JPS61250556A - Probe for quantitative analysis of c, s, n and h in molten steel - Google Patents

Probe for quantitative analysis of c, s, n and h in molten steel

Info

Publication number
JPS61250556A
JPS61250556A JP60091231A JP9123185A JPS61250556A JP S61250556 A JPS61250556 A JP S61250556A JP 60091231 A JP60091231 A JP 60091231A JP 9123185 A JP9123185 A JP 9123185A JP S61250556 A JPS61250556 A JP S61250556A
Authority
JP
Japan
Prior art keywords
molten steel
gas
probe
collected
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60091231A
Other languages
Japanese (ja)
Inventor
Takamasa Takahashi
隆昌 高橋
Takaaki Kondo
隆明 近藤
Hideo Seno
瀬野 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60091231A priority Critical patent/JPS61250556A/en
Publication of JPS61250556A publication Critical patent/JPS61250556A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously and rapidly analyze multiple components only by immersing a probe in molten steel, by providing a gas introducing port and a gas exhaust port to the upper end part of the probe and positioning the leading end of the feed-in passage connected to said introducing port under the liquid level of collected molten steel while connecting a gas measuring apparatus to said exhaust port. CONSTITUTION:A gas introducing port 5 and a gas exhaust port 6 are provided to the upper end part of a probe and a gas feed-in passage 7 for introducing oxygen gas into collected molten steel C is formed from the introducing port and arranged so that the leading end is positioned at least under the interface of collected molten steel C. A gas measuring apparatus for measuring the gas generated from collected molten steel C is connected to the gas exhaust port 6. Thus constituted probe is inserted in molten steel A to feed oxygen gas in the molten steel C flowed in the probe and oxygen is reacted with C, S, N and H in the molten C to take out the formed gas which is, in turn, fed in the gas measuring apparatus. By this method, multiple components can be analyzed rapidly and simultaneously only by immersing the above mentioned probe in molten steel A.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 鋼中のC,S、N、Hが鋼の物理的性質に及ぼす影響は
大きく、このため溶鋼段階においてこれらの成分を適正
範囲にコントロールすることが必要とされている。この
場合、よシ迅速に溶鋼中のこれらの成分を定量すること
は製鋼の生産コストを低減化できるため非常に重要であ
る。
[Detailed Description of the Invention] [Industrial Application Field] C, S, N, and H in steel have a large influence on the physical properties of steel, so it is necessary to control these components within an appropriate range at the molten steel stage. That is what is needed. In this case, it is very important to quickly quantify these components in molten steel because it can reduce the production cost of steelmaking.

この発明は分析用試料を溶鋼から取り出すことなく製鋼
現場において溶鋼中のC,S、N、Hを迅速に分析でき
る手段を提供するものである。
The present invention provides a means for quickly analyzing C, S, N, and H in molten steel at a steelmaking site without removing samples for analysis from the molten steel.

〔従来の技術〕[Conventional technology]

溶鋼中のC,S、N、H含量は従来は溶鋼中にサンプリ
ングプローブを差し込んで試料を採取後、さらに試料調
製を行なってから各々の成分をその分析用機器で分析し
ていた。
Conventionally, the C, S, N, and H contents in molten steel were measured by inserting a sampling probe into the molten steel to collect a sample, then preparing the sample, and then analyzing each component using the analytical equipment.

一方、最近溶鋼、溶銑のC,Sを含む一般金属成分の迅
速分析法が開発されつつある。この方法は2つに大別さ
れ、その−は溶鋼面を励起発光させ、分析情報としての
発光スペクトルを光ファイバーで伝送する方法である。
On the other hand, rapid analysis methods for general metal components including C and S in molten steel and hot metal have recently been developed. This method can be roughly divided into two types: one is a method in which the molten steel surface is excited to emit light, and the emission spectrum as analytical information is transmitted through an optical fiber.

もうひとつの方法は溶鋼面よシ分析成分の微粒子を生成
させて搬送後これを励起させて発光スペクトルを生じさ
せる方法である。
Another method is to generate fine particles of analytical components on the surface of the molten steel, and after transport, excite the particles to generate an emission spectrum.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の溶鋼を採取して試料調製する方法の場合には、周
知のようにC,S、NとHとはサングリング方法が異な
るので別個のサングラ−で採取し、さらに試料調製も別
々に行なわなければならなかった。その結果、測定に手
間がかかり単一成分を分析する場合でも5分程度を要し
ていた。これは分析機器が製鋼現場に設置されている場
合であり、そうでなければこの所要時間には試料搬送の
時間がさらに追加されることはいうまでもない。
In the case of the conventional method of sampling molten steel and preparing samples, as is well known, C, S, N, and H require different sampling methods, so they are sampled using separate sunglasses, and the samples are also prepared separately. I had to. As a result, measurement is time-consuming and takes about 5 minutes even when analyzing a single component. This is the case when the analytical equipment is installed at the steel manufacturing site; otherwise, it goes without saying that sample transport time would be added to this required time.

一方、最近開発された一般金属成分の迅速分析法は、い
ずれも不均質な溶鋼表面に制約されるほかN、Hの分析
が困難であり、さらに溶鋼面を励起発光させる方法はC
2Sの発光スにクトルが紫外部にあるため伝送損失が大
きくこれらの分析にも困難があった。いずれにせよ、こ
れらの分析技術が完成してもN、Hについては依然とし
て従来のままである。また、これらの分析法は高価な設
備を必要とすることも問題であった。
On the other hand, recently developed rapid analysis methods for general metal components are limited by the inhomogeneous surface of molten steel, and analysis of N and H is difficult.
Since the wavelength of the 2S emitted light is in the ultraviolet region, the transmission loss is large and these analyzes are difficult. In any case, even if these analytical techniques are completed, N and H will still remain the same as before. Another problem is that these analytical methods require expensive equipment.

〔問題点を解決するための手段〕 本発明は、このような問題を解決するべくなされたもの
であり、グローブを溶鋼中に差し込んでグローブ内に流
入した溶鋼に酸素ガスを送入し、溶鋼中のC,S、N、
Hと反応させることによってこれらをガス化して取り出
し迅速に分析しうろことを見出してなされたものである
[Means for Solving the Problems] The present invention has been made to solve these problems, and involves inserting a globe into molten steel and feeding oxygen gas into the molten steel that has flowed into the globe. C, S, N inside,
It was discovered that these substances could be gasified by reacting with hydrogen, extracted, and quickly analyzed.

本発明のグローブはこのような分析方法に利用されるも
のであシ、下端部に細管状の溶鋼導入口を備えた溶鋼中
のC,S、N、Hの各成分の抽出容器であって、上端部
にガス導入口及びガス排出口を形成し、前記ガス導入口
にはこれと連結するガス送入通路をその先端が少なくと
も採取溶鋼の界面下に位置するように設け、ガス排出口
にはガス測定装置を接続するように構成したことを特徴
としている。
The glove of the present invention is used in such an analysis method, and is a container for extracting C, S, N, and H components in molten steel, which is equipped with a thin tube-shaped molten steel inlet at the lower end. , a gas inlet and a gas outlet are formed at the upper end, the gas inlet is provided with a gas inlet passage connected to the gas inlet, the tip of which is located at least under the interface of the collected molten steel, and the gas outlet is connected to the is characterized in that it is configured to be connected to a gas measuring device.

グローブの内部には溶鋼溜室ないし酸化鉄溜室が設けら
れ、グロー1の下端には上記室に連通ずる細管状の溶鋼
導入口が設けられる。この溶鋼導入口はプローブの底面
のほか側面に設けてもよい。
A molten steel reservoir chamber or an iron oxide reservoir chamber is provided inside the globe, and a thin tube-shaped molten steel inlet communicating with the chamber is provided at the lower end of the glow 1. This molten steel inlet may be provided on the side surface of the probe in addition to the bottom surface.

溶鋼導入口はグローブを溶鋼に差し込む際に溶鋼上のス
ラグ等がはいらないように鉄箔などで閉止しておくこと
が好ましい。
It is preferable to close the molten steel inlet with iron foil or the like so that slag on the molten steel does not enter when the glove is inserted into the molten steel.

グローブの上端部にはガス導入口及びガス排出口を設け
る。ガス導入口は酸素ガスをグローブ内に導入する口で
あり、そこからはガス送入通路が形成される。ガス送入
通路は酸素ガスを採取溶鋼中に導入するものであり、そ
の先端は少なくとも採取溶鋼の界面下に位置するように
配設する。一方、ガス排出口は採取溶鋼から発生したガ
スを排出させる口であり、外部のガス測定装置と接続す
る。
A gas inlet and a gas outlet are provided at the upper end of the globe. The gas inlet is an inlet for introducing oxygen gas into the globe, and a gas inlet passage is formed from there. The gas feed passage introduces oxygen gas into the collected molten steel, and its tip is located at least below the interface of the collected molten steel. On the other hand, the gas discharge port is a port for discharging gas generated from the collected molten steel, and is connected to an external gas measuring device.

このようなグローブは溶鋼に耐える耐熱性を有するとと
もに使用時にC,N、S、Hを含むガスを発生しない材
料で形成され、例えば素焼きその他の各種セラミックが
利用される。グローブの外側壁には一定性さまで溶鋼に
浸漬させるために予め目盛その他のマークを設けておく
ことが好ましい。
Such a globe is made of a material that has heat resistance to withstand molten steel and does not generate gases containing C, N, S, and H during use; for example, various types of ceramics such as unglazed ceramics are used. Preferably, the outer wall of the globe is provided with scales or other markings in order to ensure uniform immersion in the molten steel.

プローブは紙管などを被せて使用することが好ましい〇 ガス測定装置には多成分を同時に迅速分析する点で四重
極質量分析計が好ましく、各ガスに相当する親ピーク、
フラグメントピーク1アイソト−ノピーク等をコンピュ
ータ処理して予め測定しておいたキャリブレーションカ
ーブと照合させることによシ各ガスを迅速に定量するこ
とができる。
It is preferable to use the probe by covering it with a paper tube, etc. A quadrupole mass spectrometer is preferable as the gas measurement device because it can rapidly analyze multiple components simultaneously, and the parent peak corresponding to each gas,
Each gas can be rapidly quantified by computer processing the fragment peak 1 isotono peak and comparing it with a calibration curve measured in advance.

プローブ内に導入されるガスは酸素ガスであるが、その
なかにスタンダードとして他のガスを少量混入しておく
ことは好ましい。混入するガスの例としてヘリウムやア
ルゴンのような不活性ガスを挙げることができる。
The gas introduced into the probe is oxygen gas, but it is preferable to mix a small amount of other gas into it as a standard. Examples of gases to be mixed include inert gases such as helium and argon.

本発明のプローブを用いて溶鋼中のC、S 、 N。C, S, and N in molten steel using the probe of the present invention.

Hを分析する方法としては、まず製鋼炉から取シ出した
溶鋼中にプローブを一定性さまで浸漬して酸素ガスを送
りグローブ内に導入された採取溶鋼と反応させる。そし
て、反応が定常状態に達した時の各ガスの分圧を測定す
ればよい。溶鋼中のC6S、N、Hの各濃度は予め溶鋼
中のC,S、N。
To analyze H, first, a probe is immersed in molten steel taken out from a steelmaking furnace to a constant state, and oxygen gas is sent to react with the sampled molten steel introduced into the globe. Then, the partial pressure of each gas may be measured when the reaction reaches a steady state. The respective concentrations of C6S, N, and H in molten steel are determined in advance by determining the concentrations of C6S, N, and H in molten steel.

Hの各濃度と各ガスの分圧との関係を求めておき、これ
をキャリブレーションカーブとすることによって決定で
きる。
This can be determined by determining the relationship between each concentration of H and the partial pressure of each gas and using this as a calibration curve.

一般に四重極質量分析計を用いたガス分析法においては
内標準ガスを用いた精度(変動係数)は数%であシ、良
好な精度を有している。
In general, gas analysis methods using a quadrupole mass spectrometer have good accuracy (coefficient of variation) of a few percent using an internal standard gas.

複数のグローブを用い、取鍋の複数個所について測定す
れば測定点による誤差をなくしてよシ正確な値を得るこ
とができる。
By using multiple gloves and measuring multiple locations on the ladle, it is possible to eliminate errors caused by measurement points and obtain more accurate values.

〔作用〕[Effect]

鋼を0□気流中で約1400℃以上に加熱すると鋼中の
C,SがCO2,502(1割程度は503)となって
ガス化して抽出されることは周知である。また、実験結
果ではN、Hも鋼から消失しており、それぞれN2. 
N20の形でガス化して抽出されることが判明している
It is well known that when steel is heated to about 1400° C. or higher in a 0□ air flow, C and S in the steel become CO2,502 (about 10% is 503) and are gasified and extracted. In addition, the experimental results show that N and H also disappear from the steel, and N2.
It has been found that it can be gasified and extracted in the form of N20.

本発明のグローブを利用したC、S、N、Hの測定原理
は、CをCO□等として、5t−8O□等として、Nを
N2等としてそしてHをN20等としてそれぞれ溶鋼か
らガスの形で抽出されることに帰する。
The principle of measuring C, S, N, and H using the glove of the present invention is to collect gases from molten steel by setting C as CO□, etc., 5t-8O□, etc., N as N2, etc., and H as N20, etc. This is attributed to the fact that it is extracted by .

このほか、02ガス分圧の変動などによりCo 、 S
o、 *H2なども生成する。
In addition, Co, S due to fluctuations in 02 gas partial pressure, etc.
o, *H2, etc. are also generated.

〔実施例〕〔Example〕

実施例1 本発明の一実施例であるプローブの側面断面図を第1図
に示す。
Example 1 FIG. 1 shows a side sectional view of a probe which is an example of the present invention.

このグローブは全体が円管状をしており、下端部には細
管状の溶鋼導入口1が形成されている。
This globe has a circular tube shape as a whole, and a thin tube-shaped molten steel inlet 1 is formed at the lower end.

この溶鋼導入口1からは酸化鉄溜室2へ連通する導入路
3が設けられており、溶鋼導入口1はコツプ状の鉄箔4
で閉止されている。グローブの頂面にはガス導入口5及
びガス排出口6が形成されている、ガス導入口5からは
ガス送入通路7が下方に延びておシ、下端部近傍で溶鋼
の導入路3に連結している。この導入路3の上部は酸化
鉄溜室2へ相当長さ突出している。グローブの外側には
紙管8が被せられている。
From this molten steel inlet 1, an inlet passage 3 communicating with an iron oxide reservoir 2 is provided.
is closed. A gas inlet 5 and a gas outlet 6 are formed on the top surface of the globe. A gas inlet passage 7 extends downward from the gas inlet 5 and connects to the molten steel inlet passage 3 near the lower end. It is connected. The upper part of this introduction passage 3 protrudes a considerable length into the iron oxide reservoir chamber 2. A paper tube 8 is placed on the outside of the glove.

このプローブの使用状態を第2図に示す。グローブはほ
ぼ酸化鉄溜室の底部に相当する部位まで溶鋼Aに浸漬さ
れている。溶鋼Aの上にはスラグBが浮いており、鉄箔
4は既に溶けてなくなっている。スタンダードとしてヘ
リウム0.1%を含む酸素ガスが200 m//min
でガス導入口5から送入され、溶鋼の導入路3で採取溶
鋼Cと混合して酸化反応させている。酸化鉄は導入路3
の上端から吐出して酸化鉄溜室2に溜まっている。ガス
排出側は吸引されておシ、生成ガスはガス排出口6から
排出して図示しない四重極質量分析計に送られ、各ガス
が分析される。
FIG. 2 shows how this probe is used. The globe is immersed in molten steel A up to a portion approximately corresponding to the bottom of the iron oxide reservoir. Slag B is floating on top of molten steel A, and iron foil 4 has already melted away. Oxygen gas containing 0.1% helium is used as standard at 200 m//min.
The gas is introduced from the gas inlet 5, mixed with the sampled molten steel C in the molten steel introduction path 3, and subjected to an oxidation reaction. Iron oxide is introduced through route 3
It is discharged from the upper end of the iron oxide storage chamber 2 and accumulated in the iron oxide reservoir chamber 2. The gas discharge side is sucked, and the generated gas is discharged from the gas discharge port 6 and sent to a quadrupole mass spectrometer (not shown), where each gas is analyzed.

このようにして溶鋼の炭素含有量とCO2ガス分圧(ヘ
リウムに対するピーク比で示す。)との関係を測定した
結果を第3図に示す。
FIG. 3 shows the results of measuring the relationship between the carbon content of molten steel and the CO2 gas partial pressure (indicated by the peak ratio to helium).

実施例2 本発明の別の実施例であるプローブの側面断面図を第4
図に示す。
Example 2 A side sectional view of a probe which is another example of the present invention is shown in the fourth example.
As shown in the figure.

この例のグローブは、ガス送入通路7が直接溶鋼B及び
酸化鉄の溜室2′に接続されており、溶鋼導入路3に接
続されていない点で第1図のグローブと相違している。
The globe of this example differs from the globe of FIG. 1 in that the gas feed passage 7 is directly connected to the molten steel B and iron oxide reservoir chamber 2', and is not connected to the molten steel introduction passage 3. .

このグローブの使用状態を第5図に示すが、溶鋼導入口
1から進入した採取溶鋼Cはガス導入口5から送り込ま
れた酸素ガスと溜室2′内で反応し、生成ガスはガス排
出口6から排出される。ガス排出側は減圧になっている
ので溶鋼から生じた酸化鉄の面は第5図に示すように、
外部の溶鋼面よ)上になる。
Fig. 5 shows how this glove is used. The collected molten steel C enters from the molten steel inlet 1 and reacts with oxygen gas sent from the gas inlet 5 in the reservoir chamber 2', and the generated gas is released from the gas outlet. It is discharged from 6. Since the gas discharge side is under reduced pressure, the surface of iron oxide produced from molten steel is as shown in Figure 5.
(over the external molten steel surface).

〔発明の効果〕〔Effect of the invention〕

上述したように本発明のプローブを利用することによっ
て溶鋼中にグローブを浸漬するだけでC2S、N、Hの
分析が可能でアシ、従来の分析に比べて容易に、迅速に
かつ多成分を同時に分析できる。
As mentioned above, by using the probe of the present invention, it is possible to analyze C2S, N, and H by simply dipping the glove into molten steel, which is easier and faster than conventional analysis, and allows for analysis of multiple components at the same time. Can be analyzed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるグローブの側面断面図
であり、第2図はその使用状態を示すやはり側面断面図
である。第3図はこのグローブを利用して溶鋼中の炭素
濃度と四重極質量分析計のCO2ピークとの関係を測定
した結果を示すものである。第4図は別の実施例のグロ
ーブの側面断面図であり、第5図はその使用状態を示す
ものである。 1・・・溶鋼導入口、2・・・酸化鉄溜室、2′・・・
溶鋼と酸化鉄の溜室、5・・・ガス導入口、6・・・ガ
ス排出口、7・・・ガス送入通路、A・・・溶鋼、C・
・・採取溶鋼溶鋼中C(%]
FIG. 1 is a side sectional view of a glove according to an embodiment of the present invention, and FIG. 2 is a side sectional view showing the glove in use. FIG. 3 shows the results of measuring the relationship between the carbon concentration in molten steel and the CO2 peak of a quadrupole mass spectrometer using this globe. FIG. 4 is a side sectional view of another embodiment of the glove, and FIG. 5 shows its use. 1... Molten steel inlet, 2... Iron oxide reservoir, 2'...
Reservoir for molten steel and iron oxide, 5... Gas inlet, 6... Gas outlet, 7... Gas feed passage, A... Molten steel, C.
...C in collected molten steel (%)

Claims (1)

【特許請求の範囲】[Claims] 下端部に細管形状の溶鋼導入口を備えた溶鋼中の炭素、
硫黄、窒素及び水素の各成分の抽出容器であつて、上端
部にガス導入口及びガス排出口を形成し、前記ガス導入
口にはこれと連結するガス送入通路をその先端が少なく
とも採取溶鋼の界面下に位置するように設け、ガス排出
口にはガス測定装置を接続するようにしたことを特徴と
する溶鋼中の炭素、硫黄、窒素及び水素の各成分の定量
分析用プローブ
Carbon in molten steel with a thin tube-shaped molten steel inlet at the lower end,
A container for extracting sulfur, nitrogen, and hydrogen components, the upper end of which is formed with a gas inlet and a gas outlet, and the gas inlet has a gas inlet passage connected to the gas inlet, the tip of which is connected to at least the molten steel to be sampled. A probe for quantitative analysis of carbon, sulfur, nitrogen, and hydrogen components in molten steel, characterized in that the probe is located below the interface of
JP60091231A 1985-04-30 1985-04-30 Probe for quantitative analysis of c, s, n and h in molten steel Pending JPS61250556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60091231A JPS61250556A (en) 1985-04-30 1985-04-30 Probe for quantitative analysis of c, s, n and h in molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60091231A JPS61250556A (en) 1985-04-30 1985-04-30 Probe for quantitative analysis of c, s, n and h in molten steel

Publications (1)

Publication Number Publication Date
JPS61250556A true JPS61250556A (en) 1986-11-07

Family

ID=14020645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60091231A Pending JPS61250556A (en) 1985-04-30 1985-04-30 Probe for quantitative analysis of c, s, n and h in molten steel

Country Status (1)

Country Link
JP (1) JPS61250556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642019A2 (en) * 1993-09-03 1995-03-08 Heraeus Electronite Co., Ltd. Method and apparatus for sequentially and continuously determining concentrations of carbon, hydrogen, and nitrogen in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel
WO1997024464A1 (en) * 1995-12-29 1997-07-10 Centro Sviluppo Materiali S.P.A. Method for determination and control of the amount of nitrogen dissolved in metalic liquid phases and device for its realization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125348A (en) * 1981-01-27 1982-08-04 Sumitomo Special Metals Co Ltd Quick analysis method of and apparatus for carbon in molten steel
JPS5912348A (en) * 1982-07-14 1984-01-23 Sumitomo Light Metal Ind Ltd Measuring device for concentration of hydrogen gas in molten metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125348A (en) * 1981-01-27 1982-08-04 Sumitomo Special Metals Co Ltd Quick analysis method of and apparatus for carbon in molten steel
JPS5912348A (en) * 1982-07-14 1984-01-23 Sumitomo Light Metal Ind Ltd Measuring device for concentration of hydrogen gas in molten metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642019A2 (en) * 1993-09-03 1995-03-08 Heraeus Electronite Co., Ltd. Method and apparatus for sequentially and continuously determining concentrations of carbon, hydrogen, and nitrogen in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel
EP0642019A3 (en) * 1993-09-03 1996-09-25 Heraeus Electronite Co Ltd Method and apparatus for sequentially and continuously determining concentrations of carbon, hydrogen, and nitrogen in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel.
WO1997024464A1 (en) * 1995-12-29 1997-07-10 Centro Sviluppo Materiali S.P.A. Method for determination and control of the amount of nitrogen dissolved in metalic liquid phases and device for its realization

Similar Documents

Publication Publication Date Title
US4757707A (en) Molten metal gas analysis
CA1272391A (en) Method of spectroscopically determining the composition of molten iron
US6216526B1 (en) Gas sampler for molten metal and method
US3820380A (en) Sampling molten metal baths
CN108020541A (en) The method of sulfur content in inductively coupled plasma emission spectrography measure ferrosilicon
JP2694595B2 (en) Method for determining gas concentration in molten metal
JPS61250556A (en) Probe for quantitative analysis of c, s, n and h in molten steel
JP2000055794A (en) Analyzer for element in sample
US20030044998A1 (en) Oxidation decomposition type element analyzer and method of analyzing material
KR20210003917A (en) Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method
Hemmerlin et al. Determination of ultra-low carbon and nitrogen contents in steel: combustion versus electrical spark source optical emission spectrometry for steelmaking process control
JP3211462B2 (en) Carbon measuring device
JPS642210B2 (en)
JPH07318553A (en) Inorganic carbon measuring apparatus
JPS6213006Y2 (en)
JP2001234230A (en) Method for deciding end point of decarburization refining
JP2005274139A (en) Measuring intrument for specific component in sample
SU1048380A1 (en) Method of determination of general nitrogen content in organic specimens
JPS61292055A (en) Quick analysis of molten steel
Jenkins et al. Sampling and analysis for an oxygen steel shop
JPS5838841A (en) Analysis of iron, steel or the like
JPH02225611A (en) Method for measuring mn content in molten steel during blowing in converter
JP2815454B2 (en) Quantitative analysis method for metal elements in sulfur
JPS6230940A (en) Method and apparatus for metal sample spectroscopic analysis
Sjöström et al. Laser-Induced Fluorescence and Laser-Induced Photo-Dissociation in Two-Step Graphite Furnace