JPH04154613A - Synthetic silica powder having high purity - Google Patents

Synthetic silica powder having high purity

Info

Publication number
JPH04154613A
JPH04154613A JP27787990A JP27787990A JPH04154613A JP H04154613 A JPH04154613 A JP H04154613A JP 27787990 A JP27787990 A JP 27787990A JP 27787990 A JP27787990 A JP 27787990A JP H04154613 A JPH04154613 A JP H04154613A
Authority
JP
Japan
Prior art keywords
synthetic silica
silica
powder
silica powder
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27787990A
Other languages
Japanese (ja)
Inventor
Shigeru Saito
滋 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP27787990A priority Critical patent/JPH04154613A/en
Publication of JPH04154613A publication Critical patent/JPH04154613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject silica powder consisting of cristobalite crystal having extremely low content of OH group and impurities such as Al and Fe by producing an amorphous synthetic silica under a prescribed condition, calcining the silica under specific condition and heat-treating the product. CONSTITUTION:An inorganic compound or a silicon alkoxide (e.g. SiCl4) is hydrolyzed in a liquid containing a phase-transition promoting agent (e.g. water containing NaOH). The produced amorphous synthetic silica is calcined at 700-1000 deg.C and heat-treated at 1000-1200 deg.C in a controlled atmosphere (e.g. air) containing a halogen (e.g. Cl) and H2.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は高純度合成シリカ粉に関するものである。特に
シリコン単結晶引上げ用るつぼ等の半導体工業用シリカ
ガラス用の原料としての高純度合成シリカ粉に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to high purity synthetic silica powder. In particular, it relates to high-purity synthetic silica powder as a raw material for silica glass for the semiconductor industry, such as crucibles for pulling silicon single crystals.

〔従来の技術〕[Conventional technology]

近年半導体業界においては半導体工業用のシリコン単結
晶引上用るつぼ等のシリカガラス製容器には一層の高品
質、高純度化が要望されており、とりわけ、微量のナト
リウム(Na);カリウム(K)等のアルカリ及び水酸
基(OH)の容器、又は工具への混入が問題となってい
る。
In recent years, there has been a demand in the semiconductor industry for silica glass containers such as crucibles for pulling silicon single crystals for the semiconductor industry to be of even higher quality and purity. ) and other alkalis and hydroxyl groups (OH) entering containers or tools has become a problem.

その原料として従来使用されていた天然石英の精製粉末
では資源の枯渇及び−層の高品質、高純度化の要望に応
えられず、近年は四塩化ケイ素を加水分解して製造した
非晶質合成シリカを使用するようになってきている。し
かし非晶質合成シリカは水酸基(OH)を大量に含有す
るので、シリコン単結晶引上げ用るつぼ用としてはシリ
コン融液との接触の際の機械的強度が不充分であり、る
つぼの形状の保持のために、水酸基(OH)含有量の低
減をはかりつつ高純度化することが必要となってきてい
る。
The refined powder of natural quartz that has traditionally been used as a raw material cannot meet the depletion of resources and the demand for high quality and high purity layers. Silica is increasingly being used. However, since amorphous synthetic silica contains a large amount of hydroxyl groups (OH), its mechanical strength is insufficient for use in crucibles for pulling silicon single crystals when it comes into contact with silicon melt, and it retains the shape of the crucible. Therefore, it has become necessary to increase the purity while reducing the hydroxyl group (OH) content.

高純度合成シリカ粉の高純度化の方法として非晶質合成
シリカ粉をそのままに高温度で焼成することにより水酸
基(OH)を除去して純化する方法が理論上は可能であ
るが、従来は相転移促進剤を使用して非晶質合成シリカ
を結晶化し嵩密度の向上と共にそれにより高純度化する
技術があった。
Theoretically, it is possible to purify high-purity synthetic silica powder by firing the amorphous synthetic silica powder as it is at high temperatures to remove hydroxyl groups (OH). There is a technique for crystallizing amorphous synthetic silica using a phase transition accelerator to improve its bulk density and thereby increase its purity.

例えば特開昭62−212233号公報に開示された技
術においては二酸化珪素粉を相転移促進剤の含有溶液中
に投入し、かつ酸まはアルカリ成分を加えてpH調整し
た後、攪拌混合し、ついで脱水、乾燥処理し、得られた
相転移促進剤を含む二酸化珪素粉を容器に充填して加熱
することによりクリストバライト結晶相をもった焼結成
形体とする技術、及び相転移促進剤がNa成分であり、
又二酸化珪素に対する重量比で500〜l、000pp
m添加されていることが開示されている。
For example, in the technique disclosed in JP-A No. 62-212233, silicon dioxide powder is put into a solution containing a phase transition accelerator, and after adjusting the pH by adding an acid or alkali component, the mixture is stirred. Then, the silicon dioxide powder containing the phase transition accelerator is dehydrated and dried, and the silicon dioxide powder containing the phase transition accelerator is filled in a container and heated to produce a sintered compact having a cristobalite crystal phase, and the phase transition accelerator is a Na component. and
Also, the weight ratio to silicon dioxide is 500 to 1,000 pp
It is disclosed that m is added.

[解決しようとする課題] 特開昭62−212233号公報に開示された従来の技
術は、相転移促進剤は二酸化珪素に対する重量比で50
0〜1、OOOppm添加されており、多量であるため
に後に完全に除去するのが容易ではない。Na成分の除
去のためには真空加熱炉において0.5mb以下の減圧
下1.740°C以上の加熱が必要となっている。
[Problems to be Solved] The conventional technique disclosed in JP-A No. 62-212233 discloses that the phase transition accelerator has a weight ratio of 50 to silicon dioxide.
0 to 1,000 ppm is added, and because of the large amount, it is not easy to completely remove it afterwards. In order to remove the Na component, it is necessary to heat the material to a temperature of 1.740° C. or higher under a reduced pressure of 0.5 mb or less in a vacuum heating furnace.

又非晶質合成シリカを相転移促進剤を添加せず焼成し水
酸基(OH)を除去して高純度化するのは同様にかなり
の高温度の加熱が必要となる。
Furthermore, heating amorphous synthetic silica to a high degree of purity by removing hydroxyl groups (OH) by firing it without adding a phase transition promoter requires heating at a considerably high temperature.

本発明は四塩化ケイ素を原料として、高純度シリカガラ
ス用に比較的低い温度で焼結又は処理し経済的に製造さ
れた高純度合成シリカ粉を提供することを目的とする。
An object of the present invention is to provide a high-purity synthetic silica powder that is economically produced by sintering or processing at a relatively low temperature for high-purity silica glass using silicon tetrachloride as a raw material.

[課題解決のための手段〕 本発明は、無機ケイ素化合物又はケイ素アルコキシドを
相転移促進剤を含む液中において加水分解して生成した
非晶質合成シリカを700〜1000度で焼成した後、
ハロゲン及び水素を含む調整雰囲気中において1000
〜1200度で加熱処理して高純度合成シリカ粉を得て
課題を解決した。
[Means for Solving the Problems] The present invention provides amorphous synthetic silica produced by hydrolyzing an inorganic silicon compound or a silicon alkoxide in a liquid containing a phase transition accelerator, and then calcining it at 700 to 1000 degrees.
1000 in a controlled atmosphere containing halogen and hydrogen.
The problem was solved by heat-treating at ~1200 degrees to obtain high-purity synthetic silica powder.

[発明の構成及び作用] 以下本発明の詳細な説明する。[Structure and operation of the invention] The present invention will be explained in detail below.

本発明においては出発原料は無機ケイ素化合物又はケイ
素アルコキシドである。なかでも四塩化ケイ素が純度、
価格、取扱易さ等の点から最も適当である。
In the present invention, the starting material is an inorganic silicon compound or silicon alkoxide. Among them, silicon tetrachloride has high purity,
It is the most suitable in terms of price, ease of handling, etc.

相転移促進剤は非晶質シリカを結晶質のクリストバライ
トに結晶化する促進剤である。ナトリウム(Na)が促
進効果が大きく又価格、取扱易さ等の点から最も適当で
ある。
A phase transition accelerator is an accelerator that crystallizes amorphous silica into crystalline cristobalite. Sodium (Na) has a large promoting effect and is most suitable in terms of cost, ease of handling, etc.

四塩化ケイ素(SiC14)の加水分解をナトリウム(
Na)を含む水中に おいて行う。水中に食塩(NaC
I)、水酸化ナトリウム(NaOH)等のナトリウム化
合物を加えて粉食塩水又は希水酸化ナトリウム水溶液と
なし、四塩化ケイ素を注入する。液状で流下すると加水
分解反応が進み、固相の非晶質シリカ(S i 02 
)が析出し、塩酸(MCI)が生成する。非晶質シリカ
(Si02)が析出するとき水中に含まれているナトリ
ウム(Na)が原子レベルで均一に 非晶質シリカ(S
 i 02 )中に取り込まれる。
Hydrolysis of silicon tetrachloride (SiC14) using sodium (
The test is carried out in water containing Na). Salt (NaC) in water
I) Add a sodium compound such as sodium hydroxide (NaOH) to form a powdered saline solution or a dilute aqueous sodium hydroxide solution, and inject silicon tetrachloride. As it flows down in liquid form, the hydrolysis reaction progresses and solid phase amorphous silica (S i 02
) is precipitated and hydrochloric acid (MCI) is produced. When amorphous silica (Si02) precipitates, the sodium (Na) contained in water is uniformly distributed at the atomic level.
i 02 ).

ゲル状の非晶質シリカはロータリーキルン中で700〜
1000度に加熱する。この加熱処理は単なる乾燥では
なく非晶質シリカをβ−クリストバライトに結晶化する
ための焼成である。非晶質シリカはそのまま高温溶融し
てシリカガラスにすると生成したシリカガラスは充填密
度が低く、高品質のものが得られないから、生成したシ
リカガラスの充填密度増大のためにクリストバライトの
結晶化が必要である。この結晶化が相転移促進剤として
のナトリウム(Na)によって促進される。
Gel-like amorphous silica is produced in a rotary kiln at a temperature of 700~
Heat to 1000 degrees. This heat treatment is not just drying but firing to crystallize the amorphous silica into β-cristobalite. If amorphous silica is directly melted at high temperature to make silica glass, the resulting silica glass has a low packing density and high quality cannot be obtained. is necessary. This crystallization is promoted by sodium (Na) as a phase transition promoter.

ナトリウム(Na)は原子レベルで均一に非晶質シリカ
(S i 02 )中に分散しているから極めて促進作
用が大きく重量比lppmで効果があり、比較的低温度
の700〜1000度の加熱温度でほぼ完全に結晶化す
る。加熱処理により生成した結晶は、嵩密度1.20〜
1.30のクリストバライト結晶性である。水酸基(O
H)に関しては加熱処理の過程で単なる乾燥による脱水
と共に、β−クリストバライトに結晶化する時不純物と
しての水酸基(OH)が結晶の外に排出され減少する。
Sodium (Na) is uniformly dispersed in amorphous silica (S i 02 ) at the atomic level, so it has an extremely strong promoting effect and is effective at a weight ratio of 1 ppm, and can be heated at relatively low temperatures of 700 to 1000 degrees. It crystallizes almost completely at high temperatures. The crystals generated by heat treatment have a bulk density of 1.20~
It has a cristobalite crystallinity of 1.30. Hydroxyl group (O
Concerning H), in addition to dehydration due to mere drying during the heat treatment process, hydroxyl groups (OH) as an impurity are discharged from the crystal when crystallized to β-cristobalite and are reduced.

加熱温度700度以下では結晶化が不充分であり、10
00度以上では結晶化は完全に進むが、高温度上昇によ
るエネルギーの浪費があり、かつ後の粉砕がたやすくな
くなる0通常800度に加熱すれば結晶化は充分に進む
If the heating temperature is below 700 degrees, crystallization will be insufficient,
At temperatures above 00 degrees Celsius, crystallization proceeds completely, but there is a waste of energy due to the high temperature rise, and subsequent pulverization becomes difficult.Usually, heating to 800 degrees Celsius sufficiently progresses crystallization.

常温に冷却するとβ−クリストバライトは相転移してα
−クリストバライトとなる。焼結したα−クリストバラ
イト塊tこはこの間に膨張係数の違いによりクラックが
はいる。
When cooled to room temperature, β-cristobalite undergoes a phase transition to α
- Becomes cristobalite. Cracks occur in the sintered α-cristobalite mass due to the difference in expansion coefficient during this time.

ハロゲン及び水素を含む調整雰囲気中における1000
〜1200度の加熱処理に先立って常法により粉砕・分
級する。分級後の粒子径は60〜400メツシユの範囲
以内にある必要がある。粒子が粗大又は微細に過ぎると
るつぼの製造に際して不適当である。微細粉は反応槽に
戻し結晶種として利用する。
1000 in a controlled atmosphere containing halogens and hydrogen.
Prior to heat treatment at ~1200 degrees, it is pulverized and classified by a conventional method. The particle size after classification must be within the range of 60 to 400 mesh. If the particles are too coarse or too fine, they are unsuitable for producing crucibles. The fine powder is returned to the reaction tank and used as crystal seeds.

次いですなわち、1000〜1200°Cの温度におい
て、固気反応に適した反応炉の中で、原料粉末をハロゲ
ンと水素を含む調整雰囲気ガスと反応させる。本発明に
おいて用いるハロゲンは、弗素ガス、塩素ガス、臭素ガ
スであるが、塩素ガスを用いることが最も有利である。
That is, the raw material powder is then reacted with a controlled atmosphere gas containing halogen and hydrogen in a reactor suitable for a solid-gas reaction at a temperature of 1000 to 1200°C. The halogen used in the present invention is fluorine gas, chlorine gas, or bromine gas, and it is most advantageous to use chlorine gas.

これらのガスは、空気または窒素のような不活性ガスを
担体ガスとしてその中に希釈し混合して常圧で使用する
These gases are used at normal pressure by diluting and mixing therein with an inert gas such as air or nitrogen as a carrier gas.

調整雰囲気ガス組成としては、空気または窒素のような
不活性ガスにハロゲンおよび水素をそれぞれ0.1容量
%〜1容量%含むだけでよい。1容量%以上にハロゲン
と水素の濃度をそれぞれ高くしても反応速度向上に効果
はない。0.1容量%以下にハロゲンと水素の濃度をそ
れぞれ低くすると反応速度が著しく低下する。最も好ま
しいのはハロゲンおよび水素をそれぞれ約0.5容量%
含む調整雰囲気である。調整雰囲気ガス中にハロゲンと
水素を共に添加することが必要であり、若し空気にハロ
ゲンのみを添加した場合では多少の精製効果はあるが、
長時間の処理によっても目標を達成することができない
。尚空気中に4容量%を超える水素を添加するのは爆発
の危険があるが、本発明の水素添加量は温かに小さいか
ら危険はない。
The adjusted atmosphere gas composition may include as little as 0.1% to 1% by volume of halogen and hydrogen in an inert gas such as air or nitrogen. Even if the concentrations of halogen and hydrogen are increased to 1% by volume or more, there is no effect on improving the reaction rate. When the concentrations of halogen and hydrogen are respectively lowered to 0.1% by volume or less, the reaction rate decreases significantly. Most preferably, the halogen and hydrogen are each about 0.5% by volume.
It is a controlled atmosphere that includes. It is necessary to add both halogen and hydrogen to the adjusted atmosphere gas, and if only halogen is added to air, there will be some purification effect, but
The goal cannot be achieved even with long processing times. It should be noted that there is a risk of explosion if more than 4% by volume of hydrogen is added to the air, but since the amount of hydrogen added in the present invention is warm and small, there is no danger.

ここで温度を1000〜1200’Cとするのは、10
00°C未満では不純物の除去の反応速度が著しく低下
して実用的でなく、又1200゜Cを超える温度では不
純物除去の反応速度向上に効果はなく、かえって粉状体
の焼結化等の不都合が起こる。
Here, setting the temperature to 1000-1200'C is 10
At temperatures below 1,200°C, the reaction rate for removing impurities decreases significantly, making it impractical. At temperatures above 1,200°C, there is no effect on improving the reaction rate for removing impurities, and on the contrary, sintering of the powder, etc. An inconvenience will occur.

加熱時間は上記した望ましい温度範囲でおおむね1時間
〜10時間とすることが必要である。10時間を超える
処理時間は実用的でない。
The heating time needs to be approximately 1 hour to 10 hours within the desired temperature range described above. Processing times exceeding 10 hours are not practical.

調整雰囲気中における加熱処理の終了後、乾燥した窒素
のみを雰囲気として同温度において短時間処理すること
もある。
After the heat treatment in the adjusted atmosphere is completed, the treatment may be performed for a short time at the same temperature using only dry nitrogen as the atmosphere.

[実施例] 以下本発明の詳細な説明する 〈実施例1〉 容器に20リツトルのイオン交換水を取り水酸化ナトリ
ウム2グラムを溶解する。攪拌しながら別の容器中の液
体の四塩化ケイ素(SiC14)に不活性ガス(例えば
窒素)を吹き込みその圧力で四塩化ケイ素が導入され加
水分解し非晶質シリカ(S i 02 )が析出する。
[Example] The present invention will be described in detail below. <Example 1> Take 20 liters of ion exchange water in a container and dissolve 2 grams of sodium hydroxide. While stirring, an inert gas (e.g., nitrogen) is blown into liquid silicon tetrachloride (SiC14) in a separate container, and silicon tetrachloride is introduced under the pressure and hydrolyzed to precipitate amorphous silica (S i 02 ). .

この時水溶液中のナトリウム(Na)が原子レヘルで均
一に非晶質シリカ(S i 02 )中に取りこまれる
。析出したシリカは濁りの状態からゾルの状態を経て、
次いでゲルの状態になる。次いでこの水分の残留した非
晶質シリカ700グラムをロータリーキルンで1000
度に5時間加熱する。この加熱処理により結晶化しクリ
ストバライト質シリカ粉の焼結塊となるから、粉砕分級
してから透明石英製の反応管の雰囲気処理電気炉に移す
。平均50〜400メツシユに分級した平均粒径170
μmのクリストバライト質シリカ粉500グラムを雰囲
気処理電気炉に入れ塩素1容量%と水素1容量%を含む
空気からなる調整雰囲気気流中において流動床を形成さ
せ、1200°Cで反応させた。2時間の反応の後、処
理粉末を全量反応管より抜き出した。
At this time, sodium (Na) in the aqueous solution is uniformly incorporated into the amorphous silica (S i 02 ) at the atomic level. The precipitated silica changes from a cloudy state to a sol state,
Then it becomes a gel. Next, 700 grams of the amorphous silica with residual water was heated in a rotary kiln for 1,000 g.
Heat for 5 hours at a time. This heat treatment crystallizes the cristobalite silica powder into a sintered mass, which is then pulverized and classified before being transferred to an atmosphere treatment electric furnace in a transparent quartz reaction tube. Average particle size classified into 50-400 meshes: 170
500 grams of micron cristobalite silica powder was placed in an atmosphere treatment electric furnace to form a fluidized bed in a controlled atmosphere air stream containing 1% by volume of chlorine and 1% by volume of hydrogen, and reacted at 1200°C. After 2 hours of reaction, the entire amount of the treated powder was extracted from the reaction tube.

抜き出した処理粉末中の不純物の分析結果を第1表、X
線回折図を第1図(c)に示す。
The analysis results of impurities in the extracted treated powder are shown in Table 1,
A line diffraction diagram is shown in FIG. 1(c).

〈実施例2〉 実施例1と同一に調製したクリストバライト質シリカ粉
300gを透明石英製の雰囲気処理電気炉中にて115
0°Cで反応させた。調整雰囲気には窒素に塩素容器0
.5容量%と0.5容量%の水素を添加したガスを使用
した。3時間の反応の後に更に5分間窒素のみを雰囲気
として同温度において加熱を継続し、冷却後ロータリー
キルンより排出した。排出された処理粉末中の不純物の
分析結果を駕1表に示す。
<Example 2> 300 g of cristobalite silica powder prepared in the same manner as in Example 1 was heated to 115 g in an atmosphere-treated electric furnace made of transparent quartz.
The reaction was carried out at 0°C. The adjusted atmosphere includes nitrogen and chlorine containers.
.. Gases containing 5% by volume and 0.5% by volume of hydrogen were used. After 3 hours of reaction, heating was continued for an additional 5 minutes at the same temperature using only nitrogen as an atmosphere, and after cooling, the mixture was discharged from the rotary kiln. The analysis results of impurities in the discharged treated powder are shown in Table 1.

〈実施例3〉 プラスチック容器に20リツトルのイオン交換水を取り
食堪3グラムを溶解する。攪拌機により攪拌しながら別
の容器中の液体の四塩化ケイ素を流下しプラスチック容
器中の食塩水に導入して加水分解する。次いで加水分解
して得られた非晶質シリカは容器に入れて電気炉中で7
50度に8時間加熱する。この加熱処理により焼結塊と
なるから、粉砕分級してから透明石英製の反応管の雰囲
気処理電気炉に移す。平均粒径90μmのクリストバラ
イト質シリカ粉600グラムを実施例1と同一の透明石
英製の反応管に入れ塩素1容量%と水素1容量%を含む
空気からなる調整雰囲気気流中において流動床を形成さ
せ、1200°Cで反応させた。2時間の反応の後、処
理粉末を全量反応管より抜き出した。抜き出した処理粉
末中の不純物の分析結果を第1表に示す。
<Example 3> Take 20 liters of ion-exchanged water and dissolve 3 grams of edible water in a plastic container. While stirring with a stirrer, the liquid silicon tetrachloride in another container flows down and is introduced into the saline solution in the plastic container for hydrolysis. Next, the amorphous silica obtained by hydrolysis was placed in a container and heated in an electric furnace for 7
Heat to 50 degrees for 8 hours. This heat treatment results in a sintered mass, which is then pulverized and classified before being transferred to an atmosphere-treated electric furnace in a transparent quartz reaction tube. 600 grams of cristobalite silica powder with an average particle size of 90 μm was placed in the same transparent quartz reaction tube as in Example 1, and a fluidized bed was formed in a controlled atmosphere air stream consisting of air containing 1% by volume of chlorine and 1% by volume of hydrogen. , and reacted at 1200°C. After 2 hours of reaction, the entire amount of the treated powder was extracted from the reaction tube. Table 1 shows the analysis results of impurities in the extracted treated powder.

〈比較例工〉 プラスチック容器に20リツトルのイオン交換水を取り
、攪拌機により攪拌しながら別の容器中の液体の四塩化
ケイ素を流下しプラスチック容器中のイオン交換水に導
入して加水分解し非晶質シリカが析出する。以後実施例
1と同様に処理して処理粉末を得た。処理粉末中の不純
物の分析結果を第1表に、X線回折図を第1図(a)に
示す。
<Comparative example> 20 liters of ion-exchanged water was placed in a plastic container, and while stirring with a stirrer, the liquid silicon tetrachloride in another container was poured down and introduced into the ion-exchanged water in the plastic container to be hydrolyzed and decomposed. Crystalline silica precipitates. Thereafter, the powder was treated in the same manner as in Example 1 to obtain a treated powder. The analysis results of impurities in the treated powder are shown in Table 1, and the X-ray diffraction pattern is shown in FIG. 1(a).

〈比較例2〉 実施例1と同様にして非晶質シリカを得た。脱水後ロー
タリーキルンで650度に15時間加熱する。この加熱
処理によっては結晶化が不充分である。粉砕分級してか
ら雰囲気処理電気炉に入れ塩素1容量%と水素I容量%
を含む空気からなる調整雰囲気気流中において流動床を
形成させ、1200°Cで反応させた。2時間の反応の
後、処理粉末を全量反応管より抜き出した。抜き出した
処理粉末中の不純物の分析結果を第1表に、X線回折図
を第1図(b)に示す。
<Comparative Example 2> Amorphous silica was obtained in the same manner as in Example 1. After dehydration, heat in a rotary kiln to 650 degrees for 15 hours. This heat treatment results in insufficient crystallization. After pulverization and classification, it is placed in an electric furnace for atmospheric treatment, and 1% by volume of chlorine and 1% by volume of hydrogen.
A fluidized bed was formed in a controlled atmosphere air stream containing air, and the reaction was carried out at 1200°C. After 2 hours of reaction, the entire amount of the treated powder was extracted from the reaction tube. The analysis results of impurities in the extracted treated powder are shown in Table 1, and the X-ray diffraction diagram is shown in FIG. 1(b).

〈比較例3〉 実施例1と同一に調製したクリストバライト質シリカ粉
を、実施例1と同一の透明石英製の反応管に入れ塩素1
容量%のみを含む空気からなる調整雰囲気気流中におい
て流動床を形成させ、1200°Cで反応させた。6時
間反応後に処理粉末を全量反応管より抜き出した。抜き
出した処理粉末中の不純物の分析結果を第1表に示す。
<Comparative Example 3> The cristobalite silica powder prepared in the same manner as in Example 1 was placed in the same transparent quartz reaction tube as in Example 1, and 1 chlorine was added.
A fluidized bed was formed in a controlled atmosphere stream consisting of air containing only % by volume and the reaction was carried out at 1200°C. After 6 hours of reaction, the entire amount of the treated powder was extracted from the reaction tube. Table 1 shows the analysis results of impurities in the extracted treated powder.

第1表に示す通り、本発明の処理を行うことによってア
ルカリ金属及び水酸基等を望ましい量にまで低下させる
ことができた。
As shown in Table 1, by performing the treatment of the present invention, it was possible to reduce alkali metals, hydroxyl groups, etc. to desired levels.

又結晶化も充分に進行した処理粉末が得られた。Furthermore, a treated powder in which crystallization had sufficiently progressed was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明↓こより、アルミニウム、鉄、チタン、ナトリウ
ム、カリウム、リチウム、ホウ素などの不純物及び水酸
基を極めて低くすることができる。
According to the present invention↓, impurities such as aluminum, iron, titanium, sodium, potassium, lithium, boron, etc. and hydroxyl groups can be extremely reduced.

そして結晶化が充分に進行し嵩密度1.20〜1.30
、結晶化率100パーセント、粒度1゜0〜300ミク
ロンのクリストバライト結晶である高純度合成シリカ粉
が提供できる。
Crystallization progresses sufficiently and the bulk density is 1.20 to 1.30.
It is possible to provide high-purity synthetic silica powder which is cristobalite crystals with a crystallization rate of 100% and a particle size of 1°0 to 300 microns.

第1表 単位 第1図(a)、(b)及び(c)はそれぞれ比較例1 
(Na無添加 乾燥1000° 焼成1200°)、比
較例2 (Na添加  乾燥 650焼成1200°)
及び実施例1 (Na添加乾燥1000° 焼成120
0°)の合成シリカ粉のX線回折図である。
Table 1 Unit Figure 1 (a), (b) and (c) are respectively Comparative Example 1
(Na addition, drying 1000°, baking 1200°), Comparative Example 2 (Na addition, drying 650°, baking 1200°)
and Example 1 (Na addition drying 1000° firing 120°
0°) of synthetic silica powder.

Claims (1)

【特許請求の範囲】[Claims]  無機ケイ素化合物又はケイ素アルコキシドを相転移促
進剤を含む液中において加水分解して生成した非晶質合
成シリカを700〜1000度で焼成した後、ハロゲン
及び水素を含む調整雰囲気中において1000〜120
0度で加熱処理してなることを特徴とする高純度合成シ
リカ粉。
Amorphous synthetic silica produced by hydrolyzing an inorganic silicon compound or silicon alkoxide in a liquid containing a phase transition accelerator is fired at 700 to 1000 degrees, and then heated to 1000 to 120 degrees in a controlled atmosphere containing halogen and hydrogen.
High purity synthetic silica powder that is heat treated at 0 degrees.
JP27787990A 1990-10-18 1990-10-18 Synthetic silica powder having high purity Pending JPH04154613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27787990A JPH04154613A (en) 1990-10-18 1990-10-18 Synthetic silica powder having high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27787990A JPH04154613A (en) 1990-10-18 1990-10-18 Synthetic silica powder having high purity

Publications (1)

Publication Number Publication Date
JPH04154613A true JPH04154613A (en) 1992-05-27

Family

ID=17589564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27787990A Pending JPH04154613A (en) 1990-10-18 1990-10-18 Synthetic silica powder having high purity

Country Status (1)

Country Link
JP (1) JPH04154613A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008332A1 (en) * 2001-07-19 2003-01-30 Mitsubishi Chemical Corporation High purity quartz powder and method for production thereof, and formed glass article from the powder
KR100708882B1 (en) * 2003-04-15 2007-04-17 (주) 보람케메탈 The method for preparing the nano silica crystalline powder using the fumed silica
JP2007145698A (en) * 2005-10-28 2007-06-14 Japan Siper Quarts Corp Method for purification of silica particles, purifier, and purified silica particles
TWI487665B (en) * 2010-01-07 2015-06-11 Mitsubishi Materials Corp Synthetic amorphous silica powder and process for producing the same
TWI488811B (en) * 2010-01-07 2015-06-21 Mitsubishi Materials Corp Synthetic amorphous silica powder and process for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008332A1 (en) * 2001-07-19 2003-01-30 Mitsubishi Chemical Corporation High purity quartz powder and method for production thereof, and formed glass article from the powder
US7063826B2 (en) 2001-07-19 2006-06-20 Mitsubishi Chemical Corporation High-purity quartz powder, process for producing the same, and glass molding
US7427387B2 (en) 2001-07-19 2008-09-23 Mitsubishi Chemical Corporation High-purity quartz powder, process for producing the same, and glass molding
KR100708882B1 (en) * 2003-04-15 2007-04-17 (주) 보람케메탈 The method for preparing the nano silica crystalline powder using the fumed silica
JP2007145698A (en) * 2005-10-28 2007-06-14 Japan Siper Quarts Corp Method for purification of silica particles, purifier, and purified silica particles
TWI487665B (en) * 2010-01-07 2015-06-11 Mitsubishi Materials Corp Synthetic amorphous silica powder and process for producing the same
TWI488811B (en) * 2010-01-07 2015-06-21 Mitsubishi Materials Corp Synthetic amorphous silica powder and process for producing the same
US9120678B2 (en) 2010-01-07 2015-09-01 Mitsubishi Materials Corporation Synthetic amorphous silica powder and method for producing same
US9272918B2 (en) 2010-01-07 2016-03-01 Mitsubishi Materials Corporation Synthetic amorphous silica powder and method for producing same
US10023488B2 (en) 2010-01-07 2018-07-17 Mitsubishi Materials Corporation Synthetic amorphous silica powder and method for producing same

Similar Documents

Publication Publication Date Title
US4241037A (en) Process for purifying silicon
JPH06503060A (en) Hydrothermal production method of crystalline sodium disilicate
WO1988003914A1 (en) Vitreous silica
JPH05503065A (en) Method for producing crystalline sodium disilicate in hot water
EP0283933B1 (en) Process for producing unsintered cristobalite silica
JPH072513A (en) Production of synthetic quartz glass powder
JPH04154613A (en) Synthetic silica powder having high purity
JP2839725B2 (en) Method for producing high-purity crystalline silica
JPS60235716A (en) Manufacture of porous boron or boride products
JPH0280329A (en) Production of synthetic quartz glass
EP1444387A1 (en) Preparation of feedstock of alkaline earth and alkali metal fluorides
JPH0567574B2 (en)
US2830876A (en) Production of anhydrous sodium metasilicate
JP3170016B2 (en) Method for producing high-purity crystalline silica
JPH0130766B2 (en)
JP3526591B2 (en) Manufacturing method of synthetic quartz glass
JPH02129095A (en) Production of micro quartz
JP3121733B2 (en) High purity synthetic cristobalite powder, method for producing the same, and silica glass
JPH0450132A (en) Purification of silica-based raw material
GB2159807A (en) Method of producing a sinterable lithium metasilicate Li2SiO3 powder
JP2004292212A (en) Manufacturing method of synthetic quartz powder
JPH0283224A (en) Production of synthetic quartz glass powder
JPH07277723A (en) Production of cristobalite grain
JP2722785B2 (en) High purity silica powder
JPH03232719A (en) Production of readily grindable alumina