.After thorough stirring, the liquid temperature was raised to 95°C. While maintaining the temperature, the tank was evacuated from the exhaust port, and water was evaporated over 4 hours until the liquid volume reached approximately 101 liters, thereby precipitating lithium carbonate.

得られた炭酸リチウムスラリーを80℃の温水4j1で
洗浄し実施例1と同様に分離乾燥させた。
The obtained lithium carbonate slurry was washed with 80°C warm water 4j1 and separated and dried in the same manner as in Example 1.

炭酸リチウム粉末の収率は68.2%、平均粒径は65
μm、加熱減量成分は0.089%であった。
Yield of lithium carbonate powder is 68.2%, average particle size is 65
μm, and the heating loss component was 0.089%.

実施例5 実施例1と同じ晶析槽を用いた。精製した濃度8.0重
量%の炭酸水素リチウム水溶液を201晶析槽に入れ、
十分攪拌しなから液温を95℃に昇温した。液温を95
℃に保ちながらガス吹き込み口よりアルゴンガスを毎分
0.61入れ、炭酸水素リチウムの分解により生じた二
酸化炭素ガスを追い出しながら炭酸リチウムの晶析を行
った。
Example 5 The same crystallization tank as in Example 1 was used. Put the purified lithium hydrogen carbonate aqueous solution with a concentration of 8.0% by weight into a 201 crystallization tank,
The liquid temperature was raised to 95° C. without sufficient stirring. Set the liquid temperature to 95
While maintaining the temperature at °C, argon gas was introduced from the gas inlet at a rate of 0.61 per minute, and lithium carbonate was crystallized while expelling carbon dioxide gas produced by decomposition of lithium hydrogen carbonate.

晶析時間は約3.5時間であった。Crystallization time was approximately 3.5 hours.

得られた炭酸リチウムスラリーを実施例1と同様に分離
洗浄乾燥した。
The obtained lithium carbonate slurry was separated, washed and dried in the same manner as in Example 1.

平均粒径48μm、加熱減量成分Xio、oss%の炭
酸リチウム粉末が収率76.2%で得られた。
Lithium carbonate powder with an average particle size of 48 μm and a heating loss component Xio and oss% was obtained in a yield of 76.2%.

比較例1〜3 実施例に用いたのと同じ晶析槽を使用し、リチウム化合
物水溶液の液温を次のようにする以外は実施例と同様に
炭酸リチウムの晶析を行った。
Comparative Examples 1 to 3 Lithium carbonate was crystallized in the same manner as in the example except that the same crystallization tank as used in the example was used, and the temperature of the aqueous lithium compound solution was changed as follows.

リチウふ水溶液 得られた炭酸リチウム粉末の収率、平均粒径、加熱減量
成分は次の通りであった。
The yield, average particle size, and components lost on heating of the lithium carbonate powder obtained from the lithium aqueous solution were as follows.

Claims (4)

【特許請求の範囲】[Claims] (1)リチウム化合物を含有する水溶液より、晶析によ
り炭酸リチウムの粉末を得るに際し、該水溶液を予め9
0℃以上に加温し晶析することを特徴とする炭酸リチウ
ム粉末の製造方法
(1) When obtaining lithium carbonate powder by crystallization from an aqueous solution containing a lithium compound, the aqueous solution is
A method for producing lithium carbonate powder characterized by crystallizing by heating to 0°C or higher
(2)リチウム化合物を含有する水溶液としての水酸化
リチウム水溶液に二酸化炭素を吹き込みながら炭酸リチ
ウム粉末を析出させることを特徴とする特許請求の範囲
第1項記載の炭酸リチウム粉末の製造方法
(2) A method for producing lithium carbonate powder according to claim 1, characterized in that lithium carbonate powder is precipitated while blowing carbon dioxide into a lithium hydroxide aqueous solution containing a lithium compound.
(3)リチウム化合物を含有する水溶液としての飽和濃
度以下の炭酸リチウム水溶液を濃縮することにより炭酸
リチウムの粉末を析出させることを特徴とする特許請求
の範囲第1項記載の炭酸リチウム粉末の製造方法
(3) A method for producing lithium carbonate powder according to claim 1, characterized in that lithium carbonate powder is precipitated by concentrating a lithium carbonate aqueous solution containing a lithium compound and having a saturated concentration or less.
(4)リチウム化合物を含有する水溶液としての炭酸水
素リチウム水溶液から二酸化炭素を脱離させることによ
り炭酸リチウムの粉末を析出させることを特徴とする特
許請求の範囲第1項記載の炭酸リチウム粉末の製造方法
(4) Production of lithium carbonate powder according to claim 1, characterized in that lithium carbonate powder is precipitated by desorbing carbon dioxide from an aqueous lithium hydrogen carbonate solution containing a lithium compound. Method
JP9439685A 1985-04-30 1985-04-30 Production of lithium carbonate powder Granted JPS61251511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9439685A JPS61251511A (en) 1985-04-30 1985-04-30 Production of lithium carbonate powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9439685A JPS61251511A (en) 1985-04-30 1985-04-30 Production of lithium carbonate powder

Publications (2)

Publication Number Publication Date
JPS61251511A true JPS61251511A (en) 1986-11-08
JPH0360773B2 JPH0360773B2 (en) 1991-09-17

Family

ID=14109104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9439685A Granted JPS61251511A (en) 1985-04-30 1985-04-30 Production of lithium carbonate powder

Country Status (1)

Country Link
JP (1) JPS61251511A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029624A1 (en) * 1997-12-09 1999-06-17 Limtech Process for the purification of lithium carbonate
WO1999044941A1 (en) * 1998-03-05 1999-09-10 Basf Aktiengesellschaft Method for producing highly pure lithium salts
JP2009046390A (en) * 2008-10-24 2009-03-05 Nippon Chem Ind Co Ltd Production method of high purity lithium carbonate
JP2009057278A (en) * 2008-10-24 2009-03-19 Nippon Chem Ind Co Ltd Method of manufacturing high purity lithium carbonate
US8431005B1 (en) 2010-06-24 2013-04-30 Western Lithium Corporation Production of lithium and potassium compounds
CN107540003A (en) * 2017-10-13 2018-01-05 山东鲁北企业集团总公司 Lithium sulfate thickening-purification technology liquid and preparation method thereof in one kind production battery-level lithium carbonate technique
CN113003588A (en) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 Nuclear pure grade Li2CO3Chemical conversion method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029624A1 (en) * 1997-12-09 1999-06-17 Limtech Process for the purification of lithium carbonate
US6048507A (en) * 1997-12-09 2000-04-11 Limtech Process for the purification of lithium carbonate
WO1999044941A1 (en) * 1998-03-05 1999-09-10 Basf Aktiengesellschaft Method for producing highly pure lithium salts
JP2002505248A (en) * 1998-03-05 2002-02-19 ビーエーエスエフ アクチェンゲゼルシャフト Production of high purity lithium salt
US6592832B1 (en) 1998-03-05 2003-07-15 Basf Aktiengesellschaft Method for producing highly pure lithium salts
JP2009046390A (en) * 2008-10-24 2009-03-05 Nippon Chem Ind Co Ltd Production method of high purity lithium carbonate
JP2009057278A (en) * 2008-10-24 2009-03-19 Nippon Chem Ind Co Ltd Method of manufacturing high purity lithium carbonate
US8431005B1 (en) 2010-06-24 2013-04-30 Western Lithium Corporation Production of lithium and potassium compounds
CN107540003A (en) * 2017-10-13 2018-01-05 山东鲁北企业集团总公司 Lithium sulfate thickening-purification technology liquid and preparation method thereof in one kind production battery-level lithium carbonate technique
CN113003588A (en) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 Nuclear pure grade Li2CO3Chemical conversion method

Also Published As

Publication number Publication date
JPH0360773B2 (en) 1991-09-17

Similar Documents

Publication Publication Date Title
CN105668592B (en) The production method of low sodium high-purity potassium chloride
JP6926010B2 (en) Method for producing lithium hydroxide
JPS61251511A (en) Production of lithium carbonate powder
JPS61158810A (en) Production of high-purity silica sol
US1505202A (en) Recovery of magnesium compounds from brines
US2808313A (en) Method for the production of high purity caesium compounds from caesium-bearing minerals
JPS6236021A (en) Production of calcium carbonate having low strontium content
US3350167A (en) Method of preparing hydrated nickel carbonate and the product thereof
US3197289A (en) Modification of zinc hydrosulfite crystals by use of high molecular weight colloidal materials
JPS61232205A (en) Production of lithium carbonate powder
CN112607751B (en) Method for re-dissolving, freezing and purifying mixed salt containing arsenic, sodium sulfite and sodium sulfate
JP7345728B2 (en) How to purify lithium carbonate
CN111732133A (en) Preparation method of tetraamminepalladium sulfate
EP0421046A1 (en) Process for producing highly pure 3,3&#39;,4,4&#39; - biphenyltetra- carboxylic acid or dianhydride thereof
CN112390236A (en) Production method of acid potassium dihydrogen phosphate
JPH01313333A (en) Production of niobium hydroxide or tantalum hydroxide having high purity
CN110776010A (en) Method for producing high-purity ammonium dichromate and producing multipurpose chromium oxide green
JPH0361605B2 (en)
CN114477257B (en) Method for preparing low-sodium low-iron aluminum hydroxide flame retardant and co-producing ammonium chloride by using circulating fluidized bed fly ash
CN114229880B (en) Method for preparing low-barium industrial strontium chloride through primary crystallization and strontium chloride obtained through method
CN110304642B (en) Method for removing impurity sodium in lithium chloride and preparation method of battery-grade anhydrous lithium chloride
JPH04154613A (en) Synthetic silica powder having high purity
SU788629A1 (en) Method of producing carnallite
JPS6335562B2 (en)
JPS586681B2 (en) Method for producing sodium hypochlorite pentahydrate